1
|
Montermoso S, Eilers G, Allen A, Sharp R, Hwang Y, Bushman FD, Gupta K, Duyne GV. Structural Impact of Ex Vivo Resistance Mutations on HIV-1 Integrase Polymers Induced by Allosteric Inhibitors. J Mol Biol 2025; 437:169224. [PMID: 40409709 DOI: 10.1016/j.jmb.2025.169224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025]
Abstract
HIV-1 integrase (IN) is targeted by two classes of antivirals: integrase strand transfer inhibitors (INSTIs), which bind to the active site within the catalytic core domain (CCD), and allosteric integrase inhibitors (ALLINIs), which bind at the CCD dimer interface. ALLINIs were initially designed to disrupt interactions with the cellular cofactor LEDGF/p75, but it has become clear that ALLINIs primarily act by promoting formation of aberrant integrase polymers. The ALLINIs achieve this by stabilizing ectopic intermolecular interactions between the CCD dimer and the integrase carboxy-terminal domain (CTD), which disrupts viral maturation. Previously, we determined the structure of full-length HIV-1 IN bound to the ALLINI GSK1264 at 4.4 Å resolution, revealing its polymerization mechanism. More recently, we reported the X-ray crystal structure of a minimal ternary complex between CCD, CTD, and the ALLINI BI-224436 at a higher resolution. In this study, we improve the original 4.4 Å structure using this higher-resolution information and report two new structures of full-length HIV-1 IN harboring escape mutations in the CCD (Trp131Cys) or CTD (Asn222Lys) bound with the prototype ALLINI BI-D at 4.5 Å. These structures reveal perturbations to the tertiary organization associated with escape substitutions, which correlate with their reduced ability to form ectopic ALLINI-induced polymers in vitro. These findings suggest a general structural mechanism of ALLINI resistance and provide insights for the design of improved ALLINIs.
Collapse
Affiliation(s)
- Saira Montermoso
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Graduate Group in Biochemistry, Biophysics, and Chemical Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Grant Eilers
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Audrey Allen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Robert Sharp
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Young Hwang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Gregory Van Duyne
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
2
|
Thomas M, Bender A, de Graaf C. Integrating structure-based approaches in generative molecular design. Curr Opin Struct Biol 2023; 79:102559. [PMID: 36870277 DOI: 10.1016/j.sbi.2023.102559] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023]
Abstract
Generative molecular design for drug discovery and development has seen a recent resurgence promising to improve the efficiency of the design-make-test-analyse cycle; by computationally exploring much larger chemical spaces than traditional virtual screening techniques. However, most generative models thus far have only utilized small-molecule information to train and condition de novo molecule generators. Here, we instead focus on recent approaches that incorporate protein structure into de novo molecule optimization in an attempt to maximize the predicted on-target binding affinity of generated molecules. We summarize these structure integration principles into either distribution learning or goal-directed optimization and for each case whether the approach is protein structure-explicit or implicit with respect to the generative model. We discuss recent approaches in the context of this categorization and provide our perspective on the future direction of the field.
Collapse
Affiliation(s)
- Morgan Thomas
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK. https://twitter.com/@AndreasBenderUK
| | - Chris de Graaf
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK. https://twitter.com/@Chris_de_Graaf
| |
Collapse
|
3
|
Nilavar NM, Raghavan SC. HIV integrase inhibitors that inhibit strand transfer interact with RAG1 and hamper its activities. Int Immunopharmacol 2021; 95:107515. [PMID: 33735713 DOI: 10.1016/j.intimp.2021.107515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
Abstract
Multiple steps of the retroviral infection process have been targeted over the years to develop therapeutic approaches, starting from the entry of the virus into the cell till the viral DNA integration to host genome. Inhibitors against the Human Immunodeficiency Virus (HIV) integrase is the newest among the therapies employed against HIV. Recombination activating gene 1 (RAG1) is an integral protein involved in the generation of diversity of antibodies and T-cell receptors and is one of the partners of the RAG complex. Studies have shown structural and functional similarities between the HIV integrase and RAG1. Recently, we and others have shown that some of the integrase inhibitors can interfere with RAG binding and cleavage, hindering its physiological functions. This mini review focuses on the HIV integrase, integrase inhibitors and their effect on RAG activities.
Collapse
Affiliation(s)
- Namrata M Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
4
|
Gupta K, Allen A, Giraldo C, Eilers G, Sharp R, Hwang Y, Murali H, Cruz K, Janmey P, Bushman F, Van Duyne GD. Allosteric HIV Integrase Inhibitors Promote Formation of Inactive Branched Polymers via Homomeric Carboxy-Terminal Domain Interactions. Structure 2021; 29:213-225.e5. [PMID: 33357410 PMCID: PMC7935764 DOI: 10.1016/j.str.2020.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/04/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
The major effect of allosteric HIV integrase (IN) inhibitors (ALLINIs) is observed during virion maturation, where ALLINI treatment interrupts IN-RNA interactions via drug-induced IN aggregation, leading to the formation of aberrant virions. To understand the structural changes that accompany drug-induced aggregation, we determined the soft matter properties of ALLINI-induced IN aggregates. Using small-angle neutron scattering, SEM, and rheology, we have discovered that the higher-order aggregates induced by ALLINIs have the characteristics of weak three-dimensional gels with a fractal-like character. Their formation is inhibited by the host factor LEDGF/p75, as well as ex vivo resistance substitutions. Mutagenesis and biophysical analyses reveal that homomeric carboxy-terminal domain interactions are required to achieve the branched-polymer nature of the ALLINI-induced aggregates. These studies provide key insight into the mechanisms of ALLINI action and resistance in the context of the crowded virion environment where ALLINIs exert their effect.
Collapse
Affiliation(s)
- Kushol Gupta
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 809C Stellar-Chance Building, 422 Curie Boulevard, Philadelphia, PA 19105-6059, USA
| | - Audrey Allen
- Department of Microbiology, University of Pennsylvania School of Medicine, 426 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | - Carolina Giraldo
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 809C Stellar-Chance Building, 422 Curie Boulevard, Philadelphia, PA 19105-6059, USA
| | - Grant Eilers
- Department of Microbiology, University of Pennsylvania School of Medicine, 426 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | - Robert Sharp
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 809C Stellar-Chance Building, 422 Curie Boulevard, Philadelphia, PA 19105-6059, USA
| | - Young Hwang
- Department of Microbiology, University of Pennsylvania School of Medicine, 426 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | - Hemma Murali
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 809C Stellar-Chance Building, 422 Curie Boulevard, Philadelphia, PA 19105-6059, USA
| | - Katrina Cruz
- Department of Physiology, and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6383, USA
| | - Paul Janmey
- Department of Physiology, and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6383, USA
| | - Frederic Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, 426 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA.
| | - Gregory D Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 809C Stellar-Chance Building, 422 Curie Boulevard, Philadelphia, PA 19105-6059, USA.
| |
Collapse
|
5
|
A structure-based design approach to advance the allyltyrosine-based series of HIV integrase inhibitors. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.11.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Grawenhoff J, Engelman AN. Retroviral integrase protein and intasome nucleoprotein complex structures. World J Biol Chem 2017; 8:32-44. [PMID: 28289517 PMCID: PMC5329712 DOI: 10.4331/wjbc.v8.i1.32] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/24/2016] [Accepted: 01/14/2017] [Indexed: 02/05/2023] Open
Abstract
Retroviral replication proceeds through the integration of a DNA copy of the viral RNA genome into the host cellular genome, a process that is mediated by the viral integrase (IN) protein. IN catalyzes two distinct chemical reactions: 3’-processing, whereby the viral DNA is recessed by a di- or trinucleotide at its 3’-ends, and strand transfer, in which the processed viral DNA ends are inserted into host chromosomal DNA. Although IN has been studied as a recombinant protein since the 1980s, detailed structural understanding of its catalytic functions awaited high resolution structures of functional IN-DNA complexes or intasomes, initially obtained in 2010 for the spumavirus prototype foamy virus (PFV). Since then, two additional retroviral intasome structures, from the α-retrovirus Rous sarcoma virus (RSV) and β-retrovirus mouse mammary tumor virus (MMTV), have emerged. Here, we briefly review the history of IN structural biology prior to the intasome era, and then compare the intasome structures of PFV, MMTV and RSV in detail. Whereas the PFV intasome is characterized by a tetrameric assembly of IN around the viral DNA ends, the newer structures harbor octameric IN assemblies. Although the higher order architectures of MMTV and RSV intasomes differ from that of the PFV intasome, they possess remarkably similar intasomal core structures. Thus, retroviral integration machineries have adapted evolutionarily to utilize disparate IN elements to construct convergent intasome core structures for catalytic function.
Collapse
|
7
|
Structural Basis for Inhibitor-Induced Aggregation of HIV Integrase. PLoS Biol 2016; 14:e1002584. [PMID: 27935939 PMCID: PMC5147827 DOI: 10.1371/journal.pbio.1002584] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/14/2016] [Indexed: 11/19/2022] Open
Abstract
The allosteric inhibitors of integrase (termed ALLINIs) interfere with HIV replication by binding to the viral-encoded integrase (IN) protein. Surprisingly, ALLINIs interfere not with DNA integration but with viral particle assembly late during HIV replication. To investigate the ALLINI inhibitory mechanism, we crystallized full-length HIV-1 IN bound to the ALLINI GSK1264 and determined the structure of the complex at 4.4 Å resolution. The structure shows GSK1264 buried between the IN C-terminal domain (CTD) and the catalytic core domain. In the crystal lattice, the interacting domains are contributed by two different dimers so that IN forms an open polymer mediated by inhibitor-bridged contacts; the N-terminal domains do not participate and are structurally disordered. Engineered amino acid substitutions at the inhibitor interface blocked ALLINI-induced multimerization. HIV escape mutants with reduced sensitivity to ALLINIs commonly altered amino acids at or near the inhibitor-bound interface, and these substitutions also diminished IN multimerization. We propose that ALLINIs inhibit particle assembly by stimulating inappropriate polymerization of IN via interactions between the catalytic core domain and the CTD and that understanding the interface involved offers new routes to inhibitor optimization. A new crystal structure of the HIV integrase enzyme in complex with the allosteric inhibitor GSK1264 explains how the drug induces aggregation of the viral protein. A promising new class of antivirals called “ALLINIs” (allosteric inhibitors of integrase) potently inhibits HIV replication. Like other drugs, ALLINIs seem to target also the HIV-1 integrase (IN), which is crucial for the replication of this virus, but instead of acting at early phases of HIV replication, they interfere with viral particle assembly and maturation that occur at late stages and induce aggregation of IN. Despite these findings, the structural bases for the effects are still unknown. In this study, we crystallized full-length HIV-1 IN in complex with an ALLINI called GSK1264 and determined its structure to 4.4 Å. The structure reveals for the first time the complete ALLINI-binding interface, comprised of both IN C-terminal and catalytic core domains. These domains are contributed from neighboring IN dimers, revealing an open polymeric conformation mediated by inhibitor-bridged contacts. Substitutions at this interface block ALLINI-induced multimerization, and we find that escape mutants against this class of drug lie at or near this interface. We propose that ALLINIs catalyze formation of an open IN polymer, which in turn interferes with viral particle assembly.
Collapse
|
8
|
Balasubramanian S, Rajagopalan M, Bojja RS, Skalka AM, Andrake MD, Ramaswamy A. The conformational feasibility for the formation of reaching dimer in ASV and HIV integrase: a molecular dynamics study. J Biomol Struct Dyn 2016; 35:3469-3485. [PMID: 27835934 DOI: 10.1080/07391102.2016.1257955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Retroviral integrases are reported to form alternate dimer assemblies like the core-core dimer and reaching dimer. The core-core dimer is stabilized predominantly by an extensive interface between two catalytic core domains. The reaching dimer is stabilized by N-terminal domains that reach to form intermolecular interfaces with the other subunit's core and C-terminal domains (CTD), as well as CTD-CTD interactions. In this study, molecular dynamics (MD), Brownian dynamics (BD) simulations, and free energy analyses, were performed to elucidate determinants for the stability of the reaching dimer forms of full-length Avian Sarcoma Virus (ASV) and Human Immunodeficiency Virus (HIV) IN, and to examine the role of the C-tails (the last ~16-18 residues at the C-termini) in their structural dynamics. The dynamics of an HIV reaching dimer derived from small angle X-ray scattering and protein crosslinking data, was compared with the dynamics of a core-core dimer model derived from combining the crystal structures of two-domain fragments. The results showed that the core domains in the ASV reaching dimer express free dynamics, whereas those in the HIV reaching dimer are highly stable. BD simulations suggest a higher rate of association for the HIV core-core dimer than the reaching dimer. The predicted stability of these dimers was therefore ranked in the following order: ASV reaching dimer < HIV reaching dimer < composite core-core dimer. Analyses of MD trajectories have suggested residues that are critical for intermolecular contacts in each reaching dimer. Tests of these predictions and insights gained from these analyses could reveal a potential pathway for the association and dissociation of full-length IN multimers.
Collapse
Affiliation(s)
- Sangeetha Balasubramanian
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , Puducherry 605014 , India
| | - Muthukumaran Rajagopalan
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , Puducherry 605014 , India
| | - Ravi Shankar Bojja
- b Institute for Cancer Research , Fox Chase Cancer Center , Philadelphia , PA 19111 , USA
| | - Anna Marie Skalka
- b Institute for Cancer Research , Fox Chase Cancer Center , Philadelphia , PA 19111 , USA
| | - Mark D Andrake
- b Institute for Cancer Research , Fox Chase Cancer Center , Philadelphia , PA 19111 , USA
| | - Amutha Ramaswamy
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , Puducherry 605014 , India
| |
Collapse
|
9
|
Nakamura T, Campbell JR, Moore AR, Otsu S, Aikawa H, Tamamura H, Mitsuya H. Development and validation of a cell-based assay system to assess human immunodeficiency virus type 1 integrase multimerization. J Virol Methods 2016; 236:196-206. [PMID: 27474494 PMCID: PMC8188399 DOI: 10.1016/j.jviromet.2016.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 12/26/2022]
Abstract
Multimerization of HIV-1 integrase (IN) subunits is required for the concerted integration of HIV-1 proviral DNA into the host genome. Thus, the disruption of IN multimerization represents a new avenue for intervening HIV-1 infection. Here, we generated a cell-based assay system to assess IN multimerization using a newly constructed bimolecular fluorescence complementation (BiFC-IN) system. BiFC-IN proteins were efficient in emitting fluorescence, and amino acid (AA) substitutions associated with IN multimerization attenuated fluorescence, suggesting that the BiFC-IN system may be useful for evaluating the profile of IN multimerization. A recently reported non-catalytic site IN inhibitor (NCINI), which allosterically induces IN over-multimerization/aggregation, significantly increased fluorescence in the BiFC-IN system. An IN's substitution, A128T, associated with viral resistance to NCINIs, decreased the NCINI-induced increase of fluorescence, suggesting that A128T reduces the potential for IN over-multimerization. Moreover, E11K and F181T substitutions known to inhibit IN tetramerization also reduced the NCINI-induced fluorescence increase, suggesting that NCINI-induced IN over-multimerization was more likely to occur from tetramer subunits than from dimer subunits. The present study demonstrates that our cell-based BiFC-IN system may be useful in elucidating the profile of IN multimerization, and also help evaluate and identify novel compounds that disrupt IN multimerization in living cells.
Collapse
Affiliation(s)
- Tomofumi Nakamura
- Departments of Infectious Diseases and Hematology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Joseph R Campbell
- Departments of Infectious Diseases and Hematology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Amber R Moore
- Departments of Infectious Diseases and Hematology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Sachiko Otsu
- Departments of Infectious Diseases and Hematology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Haruo Aikawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Hiroaki Mitsuya
- Departments of Infectious Diseases and Hematology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan; Experimental Retrovirology Section, National Center for Global Health and Medicine Research Institute, Shinjuku, Tokyo 162-8655, Japan; HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Cermakova K, Weydert C, Christ F, De Rijck J, Debyser Z. Lessons Learned: HIV Points the Way Towards Precision Treatment of Mixed-Lineage Leukemia. Trends Pharmacol Sci 2016; 37:660-671. [PMID: 27290878 DOI: 10.1016/j.tips.2016.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/27/2022]
Abstract
Protein-protein interactions are involved in most if not all pathogenic and pathophysiological processes and represent attractive therapeutic targets. Extensive biological and clinical research efforts have led to the identification and validation of several cellular hubs that are crucially involved in disease pathogenesis. An interesting example of such a hub is the lens epithelium-derived growth factor (LEDGF/p75), a protein that tethers multiple unrelated proteins and protein complexes to the chromatin. Its chromatin-tethering ability is linked to at least two unrelated diseases-HIV infection and MLL-rearranged acute leukemia. In this review we discuss recent progress in our understanding of the interaction of LEDGF/p75 with its binding partners and focus on the first steps towards therapies targeting protein-protein interactions of LEDGF/p75.
Collapse
Affiliation(s)
- Katerina Cermakova
- KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium; Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic (ASCR), v.v.i, Laboratory of Structural Biology, Prague, Czech Republic
| | - Caroline Weydert
- KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Frauke Christ
- KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Jan De Rijck
- KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Zeger Debyser
- KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium.
| |
Collapse
|
11
|
Abstract
The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3'-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications.
Collapse
Affiliation(s)
- Paul Lesbats
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School , 450 Brookline Avenue, Boston, Massachusetts 02215 United States
| | - Peter Cherepanov
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K.,Imperial College London , St-Mary's Campus, Norfolk Place, London, W2 1PG, U.K
| |
Collapse
|
12
|
Mironov VF, Khasiyatullina NR, Krivolapov DB. Versatile approach to the synthesis of tetraarylphosphonium salts bearing 3,4-dihydroxynaphthyl substituent. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.11.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Williams SL, Essex JW. Study of the Conformational Dynamics of the Catalytic Loop of WT and G140A/G149A HIV-1 Integrase Core Domain Using Reversible Digitally Filtered Molecular Dynamics. J Chem Theory Comput 2015; 5:411-21. [PMID: 26610114 DOI: 10.1021/ct800162v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The HIV-1 IN enzyme is one of three crucial virally encoded enzymes (HIV-1 IN, HIV-1 PR, and HIV-1 RT) involved in the life-cycle of the HIV-1 virus, making it an attractive target in the development of drugs against the AIDS virus. The structure and mechanism of the HIV-1 IN enzyme is the least understood of the three enzymes due to the lack of three-dimensional structural information. X-ray cystallographic studies have not yet been able to resolve the full-length structure, and studies have been mainly focused on the catalytic domain. This central domain possesses an important catalytic loop observed to overhang the active site, and experimental studies have shown that its dynamics affects the catalytic activity of mutant HIV-1 IN enzymes. In this study, the enhanced sampling technique, Reversible Digitally Filtered Molecular Dynamics (RDFMD), has been applied to the catalytic domain of the WT and G140A/G149A HIV-1 IN enzymes and has highlighted significant differences between the behavior of the catalytic loop which may explain the decrease of activity observed in experimental studies for this mutant.
Collapse
Affiliation(s)
- Sarah L Williams
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Jonathan W Essex
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| |
Collapse
|
14
|
Roberts VA. C-Terminal Domain of Integrase Binds between the Two Active Sites. J Chem Theory Comput 2015; 11:4500-11. [PMID: 26575940 DOI: 10.1021/ct501125r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
HIV integrase (HIV-IN), one of three HIV enzymes, is a target for the treatment of AIDS, but the full biological assembly has been difficult to characterize, hampering inhibitor design. The recent crystallographic structures of integrase from prototype foamy virus (PFV-IN) with bound DNA were a breakthrough, revealing how viral DNA organizes two integrase dimers into a tetramer that has the two active sites appropriately spaced for insertion of the viral DNA into host DNA. The organization of domains within each PFV-IN protein chain, however, varies significantly from that found in HIV-IN structures. With the goal of identifying shared structural characteristics, the interactions among components of the PFV-IN and HIV-IN assemblies were investigated with the macromolecular docking program DOT. DOT performs an exhaustive, rigid-body search between two macromolecules. Computational docking reproduced the crystallographic interactions of the PFV-IN catalytic and N-terminal domains with viral DNA and found similar viral DNA interactions for HIV-IN. Computational docking did not reproduce the crystallographic interactions of the PFV-IN C-terminal domain (CTD). Instead, two symmetry-related positions were found for the PFV-IN CTD that indicate formation of a CTD dimer between the two active sites. Our predicted CTD dimer is consistent with cross-linking studies showing interactions of the CTD with viral DNA that appear to be blocked in the PFV-IN structures. The CTD dimer can insert two arginine-rich loops between the two bound vDNA molecules and the host DNA, a region that is unoccupied in the PFV-IN crystallographic structures. The positive potential from these two loops would alleviate the large negative potential created by the close proximity of two viral vDNA ends, helping to bring together the two active sites and assisting host DNA binding. This study demonstrates the ability of computational docking to evaluate complex crystallographic assemblies, identify interactions that are influenced by the crystal environment, and provide plausible alternatives.
Collapse
Affiliation(s)
- Victoria A Roberts
- San Diego Supercomputer Center, University of California, San Diego , La Jolla, California 92093, United States
| |
Collapse
|
15
|
Feng L, Larue RC, Slaughter A, Kessl JJ, Kvaratskhelia M. HIV-1 integrase multimerization as a therapeutic target. Curr Top Microbiol Immunol 2015; 389:93-119. [PMID: 25778682 PMCID: PMC4791179 DOI: 10.1007/82_2015_439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multimeric HIV-1 integrase (IN) plays an essential, multifunctional role in virus replication and serves as an important therapeutic target. Structural and biochemical studies have revealed the importance of the ordered interplay between IN molecules for its function. In the presence of viral DNA ends, individual IN subunits assemble into a tetramer and form a stable synaptic complex (SSC), which mediates integration of the reverse transcribed HIV-1 genome into chromatin. Cellular chromatin-associated protein LEDGF/p75 engages the IN tetramer in the SSC and directs HIV-1 integration into active genes. A mechanism to deregulate the productive interplay between IN subunits with small molecule inhibitors has recently received considerable attention. Most notably, allosteric IN inhibitors (ALLINIs) have been shown to bind to the IN dimer interface at the LEDGF/p75 binding pocket, stabilize interacting IN subunits, and promote aberrant, higher order IN multimerization. Consequently, these compounds impair formation of the SSC and associated LEDGF/p75-independent IN catalytic activities as well as inhibit LEDGF/p75 binding to the SSC in vitro. However, in infected cells, ALLINIs more potently impaired correct maturation of virus particles than the integration step. ALLINI treatments induced aberrant, higher order IN multimerization in virions and resulted in eccentric, non-infectious virus particles. These studies have suggested that the correctly ordered IN structure is important for virus particle morphogenesis and highlighted IN multimerization as a plausible therapeutic target for developing new inhibitors to enhance treatment options for HIV-1-infected patients.
Collapse
Affiliation(s)
- Lei Feng
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Ross C. Larue
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Alison Slaughter
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Jacques J. Kessl
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Mamuka Kvaratskhelia
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Host factors for retroviral integration site selection. Trends Biochem Sci 2014; 40:108-16. [PMID: 25555456 DOI: 10.1016/j.tibs.2014.12.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/15/2014] [Accepted: 12/02/2014] [Indexed: 11/22/2022]
Abstract
To achieve productive infection, retroviruses such as HIV stably integrate their reverse transcribed RNA genome into a host chromosome. Each retroviral family preferentially integrates near a unique subset of genomic features. HIV integrase (IN) is targeted to the body of active transcription units through interaction with lens epithelium-derived growth factor (LEDGF/p75). We describe the successful effort to develop inhibitors of the interaction between IN and LEDGF/p75, referred to as LEDGINs. Gammaretroviruses display a distinct integration pattern. Recently, BET (bromo- and extraterminal domain) proteins were identified as the LEDGF/p75 counterparts that target the integration of gammaretroviruses. The identification of the chromatin-readers LEDGF/p75 and BET as cellular cofactors that orchestrate lentiviral or gammaretroviral integration opens new avenues to developing safer viral vectors for gene therapy.
Collapse
|
17
|
Craigie R, Bushman FD. Host Factors in Retroviral Integration and the Selection of Integration Target Sites. Microbiol Spectr 2014; 2:10.1128/microbiolspec.MDNA3-0026-2014. [PMID: 26104434 PMCID: PMC4525071 DOI: 10.1128/microbiolspec.mdna3-0026-2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Indexed: 02/07/2023] Open
Abstract
In order to replicate, a retrovirus must integrate a DNA copy of the viral RNA genome into a chromosome of the host cell. The study of retroviral integration has advanced considerably in the past few years. Here we focus on host factor interactions and the linked area of integration targeting. Genome-wide screens for cellular factors affecting HIV replication have identified a series of host cell proteins that may mediate subcellular trafficking for preintegration complexes, nuclear import, and integration target site selection. The cell transcriptional co-activator protein LEDGF/p75 has been identified as a tethering factor important for HIV integration, and recently, BET proteins (Brd2, 4, and 4) have been identified as tethering factors for the gammaretroviruses. A new class of HIV inhibitors has been developed targeting the HIV-1 IN-LEDGF binding site, though surprisingly these inhibitors appear to block assembly late during replication and do not act at the integration step. Going forward, genome-wide studies of HIV-host interactions offer many new starting points to investigate HIV replication and identify potential new inhibitor targets.
Collapse
Affiliation(s)
- Robert Craigie
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0560
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Desimmie BA, Demeulemeester J, Christ F, Debyser Z. Rational design of LEDGINs as first allosteric integrase inhibitors for the treatment of HIV infection. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e517-22. [PMID: 24451643 DOI: 10.1016/j.ddtec.2012.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interaction between lens epithelium-derived growth factor (LEDGF/p75) and HIV-1 integrase (IN) is an attractive target for antiviral development because its inhibition blocks HIV replication. Developing novel small molecules that disrupt the LEDGF/p75-IN interaction constitutes a promising new therapeutic strategy for the treatment of HIV. Here we will highlight recent advances in the design and development of small-molecule inhibitors binding to the LEDGF/p75 binding pocket of IN, referred to as LEDGINs.
Collapse
|
19
|
Gupta K, Brady T, Dyer BM, Malani N, Hwang Y, Male F, Nolte RT, Wang L, Velthuisen E, Jeffrey J, Van Duyne GD, Bushman FD. Allosteric inhibition of human immunodeficiency virus integrase: late block during viral replication and abnormal multimerization involving specific protein domains. J Biol Chem 2014; 289:20477-88. [PMID: 24904063 PMCID: PMC4110260 DOI: 10.1074/jbc.m114.551119] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/03/2014] [Indexed: 11/06/2022] Open
Abstract
HIV-1 replication in the presence of antiviral agents results in evolution of drug-resistant variants, motivating the search for additional drug classes. Here we report studies of GSK1264, which was identified as a compound that disrupts the interaction between HIV-1 integrase (IN) and the cellular factor lens epithelium-derived growth factor (LEDGF)/p75. GSK1264 displayed potent antiviral activity and was found to bind at the site occupied by LEDGF/p75 on IN by x-ray crystallography. Assays of HIV replication in the presence of GSK1264 showed only modest inhibition of the early infection steps and little effect on integration targeting, which is guided by the LEDGF/p75-IN interaction. In contrast, inhibition of late replication steps was more potent. Particle production was normal, but particles showed reduced infectivity. GSK1264 promoted aggregation of IN and preformed LEDGF/p75-IN complexes, suggesting a mechanism of inhibition. LEDGF/p75 was not displaced from IN during aggregation, indicating trapping of LEDGF/p75 in aggregates. Aggregation assays with truncated IN variants revealed that a construct with catalytic and C-terminal domains of IN only formed an open polymer associated with efficient drug-induced aggregation. These data suggest that the allosteric inhibitors of IN are promising antiviral agents and provide new information on their mechanism of action.
Collapse
Affiliation(s)
- Kushol Gupta
- the Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059, and
| | - Troy Brady
- From the Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6076
| | - Benjamin M. Dyer
- From the Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6076
| | - Nirav Malani
- From the Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6076
| | - Young Hwang
- From the Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6076
| | - Frances Male
- From the Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6076
| | | | | | - Emile Velthuisen
- the HIV Discovery Performance Unit, Infectious Disease Therapy Area Unit, GlaxoSmithKline, Research Triangle Park, North Carolina 27709
| | - Jerry Jeffrey
- the HIV Discovery Performance Unit, Infectious Disease Therapy Area Unit, GlaxoSmithKline, Research Triangle Park, North Carolina 27709
| | - Gregory D. Van Duyne
- the Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059, and
| | - Frederic D. Bushman
- From the Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6076
| |
Collapse
|
20
|
Sharma A, Slaughter A, Jena N, Feng L, Kessl JJ, Fadel HJ, Malani N, Male F, Wu L, Poeschla E, Bushman FD, Fuchs JR, Kvaratskhelia M. A new class of multimerization selective inhibitors of HIV-1 integrase. PLoS Pathog 2014; 10:e1004171. [PMID: 24874515 PMCID: PMC4038613 DOI: 10.1371/journal.ppat.1004171] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/22/2014] [Indexed: 12/20/2022] Open
Abstract
The quinoline-based allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are promising candidates for clinically useful antiviral agents. Studies using these compounds have highlighted the role of IN in both early and late stages of virus replication. However, dissecting the exact mechanism of action of the quinoline-based ALLINIs has been complicated by the multifunctional nature of these inhibitors because they both inhibit IN binding with its cofactor LEDGF/p75 and promote aberrant IN multimerization with similar potencies in vitro. Here we report design of small molecules that allowed us to probe the role of HIV-1 IN multimerization independently from IN-LEDGF/p75 interactions in infected cells. We altered the rigid quinoline moiety in ALLINIs and designed pyridine-based molecules with a rotatable single bond to allow these compounds to bridge between interacting IN subunits optimally and promote oligomerization. The most potent pyridine-based inhibitor, KF116, potently (EC50 of 0.024 µM) blocked HIV-1 replication by inducing aberrant IN multimerization in virus particles, whereas it was not effective when added to target cells. Furthermore, KF116 inhibited the HIV-1 IN variant with the A128T substitution, which confers resistance to the majority of quinoline-based ALLINIs. A genome-wide HIV-1 integration site analysis demonstrated that addition of KF116 to target or producer cells did not affect LEDGF/p75-dependent HIV-1 integration in host chromosomes, indicating that this compound is not detectably inhibiting IN-LEDGF/p75 binding. These findings delineate the significance of correctly ordered IN structure for HIV-1 particle morphogenesis and demonstrate feasibility of exploiting IN multimerization as a therapeutic target. Furthermore, pyridine-based compounds present a novel class of multimerization selective IN inhibitors as investigational probes for HIV-1 molecular biology. The administration of highly active-antiretroviral therapy (HAART) has changed what was once a terminal disease into a manageable chronic infection. The success of HAART is manifested by reduced mortality and morbidity of HIV-1 infected patients. However, evolution of HIV-1 strains resistant to current therapies is a major clinical problem in the fight against AIDS. Therefore, new inhibitors with novel mechanisms of action are needed. One such mechanism is to target multimerization of HIV-1 integrase. In the present study, we report the design of pyridine-based small molecules that contain a rotatable single bond to allow optimal bridging between interacting integrase subunits. As a result, pyridine-based compounds stabilized interacting IN subunits and promoted aberrant, higher order integrase multimerization. The most potent compound, KF116, potently inhibited HIV-1 replication by interfering with proper maturation of HIV-1 particles, whereas KF116 at therapeutically relevant (submicromolar) concentrations had no detectable effects on LEDGF/p75 mediated HIV-1 integration. Our findings highlight HIV-1 integrase multimerization as a plausible therapeutic target and offer a path for designing improved inhibitors for potential clinical use.
Collapse
Affiliation(s)
- Amit Sharma
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Alison Slaughter
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Nivedita Jena
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Lei Feng
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Jacques J. Kessl
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Hind J. Fadel
- Department of Molecular Medicine & Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Nirav Malani
- Perelman School of Medicine, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Frances Male
- Perelman School of Medicine, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Li Wu
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Eric Poeschla
- Department of Molecular Medicine & Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Frederic D. Bushman
- Perelman School of Medicine, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James R. Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Mamuka Kvaratskhelia
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
21
|
Costi R, Métifiot M, Chung S, Cuzzucoli Crucitti G, Maddali K, Pescatori L, Messore A, Madia VN, Pupo G, Scipione L, Tortorella S, Di Leva FS, Cosconati S, Marinelli L, Novellino E, Le Grice SFJ, Corona A, Pommier Y, Marchand C, Di Santo R. Basic quinolinonyl diketo acid derivatives as inhibitors of HIV integrase and their activity against RNase H function of reverse transcriptase. J Med Chem 2014; 57:3223-34. [PMID: 24684270 PMCID: PMC4203401 DOI: 10.1021/jm5001503] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
A series
of antiviral basic quinolinonyl diketo acid derivatives
were developed as inhibitors of HIV-1 IN. Compounds 12d,f,i inhibited HIV-1 IN with IC50 values below 100 nM for strand transfer and showed a 2 order of
magnitude selectivity over 3′-processing. These strand transfer
selective inhibitors also inhibited HIV-1 RNase H with low micromolar
potencies. Molecular modeling studies based on both the HIV-1 IN and
RNase H catalytic core domains provided new structural insights for
the future development of these compounds as dual HIV-1 IN and RNase
H inhibitors.
Collapse
Affiliation(s)
- Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma , P.le Aldo Moro 5, I-00185 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fader LD, Malenfant E, Parisien M, Carson R, Bilodeau F, Landry S, Pesant M, Brochu C, Morin S, Chabot C, Halmos T, Bousquet Y, Bailey MD, Kawai SH, Coulombe R, LaPlante S, Jakalian A, Bhardwaj PK, Wernic D, Schroeder P, Amad M, Edwards P, Garneau M, Duan J, Cordingley M, Bethell R, Mason SW, Bös M, Bonneau P, Poupart MA, Faucher AM, Simoneau B, Fenwick C, Yoakim C, Tsantrizos Y. Discovery of BI 224436, a Noncatalytic Site Integrase Inhibitor (NCINI) of HIV-1. ACS Med Chem Lett 2014; 5:422-7. [PMID: 24900852 DOI: 10.1021/ml500002n] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/22/2014] [Indexed: 01/01/2023] Open
Abstract
An assay recapitulating the 3' processing activity of HIV-1 integrase (IN) was used to screen the Boehringer Ingelheim compound collection. Hit-to-lead and lead optimization beginning with compound 1 established the importance of the C3 and C4 substituent to antiviral potency against viruses with different aa124/aa125 variants of IN. The importance of the C7 position on the serum shifted potency was established. Introduction of a quinoline substituent at the C4 position provided a balance of potency and metabolic stability. Combination of these findings ultimately led to the discovery of compound 26 (BI 224436), the first NCINI to advance into a phase Ia clinical trial.
Collapse
Affiliation(s)
- Lee D. Fader
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Eric Malenfant
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Mathieu Parisien
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Rebekah Carson
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - François Bilodeau
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Serge Landry
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Marc Pesant
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Christian Brochu
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Sébastien Morin
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Catherine Chabot
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Ted Halmos
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Yves Bousquet
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Murray D. Bailey
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Stephen H. Kawai
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - René Coulombe
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Steven LaPlante
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Araz Jakalian
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Punit K. Bhardwaj
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Dominik Wernic
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Patricia Schroeder
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Ma’an Amad
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Paul Edwards
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Michel Garneau
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Jianmin Duan
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Michael Cordingley
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Richard Bethell
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Stephen W. Mason
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Michael Bös
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Pierre Bonneau
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Marc-André Poupart
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Anne-Marie Faucher
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Bruno Simoneau
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Craig Fenwick
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Christiane Yoakim
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Youla Tsantrizos
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| |
Collapse
|
23
|
Poongavanam V, Narayana Moorthy NSH, Kongsted J. Dual mechanism of HIV-1 integrase and RNase H inhibition by diketo derivatives – a computational study. RSC Adv 2014. [DOI: 10.1039/c4ra05728g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dual inhibition of HIV-1 integrase and RNase H by the diketo derivatives is investigated through ligand and structure based computational methods.
Collapse
Affiliation(s)
| | | | - Jacob Kongsted
- Department of Physics
- Chemistry and Pharmacy
- University of Southern Denmark
- Odense M, Denmark
| |
Collapse
|
24
|
Abstract
Integrase (IN) is required for lentivirus replication and is a proven drug target for the prevention of AIDS in HIV-1-infected patients. While clinical strand transfer inhibitors disarm the IN active site, allosteric inhibition of enzyme activity through the disruption of IN-IN protein interfaces holds great therapeutic potential. A promising class of allosteric IN inhibitors (ALLINIs), 2-(quinolin-3-yl) acetic acid derivatives, engage the IN catalytic core domain dimerisation interface at the binding site for the host integration co-factor LEDGF/p75. ALLINIs promote IN multimerisation and, independent of LEDGF/p75 protein, block the formation of the active IN-DNA complex, as well as inhibit the IN-LEDGF/p75 interaction in vitro. Yet, rather unexpectedly, the full inhibitory effect of these compounds is exerted during the late phase of HIV-1 replication. ALLINIs impair particle core maturation as well as reverse transcription and integration during the subsequent round of virus infection. Recapitulating the pleiotropic phenotypes observed with numerous IN mutant viruses, ALLINIs provide insight into underlying aspects of IN biology that extend beyond its catalytic activity. Therefore, in addition to the potential to expand our repertoire of HIV-1 antiretrovirals, ALLINIs afford important structural probes to dissect the multifaceted nature of the IN protein throughout the course of HIV-1 replication.
Collapse
|
25
|
Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells. PLoS One 2013; 8:e74163. [PMID: 24040198 PMCID: PMC3767657 DOI: 10.1371/journal.pone.0074163] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 07/29/2013] [Indexed: 12/24/2022] Open
Abstract
HIV-1 integrase (IN) is the target for two classes of antiretrovirals: i) the integrase strand-transfer inhibitors (INSTIs) and ii) the non-catalytic site integrase inhibitors (NCINIs). NCINIs bind at the IN dimer interface and are thought to interfere primarily with viral DNA (vDNA) integration in the target cell by blocking IN-vDNA assembly as well as the IN-LEDGF/p75 interaction. Herein we show that treatment of virus-producing cells, but not of mature virions or target cells, drives NCINI antiviral potency. NCINIs target an essential late-stage event in HIV replication that is insensitive to LEDGF levels in the producer cells. Virus particles produced in the presence of NCINIs displayed normal Gag-Pol processing and endogenous reverse transcriptase activity, but were defective at initiating vDNA synthesis following entry into the target cell. NCINI-resistant virus carrying a T174I mutation in the IN dimer interface was less sensitive to the compound-induced late-stage effects, including the reverse transcription block. Wild-type, but not T174I virus, produced in the presence of NCINIs exhibited striking defects in core morphology and an increased level of IN oligomers that was not observed upon treatment of mature cell-free particles. Collectively, these results reveal that NCINIs act through a novel mechanism that is unrelated to the previously observed inhibition of IN activity or IN-LEDGF interaction, and instead involves the disruption of an IN function during HIV-1 core maturation and assembly.
Collapse
|
26
|
Christ F, Debyser Z. The LEDGF/p75 integrase interaction, a novel target for anti-HIV therapy. Virology 2013; 435:102-9. [PMID: 23217620 DOI: 10.1016/j.virol.2012.09.033] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 01/12/2023]
Abstract
To accomplish their viral life cycle, lentiviruses such as HIV highjack host proteins, the so-called cellular co-factors of replication. Lens Epithelium-derived Growth factor (LEDGF/p75), a transcriptional co-activator, is a co-factor of HIV-integrase (IN) and is required for the tethering and correct integration of the viral genome into the host chromatin. Due to its important role in HIV-replication the LEDGF/p75-IN interaction is an attractive antiviral novel target for the treatment of HIV/AIDS. Intensive drug discovery efforts over the past years have validated the LEDGF/p75-IN interaction as a drugable target for antiviral therapy and have resulted in the design and synthesis of LEDGINs, small molecule inhibitors binding to the dimer interface of HIV-integrase and inhibiting viral replication with a dual mechanism of action: potent inhibition of the LEDGF/p75-IN protein-protein interaction and allosteric inhibition of the catalytic function. Furthermore they inhibit both early and late steps of the replication cycle which increases their potential for further clinical development. In this review we will highlight the research validating the LEDGF/p75-IN interaction as a target for anti-HIV drug discovery and the recent advances in the design and development of LEDGINs.
Collapse
Affiliation(s)
- Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Division of Molecular Medicine, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium.
| | | |
Collapse
|
27
|
Cellular cofactors of lentiviral integrase: from target validation to drug discovery. Mol Biol Int 2012; 2012:863405. [PMID: 22928108 PMCID: PMC3420096 DOI: 10.1155/2012/863405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/03/2012] [Accepted: 06/27/2012] [Indexed: 01/30/2023] Open
Abstract
To accomplish their life cycle, lentiviruses make use of host proteins, the so-called cellular cofactors. Interactions between host cell and viral proteins during early stages of lentiviral infection provide attractive new antiviral targets. The insertion of lentiviral cDNA in a host cell chromosome is a step of no return in the replication cycle, after which the host cell becomes a permanent carrier of the viral genome and a producer of lentiviral progeny. Integration is carried out by integrase (IN), an enzyme playing also an important role during nuclear import. Plenty of cellular cofactors of HIV-1 IN have been proposed. To date, the lens epithelium-derived growth factor (LEDGF/p75) is the best studied cofactor of HIV-1 IN. Moreover, small molecules that block the LEDGF/p75-IN interaction have recently been developed for the treatment of HIV infection. The nuclear import factor transportin-SR2 (TRN-SR2) has been proposed as another interactor of HIV IN-mediating nuclear import of the virus. Using both proteins as examples, we will describe approaches to be taken to identify and validate novel cofactors as new antiviral targets. Finally, we will highlight recent advances in the design and the development of small-molecule inhibitors binding to the LEDGF/p75-binding pocket in IN (LEDGINs).
Collapse
|
28
|
Phage display-directed discovery of LEDGF/p75 binding cyclic peptide inhibitors of HIV replication. Mol Ther 2012; 20:2064-75. [PMID: 22828501 DOI: 10.1038/mt.2012.132] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The interaction between the human immunodeficiency virus (HIV) integrase (IN) and its cellular cofactor lens epithelium-derived growth factor (LEDGF/p75) is crucial for HIV replication. While recently discovered LEDGINs inhibit HIV-1 replication by occupying the LEDGF/p75 pocket in IN, it remained to be demonstrated whether LEDGF/p75 by itself can be targeted. By phage display we identified cyclic peptides (CPs) as the first LEDGF/p75 ligands that inhibit the LEDGF/p75-IN interaction. The CPs inhibit HIV replication in different cell lines without overt toxicity. In accord with the role of LEDGF/p75 in HIV integration and its inhibition by LEDGINs, CP64, and CP65 block HIV replication primarily by inhibiting the integration step. The CPs retained activity against HIV strains resistant to raltegravir or LEDGINs. Saturation transfer difference (STD) NMR showed residues in CP64 that strongly interact with LEDGF/p75 but not with HIV IN. Mutational analysis identified tryptophan as an important residue responsible for the activity of the peptides. Serial passaging of virus in the presence of CPs did not yield resistant strains. Our work provides proof-of-concept for direct targeting of LEDGF/p75 as novel therapeutic strategy and the CPs thereby serve as scaffold for future development of new HIV therapeutics.
Collapse
|
29
|
Abstract
Retroviruses are distinguished from other viruses by two characteristic steps in the viral replication cycle. The first is reverse transcription, which results in the production of a double-stranded DNA copy of the viral RNA genome, and the second is integration, which results in covalent attachment of the DNA copy to host cell DNA. The initial catalytic steps of the integration reaction are performed by the virus-encoded integrase (IN) protein. The chemistry of the IN-mediated DNA breaking and joining steps is well worked out, and structures of IN-DNA complexes have now clarified how the overall complex assembles. Methods developed during these studies were adapted for identification of IN inhibitors, which received FDA approval for use in patients in 2007. At the chromosomal level, HIV integration is strongly favored in active transcription units, which may promote efficient viral gene expression after integration. HIV IN binds to the cellular factor LEDGF/p75, which promotes efficient infection and tethers IN to favored target sites. The HIV integration machinery must also interact with many additional host factors during infection, including nuclear trafficking and pore proteins during nuclear entry, histones during initial target capture, and DNA repair proteins during completion of the DNA joining steps. Models for some of the molecular mechanisms involved have been proposed, but important details remain to be clarified.
Collapse
Affiliation(s)
- Robert Craigie
- Molecular Virology Section, NIDDK, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
30
|
Tsiang M, Jones GS, Niedziela-Majka A, Kan E, Lansdon EB, Huang W, Hung M, Samuel D, Novikov N, Xu Y, Mitchell M, Guo H, Babaoglu K, Liu X, Geleziunas R, Sakowicz R. New class of HIV-1 integrase (IN) inhibitors with a dual mode of action. J Biol Chem 2012; 287:21189-203. [PMID: 22535962 DOI: 10.1074/jbc.m112.347534] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
tert-Butoxy-(4-phenyl-quinolin-3-yl)-acetic acids (tBPQA) are a new class of HIV-1 integrase (IN) inhibitors that are structurally distinct from IN strand transfer inhibitors but analogous to LEDGINs. LEDGINs are a class of potent antiviral compounds that interacts with the lens epithelium-derived growth factor (LEDGF) binding pocket on IN and were identified through competition binding against LEDGF. LEDGF tethers IN to the host chromatin and enables targeted integration of viral DNA. The prevailing understanding of the antiviral mechanism of LEDGINs is that they inhibit LEDGF binding to IN, which prevents targeted integration of HIV-1. We showed that in addition to the properties already known for LEDGINs, the binding of tBPQAs to the IN dimer interface inhibits IN enzymatic activity in a LEDGF-independent manner. Using the analysis of two long terminal repeat junctions in HIV-infected cells, we showed that the inhibition by tBPQAs occurs at or prior to the viral DNA 3'-processing step. Biochemical studies revealed that this inhibition operates by compound-induced conformational changes in the IN dimer that prevent proper assembly of IN onto viral DNA. For the first time, tBPQAs were demonstrated to be allosteric inhibitors of HIV-1 IN displaying a dual mode of action: inhibition of IN-viral DNA assembly and inhibition of IN-LEDGF interaction.
Collapse
Affiliation(s)
- Manuel Tsiang
- Gilead Sciences, Inc, Foster City, California 94404, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kessl JJ, Jena N, Koh Y, Taskent-Sezgin H, Slaughter A, Feng L, de Silva S, Wu L, Le Grice SFJ, Engelman A, Fuchs JR, Kvaratskhelia M. Multimode, cooperative mechanism of action of allosteric HIV-1 integrase inhibitors. J Biol Chem 2012; 287:16801-11. [PMID: 22437836 DOI: 10.1074/jbc.m112.354373] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The multifunctional HIV-1 enzyme integrase interacts with viral DNA and its key cellular cofactor LEDGF to effectively integrate the reverse transcript into a host cell chromosome. These interactions are crucial for HIV-1 replication and present attractive targets for antiviral therapy. Recently, 2-(quinolin-3-yl) acetic acid derivatives were reported to selectively inhibit the integrase-LEDGF interaction in vitro and impair HIV-1 replication in infected cells. Here, we show that this class of compounds impairs both integrase-LEDGF binding and LEDGF-independent integrase catalytic activities with similar IC(50) values, defining them as bona fide allosteric inhibitors of integrase function. Furthermore, we show that 2-(quinolin-3-yl) acetic acid derivatives block the formation of the stable synaptic complex between integrase and viral DNA by allosterically stabilizing an inactive multimeric form of integrase. In addition, these compounds inhibit LEDGF binding to the stable synaptic complex. This multimode mechanism of action concordantly results in cooperative inhibition of the concerted integration of viral DNA ends in vitro and HIV-1 replication in cell culture. Our findings, coupled with the fact that high cooperativity of antiviral inhibitors correlates with their increased instantaneous inhibitory potential, an important clinical parameter, argue strongly that improved 2-(quinolin-3-yl) acetic acid derivatives could exhibit desirable clinical properties.
Collapse
Affiliation(s)
- Jacques J Kessl
- Center for Retrovirus Research, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kessl JJ, Li M, Ignatov M, Shkriabai N, Eidahl JO, Feng L, Musier-Forsyth K, Craigie R, Kvaratskhelia M. FRET analysis reveals distinct conformations of IN tetramers in the presence of viral DNA or LEDGF/p75. Nucleic Acids Res 2011; 39:9009-22. [PMID: 21771857 PMCID: PMC3203615 DOI: 10.1093/nar/gkr581] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A tetramer of HIV-1 integrase (IN) stably associates with the viral DNA ends to form a fully functional concerted integration intermediate. LEDGF/p75, a key cellular binding partner of the lentiviral enzyme, also stabilizes a tetrameric form of IN. However, functional assays have indicated the importance of the order of viral DNA and LEDGF/p75 addition to IN for productive concerted integration. Here, we employed Förster Resonance Energy Transfer (FRET) to monitor assembly of individual IN subunits into tetramers in the presence of viral DNA and LEDGF/p75. The IN–viral DNA and IN–LEDGF/p75 complexes yielded significantly different FRET values suggesting two distinct IN conformations in these complexes. Furthermore, the order of addition experiments indicated that FRET for the preformed IN–viral DNA complex remained unchanged upon its subsequent binding to LEDGF/p75, whereas pre-incubation of LEDGF/p75 and IN followed by addition of viral DNA yielded FRET very similar to the IN–LEDGF/p75 complex. These findings provide new insights into the structural organization of IN subunits in functional concerted integration intermediates and suggest that differential multimerization of IN in the presence of various ligands could be exploited as a plausible therapeutic target for development of allosteric inhibitors.
Collapse
Affiliation(s)
- Jacques J Kessl
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
De Luca L, Ferro S, Morreale F, De Grazia S, Chimirri A. Inhibitors of the interactions between HIV-1 IN and the cofactor LEDGF/p75. ChemMedChem 2011; 6:1184-91. [PMID: 21506277 DOI: 10.1002/cmdc.201100071] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/09/2011] [Indexed: 01/09/2023]
Abstract
The replication cycle of human immunodeficiency virus type 1 (HIV-1) is a complex multistep process that depends on both viral and host cell factors. The nuclear protein lens epithelium-derived growth factor (LEDGF/p75) is a multidomain protein, present in host cells, which plays an important role in the integration process. LEDGF/p75 not only binds HIV-1 integrase (IN) at its IN binding domain (IBD) but also contains several motifs that function in DNA and chromatin binding. The demonstrated importance of the association between IN and LEDGF/p75 in HIV-1 integration suggests the possibility that this protein-protein interaction (PPI) could be exploited as an antiviral target. We describe herein the progress to date in developing inhibitors of this promising target.
Collapse
Affiliation(s)
- Laura De Luca
- Dipartimento Farmaco-Chimico, Università degli Studi di Messina, Viale Annunziata, 98168 Messina, Italy
| | | | | | | | | |
Collapse
|
34
|
Li X, Krishnan L, Cherepanov P, Engelman A. Structural biology of retroviral DNA integration. Virology 2011; 411:194-205. [PMID: 21216426 PMCID: PMC3640404 DOI: 10.1016/j.virol.2010.12.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 12/06/2010] [Indexed: 02/06/2023]
Abstract
Three-dimensional macromolecular structures shed critical light on biological mechanism and facilitate development of small molecule inhibitors. Clinical success of raltegravir, a potent inhibitor of HIV-1 integrase, demonstrated the utility of this viral DNA recombinase as an antiviral target. A variety of partial integrase structures reported in the past 16 years have been instrumental and very informative to the field. Nonetheless, because integrase protein fragments are unable to functionally engage the viral DNA substrate critical for strand transfer inhibitor binding, the early structures did little to materially impact drug development efforts. However, recent results based on prototype foamy virus integrase have fully reversed this trend, as a number of X-ray crystal structures of active integrase-DNA complexes revealed key mechanistic details and moreover established the foundation of HIV-1 integrase strand transfer inhibitor action. In this review we discuss the landmarks in the progress of integrase structural biology during the past 17 years.
Collapse
Affiliation(s)
- Xiang Li
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Lavanya Krishnan
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Peter Cherepanov
- Division of Infectious Diseases, Imperial College London, London W2 1PG, United Kingdom
| | - Alan Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| |
Collapse
|
35
|
Al-Mawsawi LQ, Neamati N. Allosteric inhibitor development targeting HIV-1 integrase. ChemMedChem 2011; 6:228-41. [PMID: 21275045 PMCID: PMC3115487 DOI: 10.1002/cmdc.201000443] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/06/2010] [Indexed: 12/16/2022]
Abstract
HIV-1 integrase (IN) is one of three essential enzymes for viral replication, and is a focus of ardent antiretroviral drug discovery and development efforts. Diligent research has led to the development of the strand-transfer-specific chemical class of IN inhibitors, with two compounds from this group, raltegravir and elvitegravir, advancing the farthest in the US Food and Drug Administration (FDA) approval process for any IN inhibitor discovered thus far. Raltegravir, developed by Merck & Co., has been approved by the FDA for HIV-1 therapy, whereas elvitegravir, developed by Gilead Sciences and Japan Tobacco, has reached phase III clinical trials. Although this is an undoubted success for the HIV-1 IN drug discovery field, the emergence of HIV-1 IN strand-transfer-specific drug-resistant viral strains upon clinical use of these compounds is expected. Furthermore, the problem of strand-transfer-specific IN drug resistance will be exacerbated by the development of cross-resistant viral strains due to an overlapping binding orientation at the IN active site and an equivalent inhibitory mechanism for the two compounds. This inevitability will result in no available IN-targeted therapeutic options for HIV-1 treatment-experienced patients. The development of allosterically targeted IN inhibitors presents an extremely advantageous approach for the discovery of compounds effective against IN strand-transfer drug-resistant viral strains, and would likely show synergy with all available FDA-approved antiretroviral HIV-1 therapeutics, including the IN strand-transfer-specific compounds. Herein we review the concept of allosteric IN inhibition, and the small molecules that have been investigated to bind non-active-site regions to inhibit IN function.
Collapse
Affiliation(s)
- Laith Q. Al-Mawsawi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089
| | - Nouri Neamati
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089
| |
Collapse
|
36
|
Sippel M, Sotriffer CA. Molecular dynamics simulations of the HIV-1 integrase dimerization interface: guidelines for the design of a novel class of integrase inhibitors. J Chem Inf Model 2010; 50:604-14. [PMID: 20230013 DOI: 10.1021/ci900403s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HIV-1 integrase (IN) is a validated target of anti-AIDS research. The classical approach of designing active-site directed ligands has largely been exploited. A promising alternative strategy to inactivate the enzyme is to prevent the formation of IN dimers. The rational design of dimerization inhibitors, however, is hampered by the lack of relevant structural data about the targeted monomeric form. Therefore, we performed molecular dynamics simulations and subsequent analyses to gain insight into the structural features of the IN catalytic-core-domain dimerization interface. As a result, the formation of a groove and a cavity along the dimerization interface of the IN monomer could be revealed. Both were shown to be suited for accommodating an inhibitory peptide. The results form a valuable basis for the design of ligands targeting the dimerization interface and, thus, of a whole new class of HIV-1 integrase inhibitors.
Collapse
Affiliation(s)
- Martin Sippel
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany
| | | |
Collapse
|
37
|
Gupta K, Diamond T, Hwang Y, Bushman F, Van Duyne GD. Structural properties of HIV integrase. Lens epithelium-derived growth factor oligomers. J Biol Chem 2010; 285:20303-15. [PMID: 20406807 PMCID: PMC2888443 DOI: 10.1074/jbc.m110.114413] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/19/2010] [Indexed: 11/06/2022] Open
Abstract
Integrase (IN) is the catalytic component of the preintegration complex, a large nucleoprotein assembly critical for the integration of the retroviral genome into a host chromosome. Although partial crystal structures of human immunodeficiency virus IN alone and its complex with the integrase binding domain of the host factor PSIP1/lens epithelium-derived growth factor (LEDGF)/p75 are available, many questions remain regarding the properties and structures of LEDGF-bound IN oligomers. Using analytical ultracentrifugation, multiangle light scattering, and small angle x-ray scattering, we have established the oligomeric state, stoichiometry, and molecular shapes of IN.LEDGF complexes in solution. Analyses of intact IN tetramers bound to two different LEDGF truncations allow for placement of the integrase binding domain by difference analysis. Modeling of the small angle x-ray scattering envelopes using existing structural data suggests domain arrangements in the IN oligomers that support and extend existing biochemical data for IN.LEDGF complexes and lend new insights into the quaternary structure of LEDGF-bound IN tetramers. These IN oligomers may be involved in stages of the viral life cycle other than integration, including assembly, budding, and early replication.
Collapse
Affiliation(s)
- Kushol Gupta
- From the Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine and Howard Hughes Medical Institute, Philadelphia, Pennsylvania 19105-6059 and
| | - Tracy Diamond
- the Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076
| | - Young Hwang
- the Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076
| | - Frederic Bushman
- the Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076
| | - Gregory D. Van Duyne
- From the Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine and Howard Hughes Medical Institute, Philadelphia, Pennsylvania 19105-6059 and
| |
Collapse
|
38
|
Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol 2010; 6:442-8. [PMID: 20473303 DOI: 10.1038/nchembio.370] [Citation(s) in RCA: 381] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 04/14/2010] [Indexed: 12/16/2022]
Abstract
Lens epithelium-derived growth factor (LEDGF/p75) is a cellular cofactor of HIV-1 integrase that promotes viral integration by tethering the preintegration complex to the chromatin. By virtue of its crucial role in the early steps of HIV replication, the interaction between LEDGF/p75 and integrase represents an attractive target for antiviral therapy. We have rationally designed a series of 2-(quinolin-3-yl)acetic acid derivatives (LEDGINs) that act as potent inhibitors of the LEDGF/p75-integrase interaction and HIV-1 replication at submicromolar concentration by blocking the integration step. A 1.84-A resolution crystal structure corroborates the binding of the inhibitor in the LEDGF/p75-binding pocket of integrase. Together with the lack of cross-resistance with two clinical integrase inhibitors, these findings define the 2-(quinolin-3-yl)acetic acid derivatives as the first genuine allosteric HIV-1 integrase inhibitors. Our work demonstrates the feasibility of rational design of small molecules inhibiting the protein-protein interaction between a viral protein and a cellular host factor.
Collapse
|
39
|
Fitzkee NC, Masse JE, Shen Y, Davies DR, Bax A. Solution conformation and dynamics of the HIV-1 integrase core domain. J Biol Chem 2010; 285:18072-84. [PMID: 20363759 DOI: 10.1074/jbc.m110.113407] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) is a critical enzyme involved in infection. It catalyzes two reactions to integrate the viral cDNA into the host genome, 3' processing and strand transfer, but the dynamic behavior of the active site during catalysis of these two processes remains poorly characterized. NMR spectroscopy can reveal important structural details about enzyme mechanisms, but to date the IN catalytic core domain has proven resistant to such an analysis. Here, we present the first NMR studies of a soluble variant of the catalytic core domain. The NMR chemical shifts are found to corroborate structures observed in crystals, and confirm prior studies suggesting that the alpha4 helix extends toward the active site. We also observe a dramatic improvement in NMR spectra with increasing MgCl(2) concentration. This improvement suggests a structural transition not only near the active site residues but also throughout the entire molecule as IN binds Mg(2+). In particular, the stability of the core domain is linked to the conformation of its C-terminal helix, which has implications for relative domain orientation in the full-length enzyme. (15)N relaxation experiments further show that, although conformationally flexible, the catalytic loop of IN is not fully disordered in the absence of DNA. Indeed, automated chemical shift-based modeling of the active site loop reveals several stable clusters that show striking similarity to a recent crystal structure of prototype foamy virus IN bound to DNA.
Collapse
Affiliation(s)
- Nicholas C Fitzkee
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
40
|
Crystal structure of the HIV-1 integrase core domain in complex with sucrose reveals details of an allosteric inhibitory binding site. FEBS Lett 2010; 584:1455-62. [DOI: 10.1016/j.febslet.2010.03.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/05/2010] [Accepted: 03/09/2010] [Indexed: 01/15/2023]
|
41
|
The Interaction Between Lentiviral Integrase and LEDGF: Structural and Functional Insights. Viruses 2009; 1:780-801. [PMID: 21994569 PMCID: PMC3185499 DOI: 10.3390/v1030780] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 10/28/2009] [Accepted: 11/06/2009] [Indexed: 01/26/2023] Open
Abstract
Since its initial description as an HIV-1 integrase (IN) interactor seven years ago, LEDGF has become one of the best-characterized host factors involved in viral replication. Results of intensive studies in several laboratories indicated that the protein serves as a targeting factor for the lentiviral DNA integration machinery, and accounts for the characteristic preference of Lentivirus to integrate within active transcription units. The IN-LEDGF interaction has been put forward as a promising target for antiretroviral drug development and as a potential tool to improve safety of lentiviral vectors for use in gene therapy. Additionally, as a natural ligand of lentiviral IN proteins, LEDGF has been successfully used in structural biology studies of retroviral DNA integration. This review focuses on the structural aspects of the IN-LEDGF interaction and their functional consequences.
Collapse
|
42
|
Kessl JJ, Eidahl JO, Shkriabai N, Zhao Z, McKee CJ, Hess S, Burke TR, Kvaratskhelia M. An allosteric mechanism for inhibiting HIV-1 integrase with a small molecule. Mol Pharmacol 2009; 76:824-32. [PMID: 19638533 PMCID: PMC2769043 DOI: 10.1124/mol.109.058883] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 07/28/2009] [Indexed: 12/30/2022] Open
Abstract
HIV-1 integrase (IN) is a validated target for developing antiretroviral inhibitors. Using affinity acetylation and mass spectrometric (MS) analysis, we previously identified a tetra-acetylated inhibitor (2E)-3-[3,4-bis(acetoxy)phenyl]-2-propenoate-N-[(2E)-3-[3,4-bis(acetyloxy)phenyl]-1-oxo-2-propenyl]-L-serine methyl ester; compound 1] that selectively modified Lys173 at the IN dimer interface. Here we extend our efforts to dissect the mechanism of inhibition and structural features that are important for the selective binding of compound 1. Using a subunit exchange assay, we found that the inhibitor strongly modulates dynamic interactions between IN subunits. Restricting such interactions does not directly interfere with IN binding to DNA substrates or cellular cofactor lens epithelium-derived growth factor, but it compromises the formation of the fully functional nucleoprotein complex. Studies comparing compound 1 with a structurally related IN inhibitor, the tetra-acetylated-chicoric acid derivative (2R,3R)-2,3-bis[[(2E)-3-[3,4-bis(acetyloxy)phenyl]-1-oxo-2-propen-1-yl]oxy]-butanedioic acid (compound 2), indicated striking mechanistic differences between these agents. The structures of the two inhibitors differ only in their central linker regions, with compounds 1 and 2 containing a single methyl ester group and two carboxylic acids, respectively. MS experiments highlighted the importance of these structural differences for selective binding of compound 1 to the IN dimer interface. Moreover, molecular modeling of compound 1 complexed to IN identified a potential inhibitor binding cavity and provided structural clues regarding a possible role of the central methyl ester group in establishing an extensive hydrogen bonding network with both interacting subunits. The proposed mechanism of action and binding site for the small-molecule inhibitor identified in the present study provide an attractive venue for developing allosteric inhibitors of HIV-1 IN.
Collapse
Affiliation(s)
- Jacques J Kessl
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, the Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tsiang M, Jones GS, Hung M, Mukund S, Han B, Liu X, Babaoglu K, Lansdon E, Chen X, Todd J, Cai T, Pagratis N, Sakowicz R, Geleziunas R. Affinities between the binding partners of the HIV-1 integrase dimer-lens epithelium-derived growth factor (IN dimer-LEDGF) complex. J Biol Chem 2009; 284:33580-99. [PMID: 19801648 DOI: 10.1074/jbc.m109.040121] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction between lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF) and human immunodeficiency virus type 1 (HIV-1) integrase (IN) is essential for HIV-1 replication. Homogeneous time-resolved fluorescence resonance energy transfer assays were developed to characterize HIV-1 integrase dimerization and the interaction between LEDGF and IN dimers. Using these assays in an equilibrium end point dose-response format with mathematical modeling, we determined the dissociation constants of IN dimers (K(dimer) = 67.8 pm) and of LEDGF from IN dimers (K(d) = 10.9 nm). When used in a kinetic format, the assays allowed the determination of the on- and off-rate constants for these same interactions. Integrase dimerization had a k(on) of 0.1247 nm(-1) x min(-1) and a k(off) of 0.0080 min(-1) resulting in a K(dimer) of 64.5 pm. LEDGF binding to IN dimers had a k(on) of 0.0285 nm(-1).min(-1) and a k(off) of 0.2340 min(-1) resulting in a K(d) of 8.2 nm. These binding assays can also be used in an equilibrium end point competition format. In this format, the IN catalytic core domain produced a K(i) of 15.2 nm while competing for integrase dimerization, confirming the very tight interaction of IN with itself. In the same format, LEDGF produced a K(i) value of 35 nm when competing for LEDGF binding to IN dimers. In summary, this study describes a methodology combining homogeneous time-resolved fluorescence resonance energy transfer and mathematical modeling to derive the affinities between IN monomers and between LEDGF and IN dimers. This study revealed the significantly tighter nature of the IN-IN dimer compared with the IN-LEDGF interaction.
Collapse
Affiliation(s)
- Manuel Tsiang
- Gilead Sciences, Inc., Foster City, California 94404, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jaskolski M, Alexandratos JN, Bujacz G, Wlodawer A. Piecing together the structure of retroviral integrase, an important target in AIDS therapy. FEBS J 2009; 276:2926-46. [PMID: 19490099 PMCID: PMC2747025 DOI: 10.1111/j.1742-4658.2009.07009.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Integrase (IN) is one of only three enzymes encoded in the genomes of all retroviruses, and is the one least characterized in structural terms. IN catalyzes processing of the ends of a DNA copy of the retroviral genome and its concerted insertion into the chromosome of the host cell. The protein consists of three domains, the central catalytic core domain flanked by the N-terminal and C-terminal domains, the latter being involved in DNA binding. Although the Protein Data Bank contains a number of NMR structures of the N-terminal and C-terminal domains of HIV-1 and HIV-2, simian immunodeficiency virus and avian sarcoma virus IN, as well as X-ray structures of the core domain of HIV-1, avian sarcoma virus and foamy virus IN, plus several models of two-domain constructs, no structure of the complete molecule of retroviral IN has been solved to date. Although no experimental structures of IN complexed with the DNA substrates are at hand, the catalytic mechanism of IN is well understood by analogy with other nucleotidyl transferases, and a variety of models of the oligomeric integration complexes have been proposed. In this review, we present the current state of knowledge resulting from structural studies of IN from several retroviruses. We also attempt to reconcile the differences between the reported structures, and discuss the relationship between the structure and function of this enzyme, which is an important, although so far rather poorly exploited, target for designing drugs against HIV-1 infection.
Collapse
Affiliation(s)
- Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | | | | | | |
Collapse
|
45
|
EmrE, a model for studying evolution and mechanism of ion-coupled transporters. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:748-62. [DOI: 10.1016/j.bbapap.2008.12.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 11/23/2022]
|
46
|
Thys W, Busschots K, McNeely M, Voet A, Christ F, Debyser Z. LEDGF/p75 and transportin-SR2 are cellular cofactors of HIV integrase and novel targets for antiviral therapy. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/17584310.3.2.171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The HIV replication cycle is an elaborate interplay between the viral machinery and cellular proteins. In this review we propose that protein–protein interactions between cellular proteins and HIV integrase are new targets for future antiviral therapy. We focus on the early steps of HIV replication, namely viral entry, uncoating, reverse transcription, trafficking, nuclear import and integration, and the host cell proteins involved herein. We then discuss the feasibility of developing small-molecule protein–protein interaction inhibitors as antiviral agents. Next, we review the HIV integrase cofactors described in the literature highlighting two validated cofactors, lens epithelium-derived growth factor/p75 and transportin-SR2, which are discussed in detail. Finally, a speculative viewpoint is given on small-molecule protein–protein interaction inhibitors as future HIV inhibitors.
Collapse
Affiliation(s)
- Wannes Thys
- Molecular Medicine, KU Leuven Kapucijnenvoer 33 3000 Leuven, Flanders, Belgium
| | - Katrien Busschots
- Molecular Medicine, KU Leuven Kapucijnenvoer 33 3000 Leuven, Flanders, Belgium
| | - Melissa McNeely
- Molecular Medicine, KU Leuven Kapucijnenvoer 33 3000 Leuven, Flanders, Belgium
| | - Arnout Voet
- Molecular Medicine, KU Leuven Kapucijnenvoer 33 3000 Leuven, Flanders, Belgium
| | - Frauke Christ
- Molecular Medicine, KU Leuven Kapucijnenvoer 33 3000 Leuven, Flanders, Belgium
| | - Zeger Debyser
- Molecular Medicine, KU Leuven Kapucijnenvoer 33 3000 Leuven, Flanders, Belgium
| |
Collapse
|
47
|
Busschots K, De Rijck J, Christ F, Debyser Z. In search of small molecules blocking interactions between HIV proteins and intracellularcofactors. ACTA ACUST UNITED AC 2009; 5:21-31. [DOI: 10.1039/b810306b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
McKee CJ, Kessl JJ, Shkriabai N, Dar MJ, Engelman A, Kvaratskhelia M. Dynamic modulation of HIV-1 integrase structure and function by cellular lens epithelium-derived growth factor (LEDGF) protein. J Biol Chem 2008; 283:31802-12. [PMID: 18801737 DOI: 10.1074/jbc.m805843200] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The mandatory integration of the reverse-transcribed HIV-1 genome into host chromatin is catalyzed by the viral protein integrase (IN), and IN activity can be regulated by numerous viral and cellular proteins. Among these, LEDGF has been identified as a cellular cofactor critical for effective HIV-1 integration. The x-ray crystal structure of the catalytic core domain (CCD) of IN in complex with the IN binding domain (IBD) of LEDGF has furthermore revealed essential protein-protein contacts. However, mutagenic studies indicated that interactions between the full-length proteins were more extensive than the contacts observed in the co-crystal structure of the isolated domains. Therefore, we have conducted detailed biochemical characterization of the interactions between full-length IN and LEDGF. Our results reveal a highly dynamic nature of IN subunit-subunit interactions. LEDGF strongly stabilized these interactions and promoted IN tetramerization. Mass spectrometric protein footprinting and molecular modeling experiments uncovered novel intra- and inter-protein-protein contacts in the full-length IN-LEDGF complex that lay outside of the observable IBD-CCD structure. In particular, our studies defined the IN tetramer interface important for enzymatic activities and high affinity LEDGF binding. These findings provide new insight into how LEDGF modulates HIV-1 IN structure and function, and highlight the potential for exploiting the highly dynamic structure of multimeric IN as a novel therapeutic target.
Collapse
Affiliation(s)
- Christopher J McKee
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
HIV integrates a DNA copy of its genome into a host cell chromosome in each replication cycle. The essential DNA cleaving and joining chemistry of integration is known, but there is less understanding of the process as it occurs in a cell, where two complex and dynamic macromolecular entities are joined: the viral pre-integration complex and chromatin. Among implicated cellular factors, much recent attention has coalesced around LEDGF/p75, a nuclear protein that may act as a chromatin docking factor or receptor for lentiviral pre-integration complexes. LEDGF/p75 tethers HIV integrase to chromatin, protects it from degradation, and strongly influences the genome-wide pattern of HIV integration. Depleting the protein from cells and/or over-expressing its integrase-binding domain blocks viral replication. Current goals are to establish the underlying mechanisms and to determine whether this knowledge can be exploited for antiviral therapy or for targeting lentiviral vector integration in human gene therapy.
Collapse
Affiliation(s)
- E M Poeschla
- Guggenheim 18, Mayo Clinic College of Medicine, 200 First Street SW, Rochester 55905, USA.
| |
Collapse
|
50
|
Engelman A, Cherepanov P. The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication. PLoS Pathog 2008; 4:e1000046. [PMID: 18369482 PMCID: PMC2275779 DOI: 10.1371/journal.ppat.1000046] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2007] [Indexed: 01/10/2023] Open
Abstract
Retroviral replication proceeds through a stable proviral DNA intermediate, and numerous host cell factors have been implicated in its formation. In particular, recent results have highlighted an important role for the integrase-interactor lens epithelium-derived growth factor (LEDGF)/p75 in lentiviral integration. Cells engineered to over-express fragments of LEDGF/p75 containing its integrase-binding domain but lacking determinants essential for chromatin association are refractory to HIV-1 infection. Furthermore, both the levels of HIV-1 integration and the genomic distribution of the resultant proviruses are significantly perturbed in cells devoid of endogenous LEDGF/p75 protein. A strong bias towards integration along transcription units is a characteristic feature of lentiviruses. In the absence of LEDGF/p75, HIV-1 in large part loses that preference, displaying concomitant integration surges in the vicinities of CpG islands and gene promoter regions, elements naturally targeted by other types of retroviruses. Together, these findings highlight that LEDGF/p75 is an important albeit not strictly essential cofactor of lentiviral DNA integration, and solidify a role for chromatin-associated LEDGF/p75 as a receptor for lentiviral preintegration complexes. By now one of the best characterized virus-host interactions, the integrase-LEDGF/p75 interface opens a range of opportunities for lentiviral vector targeting for gene therapy applications as well as for the development of novel classes of antiretroviral drugs.
Collapse
Affiliation(s)
- Alan Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter Cherepanov
- Division of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| |
Collapse
|