1
|
Cui Y, Du X, Li Y, Wang D, Lv Z, Yuan H, Chen Y, Liu J, Sun Y, Wang W. Imbalanced and Unchecked: The Role of Metal Dyshomeostasis in Driving COPD Progression. COPD 2024; 21:2322605. [PMID: 38591165 DOI: 10.1080/15412555.2024.2322605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 04/10/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory condition characterized by persistent inflammation and oxidative stress, which ultimately leads to progressive restriction of airflow. Extensive research findings have cogently suggested that the dysregulation of essential transition metal ions, notably iron, copper, and zinc, stands as a critical nexus in the perpetuation of inflammatory processes and oxidative damage within the lungs of COPD patients. Unraveling the intricate interplay between metal homeostasis, oxidative stress, and inflammatory signaling is of paramount importance in unraveling the intricacies of COPD pathogenesis. This comprehensive review aims to examine the current literature on the sources, regulation, and mechanisms by which metal dyshomeostasis contributes to COPD progression. We specifically focus on iron, copper, and zinc, given their well-characterized roles in orchestrating cytokine production, immune cell function, antioxidant depletion, and matrix remodeling. Despite the limited number of clinical trials investigating metal modulation in COPD, the advent of emerging methodologies tailored to monitor metal fluxes and gauge responses to chelation and supplementation hold great promise in unlocking the potential of metal-based interventions. We conclude that targeted restoration of metal homeostasis represents a promising frontier for ameliorating pathological processes driving COPD progression.
Collapse
Affiliation(s)
- Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xinqian Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yunqi Li
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Dan Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Huihui Yuan
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Jie Liu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ying Sun
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
2
|
Vana F, Szabo Z, Masarik M, Kratochvilova M. The interplay of transition metals in ferroptosis and pyroptosis. Cell Div 2024; 19:24. [PMID: 39097717 PMCID: PMC11297737 DOI: 10.1186/s13008-024-00127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024] Open
Abstract
Cell death is one of the most important mechanisms of maintaining homeostasis in our body. Ferroptosis and pyroptosis are forms of necrosis-like cell death. These cell death modalities play key roles in the pathophysiology of cancer, cardiovascular, neurological diseases, and other pathologies. Transition metals are abundant group of elements in all living organisms. This paper presents a summary of ferroptosis and pyroptosis pathways and their connection to significant transition metals, namely zinc (Zn), copper (Cu), molybdenum (Mo), lead (Pb), cobalt (Co), iron (Fe), cadmium (Cd), nickel (Ni), mercury (Hg), uranium (U), platinum (Pt), and one crucial element, selenium (Se). Authors aim to summarize the up-to-date knowledge of this topic.In this review, there are categorized and highlighted the most common patterns in the alterations of ferroptosis and pyroptosis by transition metals. Special attention is given to zinc since collected data support its dual nature of action in both ferroptosis and pyroptosis. All findings are presented together with a brief description of major biochemical pathways involving mentioned metals and are visualized in attached comprehensive figures.This work concludes that the majority of disruptions in the studied metals' homeostasis impacts cell fate, influencing both death and survival of cells in the complex system of altered pathways. Therefore, this summary opens up the space for further research.
Collapse
Affiliation(s)
- Frantisek Vana
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Zoltan Szabo
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 656 53, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
3
|
Cheli VT, Sekhar M, Santiago González DA, Angeliu CG, Denaroso GE, Smith Z, Wang C, Paez PM. The expression of ceruloplasmin in astrocytes is essential for postnatal myelination and myelin maintenance in the adult brain. Glia 2023; 71:2323-2342. [PMID: 37269227 PMCID: PMC10599212 DOI: 10.1002/glia.24424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Ceruloplasmin (Cp) is a ferroxidase enzyme that is essential for cell iron efflux. The absence of this protein in humans and rodents produces progressive neurodegeneration with brain iron accumulation. Astrocytes express high levels of Cp and iron efflux from these cells has been shown to be central for oligodendrocyte maturation and myelination. To explore the role of astrocytic Cp in brain development and aging we generated a specific conditional KO mouse for Cp in astrocytes (Cp cKO). Deletion of Cp in astrocytes during the first postnatal week induced hypomyelination and a significant delay in oligodendrocyte maturation. This abnormal myelin synthesis was exacerbated throughout the first two postnatal months and accompanied by a reduction in oligodendrocyte iron content, as well as an increase in brain oxidative stress. In contrast to young animals, deletion of astrocytic Cp at 8 months of age engendered iron accumulation in several brain areas and neurodegeneration in cortical regions. Aged Cp cKO mice also showed myelin loss and oxidative stress in oligodendrocytes and neurons, and at 18 months of age, developed abnormal behavioral profiles, including deficits in locomotion and short-term memory. In summary, our results demonstrate that iron efflux-mediated by astrocytic Cp-is essential for both early oligodendrocyte maturation and myelin integrity in the mature brain. Additionally, our data suggest that astrocytic Cp activity is central to prevent iron accumulation and iron-induced oxidative stress in the aging CNS.
Collapse
Affiliation(s)
- V T Cheli
- Department of Pharmacology and Toxicology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - M Sekhar
- Department of Pharmacology and Toxicology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - D A Santiago González
- Department of Pharmacology and Toxicology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - C G Angeliu
- Department of Pharmacology and Toxicology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - G E Denaroso
- Department of Pharmacology and Toxicology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Z Smith
- Department of Pharmacology and Toxicology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - C Wang
- Department of Pharmacology and Toxicology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York, USA
| | - P M Paez
- Department of Pharmacology and Toxicology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
4
|
Perez MG, Suarez NG, Annabi B, Mateescu MA. Bioactive copper(II) agents and their potential involvement in the treatment of copper deficiency-related orphan diseases. J Inorg Biochem 2023; 247:112334. [PMID: 37499466 DOI: 10.1016/j.jinorgbio.2023.112334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
The deregulation of copper homoeostasis can promote various diseases such as Menkes disease or hypertrophic cardioencephalomyopathy. We have recently synthesized solid copper(II) complexes ([Cu(His)2Cl2] and [Cu(Ser)2]), stable in physiological media and with potential as therapeutic agents. This report describes: i) the biocompatibility of these complexes at concentrations up to 100 μM using a differentiated Caco-2 cells model; ii) their transport across the intestinal epithelium using a transepithelial resistance assay and monitoring the amount of copper complexes at the apical and basolateral sides of the cells. The results suggest that the flow occurs through paracellular routes. The intracellular copper retention was <2.7% with no significant differences in intracellular copper content between 6 h and 48 h, suggesting an early copper retention process. Furthermore, this is the first evidence that demonstrates [Cu(His)2Cl2] and [Cu(Ser)2] induce transcriptional downregulation of the four major copper transporters (CTR1, DMT1, ATP7A, ATP7B), and the upregulation of the metallothionein gene expression. A remarkable finding was the increase in cytochrome c oxidase activity observed after the treatment of differentiated Caco-2 cells with copper(II) complexes at concentrations of 50-100 μM. The understanding of the transport mechanisms of these copper(II) complexes across the intestinal epithelium and of their subsequent biological activities could contribute to the development of optimal pharmaceutical formulations for the therapy of copper deficiency-related diseases.
Collapse
Affiliation(s)
- Mariela Gomez Perez
- Department of Chemistry and Center CERMO-FC, Université du Québec à Montréal, C.P. 8888, Montréal, Québec H3C 3P8, Canada.
| | - Narjara Gonzalez Suarez
- Department of Chemistry and Center CERMO-FC, Université du Québec à Montréal, C.P. 8888, Montréal, Québec H3C 3P8, Canada.
| | - Borhane Annabi
- Department of Chemistry and Center CERMO-FC, Université du Québec à Montréal, C.P. 8888, Montréal, Québec H3C 3P8, Canada.
| | - Mircea Alexandru Mateescu
- Department of Chemistry and Center CERMO-FC, Université du Québec à Montréal, C.P. 8888, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
5
|
Helman SL, Zhou J, Fuqua BK, Lu Y, Collins JF, Chen H, Vulpe CD, Anderson GJ, Frazer DM. The biology of mammalian multi-copper ferroxidases. Biometals 2023; 36:263-281. [PMID: 35167013 PMCID: PMC9376197 DOI: 10.1007/s10534-022-00370-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022]
Abstract
The mammalian multicopper ferroxidases (MCFs) ceruloplasmin (CP), hephaestin (HEPH) and zyklopen (ZP) comprise a family of conserved enzymes that are essential for body iron homeostasis. Each of these enzymes contains six biosynthetically incorporated copper atoms which act as intermediate electron acceptors, and the oxidation of iron is associated with the four electron reduction of dioxygen to generate two water molecules. CP occurs in both a secreted and GPI-linked (membrane-bound) form, while HEPH and ZP each contain a single C-terminal transmembrane domain. These enzymes function to ensure the efficient oxidation of iron so that it can be effectively released from tissues via the iron export protein ferroportin and subsequently bound to the iron carrier protein transferrin in the blood. CP is particularly important in facilitating iron release from the liver and central nervous system, HEPH is the major MCF in the small intestine and is critical for dietary iron absorption, and ZP is important for normal hair development. CP and HEPH (and possibly ZP) function in multiple tissues. These proteins also play other (non-iron-related) physiological roles, but many of these are ill-defined. In addition to disrupting iron homeostasis, MCF dysfunction perturbs neurological and immune function, alters cancer susceptibility, and causes hair loss, but, despite their importance, how MCFs co-ordinately maintain body iron homeostasis and perform other functions remains incompletely understood.
Collapse
Affiliation(s)
- Sheridan L Helman
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jie Zhou
- Department of Physiological Sciences, University of Florida, Gainsville, FL, USA
| | - Brie K Fuqua
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yan Lu
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
- Mucosal Immunology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainsville, FL, USA
| | - Huijun Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Christopher D Vulpe
- Department of Physiological Sciences, University of Florida, Gainsville, FL, USA
| | - Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Australia.
| | - David M Frazer
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
6
|
Thepsuwan P, Bhattacharya A, Song Z, Hippleheuser S, Feng S, Wei X, Das NK, Sierra M, Wei J, Fang D, Huang YMM, Zhang K, Shah YM, Sun S. Hepatic SEL1L-HRD1 ER-associated degradation regulates systemic iron homeostasis via ceruloplasmin. Proc Natl Acad Sci U S A 2023; 120:e2212644120. [PMID: 36595688 PMCID: PMC9926173 DOI: 10.1073/pnas.2212644120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023] Open
Abstract
Iron homeostasis is critical for cellular and organismal function and is tightly regulated to prevent toxicity or anemia due to iron excess or deficiency, respectively. However, subcellular regulatory mechanisms of iron remain largely unexplored. Here, we report that SEL1L-HRD1 protein complex of endoplasmic reticulum (ER)-associated degradation (ERAD) in hepatocytes controls systemic iron homeostasis in a ceruloplasmin (CP)-dependent, and ER stress-independent, manner. Mice with hepatocyte-specific Sel1L deficiency exhibit altered basal iron homeostasis and are sensitized to iron deficiency while resistant to iron overload. Proteomics screening for a factor linking ERAD deficiency to altered iron homeostasis identifies CP, a key ferroxidase involved in systemic iron distribution by catalyzing iron oxidation and efflux from tissues. Indeed, CP is highly unstable and a bona fide substrate of SEL1L-HRD1 ERAD. In the absence of ERAD, CP protein accumulates in the ER and is shunted to refolding, leading to elevated secretion. Providing clinical relevance of these findings, SEL1L-HRD1 ERAD is responsible for the degradation of a subset of disease-causing CP mutants, thereby attenuating their pathogenicity. Together, this study uncovers the role of SEL1L-HRD1 ERAD in systemic iron homeostasis and provides insights into protein misfolding-associated proteotoxicity.
Collapse
Affiliation(s)
- Pattaraporn Thepsuwan
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201
| | - Asmita Bhattacharya
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI48105
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201
| | - Stephen Hippleheuser
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201
| | - Shaobin Feng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201
| | - Xiaoqiong Wei
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI48105
| | - Nupur K. Das
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI48105
| | - Mariana Sierra
- Department of Physics and Astronomy, Wayne State University, Detroit, MI48201
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Yu-ming M. Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, MI48201
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI48201
| | - Yatrik M. Shah
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI48105
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI48109
| | - Shengyi Sun
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI48201
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI48201
| |
Collapse
|
7
|
Lin HJ, James I, Hyer CD, Haderlie CT, Zackrison MJ, Bateman TM, Berg M, Park JS, Daley SA, Zuniga Pina NR, Tseng YJJ, Moody JD, Price JC. Quantifying In Situ Structural Stabilities of Human Blood Plasma Proteins Using a Novel Iodination Protein Stability Assay. J Proteome Res 2022; 21:2920-2935. [PMID: 36356215 PMCID: PMC9724711 DOI: 10.1021/acs.jproteome.2c00323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/12/2022]
Abstract
Many of the diseases that plague society today are driven by a loss of protein quality. One method to quantify protein quality is to measure the protein folding stability (PFS). Here, we present a novel mass spectrometry (MS)-based approach for PFS measurement, iodination protein stability assay (IPSA). IPSA quantifies the PFS by tracking the surface-accessibility differences of tyrosine, histidine, methionine, and cysteine under denaturing conditions. Relative to current methods, IPSA increases protein coverage and granularity to track the PFS changes of a protein along its sequence. To our knowledge, this study is the first time the PFS of human serum proteins has been measured in the context of the blood serum (in situ). We show that IPSA can quantify the PFS differences between different transferrin iron-binding states in near in vivo conditions. We also show that the direction of the denaturation curve reflects the in vivo surface accessibility of the amino acid residue and reproducibly reports a residue-specific PFS. Along with IPSA, we introduce an analysis tool Chalf that provides a simple workflow to calculate the residue-specific PFS. The introduction of IPSA increases the potential to use protein structural stability as a structural quality metric in understanding the etiology and progression of human disease. Data is openly available at Chorusproject.org (project ID 1771).
Collapse
Affiliation(s)
- Hsien-Jung
L. Lin
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Isabella James
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Chad D. Hyer
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Connor T. Haderlie
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Michael J. Zackrison
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Tyler M. Bateman
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Monica Berg
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Ji-Sun Park
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - S. Anisha Daley
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Nathan R. Zuniga Pina
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Yi-Jie J. Tseng
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - James D. Moody
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - John C. Price
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| |
Collapse
|
8
|
Sokolov AV, Vasilyev VB, Samygina VR. X-Ray Analysis of the Monoclinic Crystal Form of Human Ceruloplasmin. CRYSTALLOGR REP+ 2022. [DOI: 10.1134/s1063774522060232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Cramer DAT, Franc V, Caval T, Heck AJR. Charting the Proteoform Landscape of Serum Proteins in Individual Donors by High-Resolution Native Mass Spectrometry. Anal Chem 2022; 94:12732-12741. [PMID: 36074704 PMCID: PMC9494300 DOI: 10.1021/acs.analchem.2c02215] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Most proteins in serum are glycosylated, with several
annotated
as biomarkers and thus diagnostically important and of interest for
their role in disease. Most methods for analyzing serum glycoproteins
employ either glycan release or glycopeptide centric mass spectrometry-based
approaches, which provide excellent tools for analyzing known glycans
but neglect previously undefined or unknown glycosylation and/or other
co-occurring modifications. High-resolution native mass spectrometry
is a relatively new technique for the analysis of intact glycoproteins,
providing a “what you see is what you get” mass profile
of a protein, allowing the qualitative and quantitative observation
of all modifications present. So far, a disadvantage of this approach
has been that it centers mostly on just one specific serum glycoprotein
at the time. To address this issue, we introduce an ion-exchange chromatography-based
fractionation method capable of isolating and analyzing, in parallel,
over 20 serum (glyco)proteins, covering a mass range between 30 and
190 kDa, from 150 μL of serum. Although generating data in parallel
for all these 20 proteins, we focus the discussion on the very complex
proteoform profiles of four selected proteins, i.e., α-1-antitrypsin,
ceruloplasmin, hemopexin, and complement protein C3. Our analyses
provide an insight into the extensive proteoform landscape of serum
proteins in individual donors, caused by the occurrence of various N- and O-glycans, protein cysteinylation,
and co-occurring genetic variants. Moreover, native mass intact mass
profiling also provided an edge over alternative approaches revealing
the presence of apo- and holo-forms of ceruloplasmin and the endogenous
proteolytic processing in plasma of among others complement protein
C3. We also applied our approach to a small cohort of serum samples
from healthy and diseased individuals. In these, we qualitatively
and quantitatively monitored the changes in proteoform profiles of
ceruloplasmin and revealed a substantial increase in fucosylation
and glycan occupancy in patients with late-stage hepatocellular carcinoma
and pancreatic cancer as compared to healthy donor samples.
Collapse
Affiliation(s)
- Dario A T Cramer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands.,Netherlands Proteomics Centre, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands.,Netherlands Proteomics Centre, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Tomislav Caval
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands.,Netherlands Proteomics Centre, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands.,Netherlands Proteomics Centre, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
10
|
Yang H, Bao Y, Jin F, Jiang C, Wei Z, Liu Z, Xu Y. Ceruloplasmin inhibits the proliferation, migration and invasion of nasopharyngeal carcinoma cells and is negatively regulated by miR-543. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:474-488. [PMID: 35306965 DOI: 10.1080/15257770.2022.2052314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Ceruloplasmin (CP), recognized as a member of multicopper oxidase family, is related to the progression of diverse cancers in human beings. This study is designed to clarify the expression characteristics, biological function and related mechanism of CP in nasopharyngeal carcinoma (NPC). METHODS CP expression in NPC tissues and cells was probed by quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC) and Western blot. After gain-of-function and loss-of-function models were established, cell counting kit-8 (CCK-8), Transwell and BrdU assays were employed to measure cell viability, migration and invasion. The targeting relationship between microRNA-543 (miR-543) and CP was verified by dual-luciferase reporter gene assay. RESULTS As against normal nasopharyngeal epithelial tissues, CP expression was significantly lower in NPC tissues, which was associated with higher clinical stage and the short overall survival time. Compared with the control group, CP overexpression markedly restrained the growth, migration and invasion of NPC cells; knocking down CP had the opposite effect. MiR-543 directly targeted CP and negatively modulated its expression. CONCLUSION CP restrains the growth, migration and invasion of NPC cells and is negatively regulated by miR-543.
Collapse
Affiliation(s)
- Hang Yang
- Department of Otolarynglogy, Jiangshan People's Hospital, Jiangshan, Zhejiang, China
| | - Yangyang Bao
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fenfen Jin
- Department of Otolarynglogy, Jiangshan People's Hospital, Jiangshan, Zhejiang, China
| | - Chonghan Jiang
- Department of Otolarynglogy, Jiangshan People's Hospital, Jiangshan, Zhejiang, China
| | - Zhanhui Wei
- Department of Otolaryngology, Traditional Chinese Medicine Hospital of Chunan County, Hangzhou, Zhejiang, China
| | - Zhenli Liu
- Department of Neurology, Traditional Chinese Medicine Hospital of Chunan County, Hangzhou, Zhejiang, China
| | - Yaping Xu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
|
12
|
Liu Z, Wang M, Zhang C, Zhou S, Ji G. Molecular Functions of Ceruloplasmin in Metabolic Disease Pathology. Diabetes Metab Syndr Obes 2022; 15:695-711. [PMID: 35264864 PMCID: PMC8901420 DOI: 10.2147/dmso.s346648] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Ceruloplasmin (CP) is a multicopper oxidase and antioxidant that is mainly produced in the liver. CP not only plays a crucial role in the metabolic balance of copper and iron through its oxidase function but also exhibits antioxidant activity. In addition, CP is an acute-phase protein. In addition to being associated with aceruloplasminemia and neurodegenerative diseases such as Wilson's disease, Alzheimer's disease, and Parkinson's disease, CP also plays an important role in metabolic diseases, which are caused by metabolic disorders and vigorous metabolism, mainly including diabetes, obesity, hyperlipidemia, etc. Based on the physiological functions of CP, we provide an overview of the association of type 2 diabetes, obesity, hyperlipidemia, coronary heart disease, CP oxidative stress, inflammation, and metabolism of copper and iron. Studies have shown that metabolic diseases are closely related to systemic inflammation, oxidative stress, and disorders of copper and iron metabolism. Therefore, we conclude that CP, which can reduce the formation of free radicals in tissues, can be induced during inflammation and infection, and can correct the metabolic disorder of copper and iron, has protective and diagnostic effects on metabolic diseases.
Collapse
Affiliation(s)
- Zhidong Liu
- Department of Internal Medicine of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Miao Wang
- Department of Internal Medicine of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Chunbo Zhang
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Shigao Zhou
- Department of Internal Medicine of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
- Correspondence: Guang Ji, Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, People’s Republic of China, Tel +86 18156416071, Fax +86 21-64385700, Email
| |
Collapse
|
13
|
Jhelum P, David S. Ferroptosis: copper-iron connection in cuprizone-induced demyelination. Neural Regen Res 2022; 17:89-90. [PMID: 34100434 PMCID: PMC8451549 DOI: 10.4103/1673-5374.314300] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Priya Jhelum
- Centre for Research in Neuroscience and Brain Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Samuel David
- Centre for Research in Neuroscience and Brain Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
14
|
New Inhibitors of Laccase and Tyrosinase by Examination of Cross-Inhibition between Copper-Containing Enzymes. Int J Mol Sci 2021; 22:ijms222413661. [PMID: 34948458 PMCID: PMC8707586 DOI: 10.3390/ijms222413661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Coppers play crucial roles in the maintenance homeostasis in living species. Approximately 20 enzyme families of eukaryotes and prokaryotes are known to utilize copper atoms for catalytic activities. However, small-molecule inhibitors directly targeting catalytic centers are rare, except for those that act against tyrosinase and dopamine-β-hydroxylase (DBH). This study tested whether known tyrosinase inhibitors can inhibit the copper-containing enzymes, ceruloplasmin, DBH, and laccase. While most small molecules minimally reduced the activities of ceruloplasmin and DBH, aside from known inhibitors, 5 of 28 tested molecules significantly inhibited the function of laccase, with the Ki values in the range of 15 to 48 µM. Enzyme inhibitory kinetics classified the molecules as competitive inhibitors, whereas differential scanning fluorimetry and fluorescence quenching supported direct bindings. To the best of our knowledge, this is the first report on organic small-molecule inhibitors for laccase. Comparison of tyrosinase and DBH inhibitors using cheminformatics predicted that the presence of thione moiety would suffice to inhibit tyrosinase. Enzyme assays confirmed this prediction, leading to the discovery of two new dual tyrosinase and DBH inhibitors.
Collapse
|
15
|
Sakajiri T, Nakatsuji M, Teraoka Y, Furuta K, Ikuta K, Shibusa K, Sugano E, Tomita H, Inui T, Yamamura T. Zinc mediates the interaction between ceruloplasmin and apo-transferrin for the efficient transfer of Fe(III) ions. Metallomics 2021; 13:6427378. [PMID: 34791391 DOI: 10.1093/mtomcs/mfab065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/02/2021] [Indexed: 11/14/2022]
Abstract
Fe(II) exported from cells is oxidized to Fe(III), possibly by a multi-copper ferroxidase (MCF) such as ceruloplasmin (CP), to efficiently bind with the plasma iron transport protein transferrin (TF). As unbound Fe(III) is highly insoluble and reactive, its release into the blood during the transfer from MCF to TF must be prevented. A likely mechanism for preventing the release of unbound Fe(III) is via direct interaction between MCF and TF; however, the occurrence of this phenomenon remains controversial. This study aimed to reveal the interaction between these proteins, possibly mediated by zinc. Using spectrophotometric, isothermal titration calorimetric, and surface plasmon resonance methods, we found that Zn(II)-bound CP bound to iron-free TF (apo-TF) with a Kd of 4.2 μM and a stoichiometry CP:TF of ∼2:1. Computational modeling of the complex between CP and apo-TF predicted that each of the three Zn(II) ions that bind to CP further binds to acidic amino acid residues of apo-TF to play a role as a cross-linker connecting both proteins. Domain 4 of one CP molecule and domain 6 of the other CP molecule fit tightly into the clefts in the N- and C-lobes of apo-TF, respectively. Upon the binding of two Fe(III) ions to apo-TF, the resulting diferric TF [Fe(III)2TF] dissociated from CP by conformational changes in TF. In human blood plasma, zinc deficiency reduced the production of Fe(III)2TF and concomitantly increased the production of non-TF-bound iron. Our findings suggest that zinc may be involved in the transfer of iron between CP and TF.
Collapse
Affiliation(s)
- Tetsuya Sakajiri
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,Faculty of Nutritional Sciences, the University of Morioka, 808 Sunakomi, Takizawa, Iwate 020-0694, Japan.,Qualtec Co. Ltd., 4-230 Sambo-cho, Sakai, Osaka 590-0906, Japan.,Department of Nutrition, Kyushu Nutrition Welfare University, 5-1-1 Shimoitozu, Kitakyushu Kokurakita-ku, Fukuoka 803-0846, Japan
| | - Masatoshi Nakatsuji
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yoshiaki Teraoka
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kosuke Furuta
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Katsuya Ikuta
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.,Japanese Red Cross Hokkaido Blood Center, 2-1 Nijuyonken, Nishi-ku, Sapporo, Hokkaido 063-0802, Japan
| | - Kotoe Shibusa
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.,Hokkaido System Science Co., Ltd., 2-1 Shinkawa Nishi, Kita-ku, Sapporo, Hokkaido 001-0932, Japan
| | - Eriko Sugano
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Hiroshi Tomita
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Takashi Inui
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takaki Yamamura
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,Faculty of Nutritional Sciences, the University of Morioka, 808 Sunakomi, Takizawa, Iwate 020-0694, Japan
| |
Collapse
|
16
|
Gray HB, Winkler JR. Functional and protective hole hopping in metalloenzymes. Chem Sci 2021; 12:13988-14003. [PMID: 34760183 PMCID: PMC8565380 DOI: 10.1039/d1sc04286f] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023] Open
Abstract
Electrons can tunnel through proteins in microseconds with a modest release of free energy over distances in the 15 to 20 Å range. To span greater distances, or to move faster, multiple charge transfers (hops) are required. When one of the reactants is a strong oxidant, it is convenient to consider the movement of a positively charged "hole" in a direction opposite to that of the electron. Hole hopping along chains of tryptophan (Trp) and tyrosine (Tyr) residues is a critical function in several metalloenzymes that generate high-potential intermediates by reactions with O2 or H2O2, or by activation with visible light. Examination of the protein structural database revealed that Tyr/Trp chains are common protein structural elements, particularly among enzymes that react with O2 and H2O2. In many cases these chains may serve a protective role in metalloenzymes by deactivating high-potential reactive intermediates formed in uncoupled catalytic turnover.
Collapse
Affiliation(s)
- Harry B Gray
- Beckman Institute, California Institute of Technology 1200 E California Boulevard Pasadena CA 19925 USA
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology 1200 E California Boulevard Pasadena CA 19925 USA
| |
Collapse
|
17
|
Soldatova AV, Fu W, Romano CA, Tao L, Casey WH, Britt RD, Tebo BM, Spiro TG. Metallo-inhibition of Mnx, a bacterial manganese multicopper oxidase complex. J Inorg Biochem 2021; 224:111547. [PMID: 34403930 DOI: 10.1016/j.jinorgbio.2021.111547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022]
Abstract
The manganese oxidase complex, Mnx, from Bacillus sp. PL-12 contains a multicopper oxidase (MCO) and oxidizes dissolved Mn(II) to form insoluble manganese oxide (MnO2) mineral. Previous kinetic and spectroscopic analyses have shown that the enzyme's mechanism proceeds through an activation step that facilitates formation of a series of binuclear Mn complexes in the oxidation states II, III, and IV on the path to MnO2 formation. We now demonstrate that the enzyme is inhibited by first-row transition metals in the order of the Irving-Williams series. Zn(II) strongly (Ki ~ 1.5 μM) inhibits both activation and turnover steps, as well as the rate of Mn(II) binding. The combined Zn(II) and Mn(II) concentration dependence establishes that the inhibition is non-competitive. This result is supported by electron paramagnetic resonance (EPR) spectroscopy, which reveals unaltered Mnx-bound Mn(II) EPR signals, both mono- and binuclear, in the presence of Zn(II). We infer that inhibitory metals bind at a site separate from the substrate sites and block the conformation change required to activate the enzyme, a case of allosteric inhibition. The likely biological role of this inhibitory site is discussed in the context of Bacillus spore physiology. While Cu(II) inhibits Mnx strongly, in accord with the Irving-Williams series, it increases Mnx activation at low concentrations, suggesting that weakly bound Cu, in addition to the four canonical MCO-Cu, may support enzyme activity, perhaps as an electron transfer agent.
Collapse
Affiliation(s)
- Alexandra V Soldatova
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Wen Fu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Christine A Romano
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Lizhi Tao
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - William H Casey
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States; Earth and Planetary Sciences Department, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Thomas G Spiro
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States.
| |
Collapse
|
18
|
Aibara N, Miyata Y, Araki K, Sagara Y, Mitsunari K, Matsuo T, Ohba K, Mochizuki Y, Sakai H, Ohyama K. Detection of Novel Urine Markers Using Immune Complexome Analysis in Bladder Cancer Patients: A Preliminary Study. In Vivo 2021; 35:2073-2080. [PMID: 34182482 DOI: 10.21873/invivo.12476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIM Little is known on urine biomarkers that are associated with malignant behavior in patients with bladder cancer (BC). Our aim was to identify BC-related factors in urine samples using our original method "immune complexome analysis", based on detecting the immune complex (IC). PATIENTS AND METHODS Immune complexome analysis was performed using urine samples from 97 BC patients, including 67 with non-muscle invasive BC (NMIBC). RESULTS Eight IC-antigens were recognized as candidates for BC-related factors from 20,165 proteins. IC-serum albumin, -fibrinogen γ chain, -hemoglobin subunit α, -hemoglobin subunit β, -ceruloplasmin, and fibrinogen β chain were significantly associated with either pathological features and/or outcome. IC-ceruloplasmin was most widely associated with pathological features in all BC patients and lamina propria invasion and urinary tract recurrence in NMIBC. CONCLUSION Based on detection of IC-antigens it was demonstrated that six IC-antigens, especially IC-ceruloplasmin, are potential urine biomarkers in BC.
Collapse
Affiliation(s)
- Nozomi Aibara
- Department of Pharmacy Practice, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kyohei Araki
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuji Sagara
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kensuke Mitsunari
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasushi Mochizuki
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kaname Ohyama
- Department of Pharmacy Practice, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
19
|
Falcone E, Okafor M, Vitale N, Raibaut L, Sour A, Faller P. Extracellular Cu2+ pools and their detection: From current knowledge to next-generation probes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Apoceruloplasmin: Abundance, Detection, Formation, and Metabolism. Biomedicines 2021; 9:biomedicines9030233. [PMID: 33669134 PMCID: PMC7996503 DOI: 10.3390/biomedicines9030233] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Ceruloplasmin, the main copper-binding protein in blood and some other fluids, is well known for its copper-dependent enzymatic functions and as a source of copper for cells. What is generally unknown or ignored is that, at least in the case of blood plasma and serum, about half of ceruloplasmin is in the apo (copper-free) form. This has led to some misconceptions about the amounts and variations of other copper-binding proteins and so-called “free copper” in the blood that might be indicators of disease states. What is known about the levels, sources, and metabolism of apo versus holo ceruloplasmin and the problems associated with measurements of the two forms is reviewed here.
Collapse
|
21
|
Ceruloplasmin Deamidation in Neurodegeneration: From Loss to Gain of Function. Int J Mol Sci 2021; 22:ijms22020663. [PMID: 33440850 PMCID: PMC7827708 DOI: 10.3390/ijms22020663] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative disorders can induce modifications of several proteins; one of which is ceruloplasmin (Cp), a ferroxidase enzyme found modified in the cerebrospinal fluid (CSF) of neurodegenerative diseases patients. Cp modifications are caused by the oxidation induced by the pathological environment and are usually associated with activity loss. Together with oxidation, deamidation of Cp was found in the CSF from Alzheimer’s and Parkinson’s disease patients. Protein deamidation is a process characterized by asparagine residues conversion in either aspartate or isoaspartate, depending on protein sequence/structure and cellular environment. Cp deamidation occurs at two Asparagine-Glycine-Arginine (NGR)-motifs which, once deamidated to isoAspartate-Glycine-Arginine (isoDGR), bind integrins, a family of receptors mediating cell adhesion. Therefore, on the one hand, Cp modifications lead to loss of enzymatic activity, while on the other hand, these alterations confer gain of function to Cp. In fact, deamidated Cp binds to integrins and triggers intracellular signaling on choroid plexus epithelial cells, changing cell functioning. Working in concert with the oxidative environment, Cp deamidation could reach different target cells in the brain, altering their physiology and causing detrimental effects, which might contribute to the pathological mechanism.
Collapse
|
22
|
Anugwom CM, Moscoso CG, Lim N, Hassan M. Aceruloplasminemia: A Case Report and Review of a Rare and Misunderstood Disorder of Iron Accumulation. Cureus 2020; 12:e11648. [PMID: 33376659 PMCID: PMC7755722 DOI: 10.7759/cureus.11648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aceruloplasminemia is a rare disorder of iron accumulation inherited in an autosomal recessive fashion. It commonly presents as chronic microcytic anemia, and then progresses to signs and symptoms that are due to the accumulation of iron in multiple organs such as the brain, liver, pancreas, and thyroid. We present an asymptomatic patient with a history of microcytic anemia, who was evaluated for abnormal liver enzymes, and ultimately diagnosed with aceruloplasminemia.
Collapse
|
23
|
Tian S, Jones SM, Solomon EI. Role of a Tyrosine Radical in Human Ceruloplasmin Catalysis. ACS CENTRAL SCIENCE 2020; 6:1835-1843. [PMID: 33145420 PMCID: PMC7596862 DOI: 10.1021/acscentsci.0c00953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Multicopper oxidases (MCOs) are a large family of diverse enzymes found in both eukaryotes and prokaryotes that couple one-electron oxidations of various substrates to the four-electron reduction of O2 to H2O, functioning through a set of metallocofactors consisting of one type 1 copper (T1 Cu) and one trinuclear copper cluster (TNC). Human serum ceruloplasmin (Cp) is a unique member of MCOs composed of six cupredoxin domains and harbors six Cu ions arranged as three T1 Cu and one TNC. The native substrate of Cp is Fe2+. It is an essential ferroxidase critical for iron homeostasis and is closely associated with metal-mediated diseases and metal neurotoxicity. In human serum, Cp operates under substrate-limiting low [Fe2+] but high [O2] conditions, implying the possible involvement of partially reduced intermediates in Cp catalysis. In this work, we studied for the first time Cp reactivities at defined partially reduced states and discovered a tyrosine radical weakly magnetically coupled to the native intermediate (NI) of the TNC via a hydrogen bond. Our results lead to a new hypothesis that human iron transport is regulated as the paired transfer of iron from ferroportin to Cp to transferrin, and the tyrosine residue in Cp acts as a gate to avoid reactive oxygen species (ROS) formation when Fe2+ delivery is dysregulated.
Collapse
|
24
|
Lobbes H, Reynaud Q, Mainbourg S, Lega JC, Durieu I, Durupt S. [Aceruloplasminemia, a rare condition not to be overlooked]. Rev Med Interne 2020; 41:769-775. [PMID: 32682623 DOI: 10.1016/j.revmed.2020.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 01/01/2023]
Abstract
Aceruloplasminemia is a rare iron-overload disease that should be better known by physicians. It is an autosomal recessive disorder due to mutations in ceruloplasmin gene causing systemic iron overload, including cerebral and liver parenchyma. The impairment of ferroxidase ceruloplasmin activity leads to intracellular iron retention leading aceruloplasminemia symptoms. Neurologic manifestations include cognitive impairment, ataxia, extrapyramidal syndrome, abnormal movements, and psychiatric-like syndromes. Physicians should search for aceruloplasminemia in several situations with high ferritin levels: microcytic anaemia, diabetes mellitus, neurological and psychiatric disorders. Diagnosis approach is based on the study of transferrin saturation and hepatic iron content evaluated by magnetic resonance imaging of the liver. Ceruloplasmin dosage is required in case of low transferrin saturation and high hepatic iron content and genetic testing is mandatory in case of serum ceruloplasmin defect. Neurological manifestations occur in the sixties decade and leads to disability. Iron chelators are widely used. Despite their efficacy on systemic and cerebral iron overload, iron chelators tolerance is poor. Early initiation of iron chelation therapy might prevent or slowdown neurodegeneration, highlighting the need for an early diagnosis but their clinical efficacy remains uncertain.
Collapse
Affiliation(s)
- H Lobbes
- Service de médecine interne, hôpital Estaing, CHU de Clermont-Ferrand, 1, place Lucie-et-Raymond-Aubrac, 63000 Clermont-Ferrand, France.; Service de médecine interne et vasculaire, Centre de compétence des surcharges en fer rares d'origine génétique, hôpital Lyon Sud, Hospices civils de Lyon, 165, chemin du Grand-Revoyet, 69310 Pierre-Bénite, France..
| | - Q Reynaud
- Service de médecine interne et vasculaire, Centre de compétence des surcharges en fer rares d'origine génétique, hôpital Lyon Sud, Hospices civils de Lyon, 165, chemin du Grand-Revoyet, 69310 Pierre-Bénite, France
| | - S Mainbourg
- Service de médecine interne et vasculaire, Centre de compétence des surcharges en fer rares d'origine génétique, hôpital Lyon Sud, Hospices civils de Lyon, 165, chemin du Grand-Revoyet, 69310 Pierre-Bénite, France
| | - J-C Lega
- Service de médecine interne et vasculaire, Centre de compétence des surcharges en fer rares d'origine génétique, hôpital Lyon Sud, Hospices civils de Lyon, 165, chemin du Grand-Revoyet, 69310 Pierre-Bénite, France
| | - I Durieu
- Service de médecine interne et vasculaire, Centre de compétence des surcharges en fer rares d'origine génétique, hôpital Lyon Sud, Hospices civils de Lyon, 165, chemin du Grand-Revoyet, 69310 Pierre-Bénite, France
| | - S Durupt
- Service de médecine interne et vasculaire, Centre de compétence des surcharges en fer rares d'origine génétique, hôpital Lyon Sud, Hospices civils de Lyon, 165, chemin du Grand-Revoyet, 69310 Pierre-Bénite, France
| |
Collapse
|
25
|
Krauklis IV, Chizhov YV, Stefanov VE, Moshkov KA. Comparative Analysis of the Mechanism
of Multinucleated Blue Oxidase Catalysis: Quantum Chemical Investigation
of the Ceruloplasmin Peroxide Intermediate. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s002209302002009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Mukhopadhyay BP. Molecular dynamics analysis of conserved water mediated inter-domain recognition of His667-Trp669 in human ceruloplasmin. Bioinformation 2020; 16:209-218. [PMID: 32308262 PMCID: PMC7147499 DOI: 10.6026/97320630016209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/05/2020] [Indexed: 11/23/2022] Open
Abstract
The human ceruloplasmin (hCP) is the copper containing ferroxidase enzyme with multifunctional activities (NO-oxidase, NO2-synthase,oxidation of neurotransmitters including antioxidants). Therefore, it is of interest to probe the multi-domain hCP using moleculardynamics simulation. Results explain the role played by several conserved water centers in the intra and inter-domain recognition throughH-bond interaction with the interacting residues. We observed seventeen conserved water centers in the inter-domain recognition. Weshow that five invariant water centers W13, W14, W18, W23 and W26 connect the Domain 5 to Domain 4 (D5…W…W4). We also show thatfive other water centers W19, W20, W27, W30 and W31 connects the Domain 5 to Domain 6 (D5…W…W6) that is unique in the simulatedform. The W7 and W32 water centers are involved in the D1…W…W6 recognition. This is important for the water-mediated interaction ofGlu1032 to the trinuclear copper cluster present at the interface between these domains. The involvement of W10 water center in theD3…W10…D4 recognition through Gln552…W10…His667 H-bond interaction is critical in the complexation of CP with myeloperoxidase(Mpo). These observations provide insights to the molecular recognition of hCP with other biomolecules in the system.
Collapse
Affiliation(s)
- Bishnu Prasad Mukhopadhyay
- Department of Chemistry, National Institute of Technology-Durgapur, West Bengal, Durgapur - 713209, India
| |
Collapse
|
27
|
Vila Cuenca M, Marchi G, Barqué A, Esteban-Jurado C, Marchetto A, Giorgetti A, Chelban V, Houlden H, Wood NW, Piubelli C, Dorigatti Borges M, Martins de Albuquerque D, Yotsumoto Fertrin K, Jové-Buxeda E, Sanchez-Delgado J, Baena-Díez N, Burnyte B, Utkus A, Busti F, Kaubrys G, Suku E, Kowalczyk K, Karaszewski B, Porter JB, Pollard S, Eleftheriou P, Bignell P, Girelli D, Sanchez M. Genetic and Clinical Heterogeneity in Thirteen New Cases with Aceruloplasminemia. Atypical Anemia as a Clue for an Early Diagnosis. Int J Mol Sci 2020; 21:E2374. [PMID: 32235485 PMCID: PMC7178074 DOI: 10.3390/ijms21072374] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Aceruloplasminemia is a rare autosomal recessive genetic disease characterized by mild microcytic anemia, diabetes, retinopathy, liver disease, and progressive neurological symptoms due to iron accumulation in pancreas, retina, liver, and brain. The disease is caused by mutations in the Ceruloplasmin (CP) gene that produce a strong reduction or absence of ceruloplasmin ferroxidase activity, leading to an impairment of iron metabolism. Most patients described so far are from Japan. Prompt diagnosis and therapy are crucial to prevent neurological complications since, once established, they are usually irreversible. Here, we describe the largest series of non-Japanese patients with aceruloplasminemia published so far, including 13 individuals from 11 families carrying 13 mutations in the CP gene (7 missense, 3 frameshifts, and 3 splicing mutations), 10 of which are novel. All missense mutations were studied by computational modeling. Clinical manifestations were heterogeneous, but anemia, often but not necessarily microcytic, was frequently the earliest one. This study confirms the clinical and genetic heterogeneity of aceruloplasminemia, a disease expected to be increasingly diagnosed in the Next-Generation Sequencing (NGS) era. Unexplained anemia with low transferrin saturation and high ferritin levels without inflammation should prompt the suspicion of aceruloplasminemia, which can be easily confirmed by low serum ceruloplasmin levels. Collaborative joint efforts are needed to better understand the pathophysiology of this potentially disabling disease.
Collapse
Affiliation(s)
- Marc Vila Cuenca
- Iron Metabolism: Regulation and Diseases Group, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, 08916 Barcelona, Spain; (M.V.C.); (A.B.); (C.E.-J.)
| | - Giacomo Marchi
- EuroBloodNet Referral Center for Iron Disorders and Gruppo Interdisciplinare Malattie del Ferro, Internal Medicine Unit, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy; (G.M.); (F.B.)
| | - Anna Barqué
- Iron Metabolism: Regulation and Diseases Group, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, 08916 Barcelona, Spain; (M.V.C.); (A.B.); (C.E.-J.)
| | - Clara Esteban-Jurado
- Iron Metabolism: Regulation and Diseases Group, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, 08916 Barcelona, Spain; (M.V.C.); (A.B.); (C.E.-J.)
| | - Alessandro Marchetto
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.M.); (A.G.); (E.S.)
| | - Alejandro Giorgetti
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.M.); (A.G.); (E.S.)
| | - Viorica Chelban
- National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (V.C.); (H.H.); (N.W.W.)
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Neurology and Neurosurgery, Institute of Emergency Medicine, Toma Ciorbă 1, Chisinau, MD-2052 Chisinau, Republic of Moldova
| | - Henry Houlden
- National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (V.C.); (H.H.); (N.W.W.)
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK
- Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Nicholas W Wood
- National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (V.C.); (H.H.); (N.W.W.)
- Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Chiara Piubelli
- Centre for Tropical Diseases, Ospedale Sacro Cuore - Don Calabria, 37024 Negrar (VR), Italy;
| | - Marina Dorigatti Borges
- Hematology and Hemotherapy Center—Hemocentro Campinas, University of Campinas—UNICAMP, Campinas 13083-878, Brazil; (M.D.B.); (D.M.d.A.); (K.Y.F.)
| | - Dulcinéia Martins de Albuquerque
- Hematology and Hemotherapy Center—Hemocentro Campinas, University of Campinas—UNICAMP, Campinas 13083-878, Brazil; (M.D.B.); (D.M.d.A.); (K.Y.F.)
| | - Kleber Yotsumoto Fertrin
- Hematology and Hemotherapy Center—Hemocentro Campinas, University of Campinas—UNICAMP, Campinas 13083-878, Brazil; (M.D.B.); (D.M.d.A.); (K.Y.F.)
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ester Jové-Buxeda
- Internal Medicine Department, Parc Tauli Hospital Universitari, Institut d’ Investigació i Innovació Parc Tauli I3PT, Universidad Autonoma de Barcelona, 08208 Sabadell, Spain;
| | - Jordi Sanchez-Delgado
- Hepatology Unit, Digestive Diseases Department, Parc Tauli Hospital Universitari. Institut d’ Investigació i Innovació Parc Tauli I3PT, Universidad Autonoma de Barcelona, 08208 Sabadell, Spain;
- Centro de Investigación Biomedica y en red Enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Neus Baena-Díez
- Genetic Department, Parc Tauli Hospital Universitari, Institut d’ Investigació i Innovació Parc Tauli I3PT, Universidad Autonoma de Barcelona, 08208 Sabadell, Spain;
| | - Birute Burnyte
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, LT-08661 Vilnius, Lithuania; (B.B.); (A.U.)
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, LT-08661 Vilnius, Lithuania; (B.B.); (A.U.)
| | - Fabiana Busti
- EuroBloodNet Referral Center for Iron Disorders and Gruppo Interdisciplinare Malattie del Ferro, Internal Medicine Unit, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy; (G.M.); (F.B.)
| | - Gintaras Kaubrys
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 08661 Vilnius, Lithuania;
| | - Eda Suku
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.M.); (A.G.); (E.S.)
| | - Kamil Kowalczyk
- Department of Adult Neurology, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.K.); (B.K.)
| | - Bartosz Karaszewski
- Department of Adult Neurology, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.K.); (B.K.)
| | - John B. Porter
- Joint Red Cell Unit, Haematology Department, University College London NHS Foundation Trust, Cancer Services, 250 Euston Road, London NW1 2PG, UK; (J.B.P.); (P.E.)
| | - Sally Pollard
- Consultant Paediatrician, Bradford Royal Infirmary, Duckworthlane, Bradford BD9 6RJ, UK;
| | - Perla Eleftheriou
- Joint Red Cell Unit, Haematology Department, University College London NHS Foundation Trust, Cancer Services, 250 Euston Road, London NW1 2PG, UK; (J.B.P.); (P.E.)
| | - Patricia Bignell
- Oxford Regional Genetics Laboratory, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford OX3 7LE, UK;
| | - Domenico Girelli
- EuroBloodNet Referral Center for Iron Disorders and Gruppo Interdisciplinare Malattie del Ferro, Internal Medicine Unit, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy; (G.M.); (F.B.)
| | - Mayka Sanchez
- Iron Metabolism: Regulation and Diseases Group, Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC); Sant Cugat del Valles, 08017 Barcelona, Spain
- Program of Program of Predictive and Personalized Medicine of Cancer (PMPPC), Institut d ‘Investigació Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona, 08916 Barcelona, Spain
- BloodGenetics S.L., Esplugues de Llobregat, 08950 Barcelona, Spain
| |
Collapse
|
28
|
Strzelak K, Głowacka J, Koncki R. Towards mechanized biparametric ceruloplasmin assay. Talanta 2020; 214:120881. [PMID: 32278433 DOI: 10.1016/j.talanta.2020.120881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 11/29/2022]
Abstract
Two analytical strategies for determination of both biocatalytic activity and concentration of ceruloplasmin conditions have been proposed. For this purpose, two constructions of fully-mechanized Multicommutated Flow Analysis (MCFA) systems were designed. The versatility of solenoid pumps and valves arrangement enabled to construct both manifolds using similar flow units, taking into account the different requirements for each method. In the case of ceruloplasmin catalytic activity assay, the kinetic measurements with the use of p-phenylenediamine and hydrogen peroxide were performed. The optimization process was focused on the selection of substrate and oxidizer concentration, incubation time as well as solving the issue of substrate autoxidation. It led to the development of the flow bioanalytical system characterized by following analytical parameters: LOD - 0.07 U mL- 1, LOQ - 0.38 U mL-1, RSD ≤6% with 8 μL consumption of human serum. In turn, for examination of ceruloplasmin concentration, the light-scattering detector was used in MCFA system adapted for immunoprecipitation measurements. In this case, the use of potentiator (polyethylene glycol) turned out to be necessary to obtain satisfactory analytical signals. Such a method allowed to obtain 35 measurements per hour with LOD and LOQ of 0.9 mg L-1 and 3.2 mg L-1, respectively. The usefulness of both MCFA systems was successfully examined by performing analyses of real human serum samples.
Collapse
Affiliation(s)
- Kamil Strzelak
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093, Warsaw, Poland.
| | - Justyna Głowacka
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093, Warsaw, Poland
| | - Robert Koncki
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093, Warsaw, Poland
| |
Collapse
|
29
|
Szlacheta Z, Wąsik M, Machoń-Grecka A, Kasperczyk A, Dobrakowski M, Bellanti F, Szlacheta P, Kasperczyk S. Potential Antioxidant Activity of Calcium and Selected Oxidative Stress Markers in Lead- and Cadmium-Exposed Workers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8035631. [PMID: 33082913 PMCID: PMC7558770 DOI: 10.1155/2020/8035631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
Occupational lead (Pb) and cadmium (Cd) exposure occurs during processing and casting of nonferrous metals such as zinc. In contrast to Pb and Cd, Ca is essential for living organisms due to its important role in a multitude of functions, from cell signaling to bone growth. Pb and Cd exposure affects calcium metabolism in various ways. The aim of this study was to investigate the blood levels of Pb, Cd, and Ca and the levels of selected oxidative stress biomarkers in workers exposed to Pb and Cd. Population groups included 264 male employees in a lead-zinc smelter. The study population was divided into two subgroups based on the median of Ca serum level (2.42 mmol/l): the low-Ca-level group (L-Ca group) and the high-Ca-level group (H-Ca group). Ca level was significantly higher in the H-Ca group than in the L-Ca group due to the study design (by 26%). The level of zinc protoporphyrin (ZPP) was significantly higher in the L-Ca group than in the H-Ca group by 13%, while the blood lead levels (PbB) were similar in the examined groups. The level of cadmium (CdB) was significantly higher in the L-Ca group than in the H-Ca group by 33%. From oxidative stress markers in serum, only the levels of malondialdehyde (MDA) and ceruloplasmin (CER) were significantly higher in the L-Ca group than in the H-Ca group, by 12% and 4%, respectively. The correlation analysis showed negative correlations between Ca level and the levels of PbB, ZPP, CdB, and MDA. The presented results indicate that Ca level modulates the serum concentration of Cd and has an impact on Pb-induced impairment of heme synthesis. The higher Ca levels may lead to a decrease in the concentration of lipid peroxidation products. Moreover, serum calcium level seems to be able to modify the level of acute-phase proteins. Obtained results suggest that higher Ca level may be useful in reducing Cd level in occupationally exposed workers.
Collapse
Affiliation(s)
| | - Marta Wąsik
- 2Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Anna Machoń-Grecka
- 3Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poland
| | - Aleksandra Kasperczyk
- 3Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poland
| | - Michał Dobrakowski
- 3Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poland
| | - Francesco Bellanti
- 4Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| | - Patryk Szlacheta
- 5Department of Toxicology and Health Protection, Faculty of Health Science in Bytom, Medical University of Silesia in Katowice, Bytom, Poland
| | - Sławomir Kasperczyk
- 3Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poland
| |
Collapse
|
30
|
Mukhopadhyay BP. Insights from molecular dynamics simulation of human ceruloplasmin (ferroxidase enzyme) binding with biogenic monoamines. Bioinformation 2019; 15:750-759. [PMID: 31831958 PMCID: PMC6900326 DOI: 10.6026/97320630015750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 11/23/2022] Open
Abstract
Human ceruloplasmin (hCP) is a multi-copper oxidase with ferroxidase and amine oxidase activities. Molecular dynamics simulation (MDS) and docking analysis of biogenic monoamines with ceruloplasmin explain the role of Asp1025, Glu935, Glu272, Glu232 and Glu230 together with the binding site water molecules (referred as conserved water molecules) in the stabilization of neurotransmitter (Serotonin, Norepinephrine and Epinephrine) molecules within the binding cavity of hCP. Conserved water molecules are found at specific positions interacting with the protein structures that have sequence similarity. The ethylamine side chain nitrogen atom (N1) of neurotransmitter molecules interacts with water molecules in the binding cavity formed by Asp1025, Glu935 and Glu232 residues. These residues form an acidic triad mimicking a substrate binding cavity. The hydroxyl groups attached to the catechol ring of epinephrine and norepinephrine have been stabilized by Asp230 and Asp232 residues. Data suggests that the recognition of biogenic amines mediates through the N+(amine) ...Asp1025-His1026-CuCis-His path. The potential recognition path of biogenic monoamines to trinuclear copper cluster supported by active site water molecules (referred as conserved water molecules) is described in this report.
Collapse
|
31
|
|
32
|
Wang B, Wang XP. Does Ceruloplasmin Defend Against Neurodegenerative Diseases? Curr Neuropharmacol 2019; 17:539-549. [PMID: 29737252 PMCID: PMC6712297 DOI: 10.2174/1570159x16666180508113025] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 04/10/2018] [Accepted: 05/04/2018] [Indexed: 12/11/2022] Open
Abstract
Ceruloplasmin (CP) is the major copper transport protein in plasma, mainly produced by the liver. Glyco-sylphosphatidylinositol-linked CP (GPI-CP) is the predominant form expressed in astrocytes of the brain. A growing body of evidence has demonstrated that CP is an essential protein in the body with multiple functions such as regulating the home-ostasis of copper and iron ions, ferroxidase activity, oxidizing organic amines, and preventing the formation of free radicals. In addition, as an acute-phase protein, CP is induced during inflammation and infection. The fact that patients with genetic disorder aceruloplasminemia do not suffer from tissue copper deficiency, but rather from disruptions in iron metabolism shows essential roles of CP in iron metabolism rather than copper. Furthermore, abnormal metabolism of metal ions and ox-idative stress are found in other neurodegenerative diseases, such as Wilson’s disease, Alzheimer’s disease and Parkinson’s disease. Brain iron accumulation and decreased activity of CP have been shown to be associated with neurodegeneration. We hypothesize that CP may play a protective role in neurodegenerative diseases. However, whether iron accumulation is a cause or a result of neurodegeneration remains unclear. Further research on molecular mechanisms is required before a con-sensus can be reached regarding a neuroprotective role for CP in neurodegeneration. This review article summarizes
the main physiological functions of CP and the current knowledge of its role in neurodegenerative diseases.
Collapse
Affiliation(s)
- Bo Wang
- Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China.,Department of Neurology Baoshan Branch, Shanghai General Hospital, Shanghai, 200940, China
| | - Xiao-Ping Wang
- Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China.,Department of Neurology, Shanghai Tong- Ren Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
33
|
Ilyechova EY, Miliukhina IV, Karpenko MN, Orlov IA, Puchkova LV, Samsonov SA. Case of Early-Onset Parkinson's Disease in a Heterozygous Mutation Carrier of the ATP7B Gene. J Pers Med 2019; 9:jpm9030041. [PMID: 31426520 PMCID: PMC6789574 DOI: 10.3390/jpm9030041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 02/04/2023] Open
Abstract
In this paper, we report a clinically proven case of Parkinson’s disease (PD) with early onset in a patient who is a heterozygous mutation carrier of ATP7B (the Wilson’s disease gene). The patient was observed from 2011 to 2018 in the Center for Neurodegenerative Diseases, Institute of Experimental Medicine (St. Petersburg, Russia). During this period, the patient displayed aggravation of PD clinical symptoms that were accompanied by a decrease in the ceruloplasmin concentration (from 0.33 to 0.27 g/L) and an increase in serum nonceruloplasmin copper, which are typical of the late stages of Wilson’s disease. It was found that one of the alleles of exon 14 in the ATP7B gene, which partially codes of the nucleotide-binding domain (N-domain), carries a mutation not previously reported corresponding to Cys1079Gly substitution. Alignment of the ATP7B N-domain amino acid sequences of representative vertebrate species has shown that the Cys at 1079 position is conserved throughout the evolution. Molecular dynamic analysis of a polypeptide with Cys1079Gly substitution showed that the mutation causes profound conformational changes in the N-domain, which could potentially lead to impairment of its functions. The role of ATP7B gene mutations in PD development is discussed.
Collapse
Affiliation(s)
- Ekaterina Y Ilyechova
- International Research Laboratory of Trace Elements Metabolism, ITMO University, Kronverksky av., 49, St. Petersburg 197101, Russia
- Department of Molecular Genetics, Institute of Experimental Medicine, Pavlov str., 12, St. Petersburg 197376, Russia
- Biophysics Department, Peter the Great St. Petersburg Polytechnic University, Politehknicheskay str., 29, St. Petersburg 195251, Russia
| | - Irina V Miliukhina
- Centre for Neurodegenerative diseases, Institute of Experimental Medicine, Maluy av., Petrogradskiy district, 13, St. Petersburg 197198, Russia
| | - Marina N Karpenko
- Department of Physiology, Institute of Experimental Medicine, Pavlov str., 12, St. Petersburg 197376, Russia
| | - Iurii A Orlov
- International Research Laboratory of Trace Elements Metabolism, ITMO University, Kronverksky av., 49, St. Petersburg 197101, Russia
| | - Ludmila V Puchkova
- International Research Laboratory of Trace Elements Metabolism, ITMO University, Kronverksky av., 49, St. Petersburg 197101, Russia.
- Department of Molecular Genetics, Institute of Experimental Medicine, Pavlov str., 12, St. Petersburg 197376, Russia.
- Biophysics Department, Peter the Great St. Petersburg Polytechnic University, Politehknicheskay str., 29, St. Petersburg 195251, Russia.
| | - Sergey A Samsonov
- International Research Laboratory of Trace Elements Metabolism, ITMO University, Kronverksky av., 49, St. Petersburg 197101, Russia
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza str., 63, 80-308 Gdańsk, Poland
| |
Collapse
|
34
|
Serum and brain natural copper stable isotopes in a mouse model of Alzheimer's disease. Sci Rep 2019; 9:11894. [PMID: 31417103 PMCID: PMC6695409 DOI: 10.1038/s41598-019-47790-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/24/2019] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease is associated with the production of Cu rich aβ fibrils. Because monitoring the changes in Cu level of organs has been proposed to follow the evolution of the disease, we analyzed the copper isotopic composition of serum and brain of APPswe/PSEN1dE9 transgenic mice, a model of Alzheimer’s disease, and wild-type (WT) controls. Serum composition of 3, 6, 9 and 12-month-old mice, as well as the composition of 9 brains of 12-month-old mice are reported. In WT mice, brains were ~1‰ isotopically heavier than serum, and the Cu isotopic composition of the serum was isotopically different between males and females. We propose that this effect of sex on the Cu isotopic budget of the serum may be related to a difference of Cu speciation and relative abundance of Cu carriers. Brains of APPswe/PSEN1dE9 mice were slightly lighter than brains of WT mice, while not statistically significant. This trend may reflect an increase of Cu(I) associated with the formation of Aβ fibrils. The Cu isotopic composition of the brains and serum were correlated, implying copper transport between these two reservoirs, in particular a transfer of Cu(I) from the brain to the serum. Altogether, these data suggest that Cu stable isotopic composition of body fluid may have the potential to be used as detection tools for the formation of Aβ fibrils in the brain, but further work has to be done.
Collapse
|
35
|
Mukhopadhyay BP. Putative role of conserved water molecules in the hydration and inter-domain recognition of mono nuclear copper centers in O2-bound human ceruloplasmin: A comparative study between X-ray and MD simulated structures. Bioinformation 2019; 15:402-411. [PMID: 31312077 PMCID: PMC6614124 DOI: 10.6026/97320630015402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/02/2019] [Indexed: 11/23/2022] Open
Abstract
Human Ceruloplasmin (hCP) is an unique multicopper oxidase which involves in different biological functions e.g., iron metabolism, copper transportation, biogenic amine oxidation ,and its malfunction causes Wilson's and Menkes diseases. MD- simulation studies of O2- bound solvated structure have revealed the role of several conserved/ semi-conserved water molecules in the hydration of type-I copper centers and their involvement to recognition dynamics of these metal centers. In O2- bound structure, hydration potentiality of CuRS (Cu1106) type-I copper center is observed to be unique, where two water molecules (W1-W2) are interacting with the metal sites, which was not found in X-ray structures of hCP. Generally, in the interdomain recognition of CuCys-His to CuRS, CuRS to CuPR and CuPR to CuCys-His centers, the copper bound His-residue of one domain interacts with the Glu-residue of other complementary domain through conserved/ semi-conserved (W3 to W5) water- mediated hydrogen bonds (Cu-His...W...Glu), however direct salt-bridge (Cu-His...Glu) interaction were observed in the X- ray structures. The MD- simulated and X- ray structures have indicated some possibilities on the Cu-His...W...Glu ↔ Cu-His...Glu transition during the interdomain recognition of type-I copper centers, which may have some importance in biology and chemistry of ceruloplasmin.
Collapse
Affiliation(s)
- Bishnu P. Mukhopadhyay
- Department of Chemistry National Institute of Technology-Durgapur, West Bengal, Durgapur - 713209, India
| |
Collapse
|
36
|
Sharma P, Reichert M, Lu Y, Markello TC, Adams DR, Steinbach PJ, Fuqua BK, Parisi X, Kaler SG, Vulpe CD, Anderson GJ, Gahl WA, Malicdan MCV. Biallelic HEPHL1 variants impair ferroxidase activity and cause an abnormal hair phenotype. PLoS Genet 2019; 15:e1008143. [PMID: 31125343 PMCID: PMC6534290 DOI: 10.1371/journal.pgen.1008143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/16/2019] [Indexed: 11/18/2022] Open
Abstract
Maintenance of the correct redox status of iron is functionally important for critical biological processes. Multicopper ferroxidases play an important role in oxidizing ferrous iron, released from the cells, into ferric iron, which is subsequently distributed by transferrin. Two well-characterized ferroxidases, ceruloplasmin (CP) and hephaestin (HEPH) facilitate this reaction in different tissues. Recently, a novel ferroxidase, Hephaestin like 1 (HEPHL1), also known as zyklopen, was identified. Here we report a child with compound heterozygous mutations in HEPHL1 (NM_001098672) who presented with abnormal hair (pili torti and trichorrhexis nodosa) and cognitive dysfunction. The maternal missense mutation affected mRNA splicing, leading to skipping of exon 5 and causing an in-frame deletion of 85 amino acids (c.809_1063del; p.Leu271_ala355del). The paternal mutation (c.3176T>C; p.Met1059Thr) changed a highly conserved methionine that is part of a typical type I copper binding site in HEPHL1. We demonstrated that HEPHL1 has ferroxidase activity and that the patient's two mutations exhibited loss of this ferroxidase activity. Consistent with these findings, the patient's fibroblasts accumulated intracellular iron and exhibited reduced activity of the copper-dependent enzyme, lysyl oxidase. These results suggest that the patient's biallelic variants are loss-of-function mutations. Hence, we generated a Hephl1 knockout mouse model that was viable and had curly whiskers, consistent with the hair phenotype in our patient. These results enhance our understanding of the function of HEPHL1 and implicate altered ferroxidase activity in hair growth and hair disorders.
Collapse
Affiliation(s)
- Prashant Sharma
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marie Reichert
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yan Lu
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Thomas C. Markello
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland Bethesda, Maryland, United States of America
| | - David R. Adams
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter J. Steinbach
- Center for Molecular Modeling, Center for Information Technology, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brie K. Fuqua
- Department of Medicine, University of California, Los Angeles, United States of America
| | - Xenia Parisi
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen G. Kaler
- Section on Translational Neuroscience, Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christopher D. Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Gregory J. Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - William A. Gahl
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland Bethesda, Maryland, United States of America
| | - May Christine V. Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
37
|
Marchi G, Busti F, Lira Zidanes A, Castagna A, Girelli D. Aceruloplasminemia: A Severe Neurodegenerative Disorder Deserving an Early Diagnosis. Front Neurosci 2019; 13:325. [PMID: 31024241 PMCID: PMC6460567 DOI: 10.3389/fnins.2019.00325] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/21/2019] [Indexed: 01/01/2023] Open
Abstract
Aceruloplasminemia (ACP) is a rare, adult-onset, autosomal recessive disorder, characterized by systemic iron overload due to mutations in the Ceruloplasmin gene (CP), which in turn lead to absence or strong reduction of CP activity. CP is a ferroxidase that plays a key role in iron export from various cells, especially in the brain, where it maintains the appropriate iron homeostasis with neuroprotective effects. Brain iron accumulation makes ACP unique among systemic iron overload syndromes, e.g., various types of genetic hemochromatosis. The main clinical features of fully expressed ACP include diabetes, retinopathy, liver disease, and progressive neurological symptoms reflecting iron deposition in target organs. However, biochemical signs of the disease, namely a mild anemia mimicking iron deficiency anemia because of microcytosis and low transferrin saturation, but with "paradoxical" hyperferritinemia, usually precedes the onset of clinical symptoms of many years and sometimes decades. Prompt diagnosis and therapy are crucial to prevent neurological complications of the disease, as they are usually irreversible once established. In this mini-review we discuss some major issues about this rare disorder, pointing out the early clues to the right diagnosis, instrumental to reduce significant disability burden of affected patients.
Collapse
Affiliation(s)
- Giacomo Marchi
- Department of Medicine, University of Verona, Verona, Italy
| | - Fabiana Busti
- Department of Medicine, University of Verona, Verona, Italy
| | | | | | | |
Collapse
|
38
|
Looking for a partner: ceruloplasmin in protein-protein interactions. Biometals 2019; 32:195-210. [PMID: 30895493 DOI: 10.1007/s10534-019-00189-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/18/2019] [Indexed: 10/27/2022]
Abstract
Ceruloplasmin (CP) is a mammalian blood plasma ferroxidase. More than 95% of the copper found in plasma is carried by this protein, which is a member of the multicopper oxidase family. Proteins from this group are able to oxidize substrates through the transfer of four electrons to oxygen. The essential role of CP in iron metabolism in humans is particularly evident in the case of loss-of-function mutations in the CP gene resulting in a neurodegenerative syndrome known as aceruloplasminaemia. However, the functions of CP are not limited to the oxidation of ferrous iron to ferric iron, which allows loading of the ferric iron into transferrin and prevents the deleterious reactions of Fenton chemistry. In recent years, a number of novel CP functions have been reported, and many of these functions depend on the ability of CP to form stable complexes with a number of proteins.
Collapse
|
39
|
Esmaeili L, Perez MG, Jafari M, Paquin J, Ispas-Szabo P, Pop V, Andruh M, Byers J, Mateescu MA. Copper complexes for biomedical applications: Structural insights, antioxidant activity and neuron compatibility. J Inorg Biochem 2019; 192:87-97. [DOI: 10.1016/j.jinorgbio.2018.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/26/2022]
|
40
|
Ryan F, Zarruk JG, Lößlein L, David S. Ceruloplasmin Plays a Neuroprotective Role in Cerebral Ischemia. Front Neurosci 2019; 12:988. [PMID: 30670944 PMCID: PMC6331473 DOI: 10.3389/fnins.2018.00988] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Ceruloplasmin (Cp) is a ferroxidase that also plays a role in iron efflux from cells. It can thus help to regulate cellular iron homeostasis. In the CNS, Cp is expressed as a membrane-anchored form by astrocytes. Here, we assessed the role of Cp in permanent middle cerebral artery occlusion (pMCAO) comparing wildtype and Cp null mice. Our studies show that the lesion size is larger and functional recovery impaired in Cp null mice compared to wildtype mice. Expression of Cp increased ninefold at 72 h after pMCAO and remained elevated about twofold at day 14. We also assessed changes in mRNA and protein expression of molecules involved in iron homeostasis. As expected there was a reduction in ferroportin in Cp null mice at 72 h. There was also a remarkable increase in DMT1 protein in both genotypes at 72 h, being much higher in wildtype mice (19.5-fold), that then remained elevated about twofold at 14 days. No difference was seen in transferrin receptor 1 (TfR1) expression, except a small reduction in wildtype mice at 72 h, suggesting that the increase in DMT1 may underlie iron uptake independent of TfR1-endosomal uptake. There was also an increase of ferritin light chain in both genotypes. Iron histochemistry showed increased iron accumulation after pMCAO, initially along the lesion border and later throughout the lesion. Immunofluorescence labeling for ferritin (a surrogate marker for iron) and GFAP or CD11b showed increased ferritin in GFAP+ astrocytes along the lesion border in Cp null mice, while CD11b+ macrophages expressed ferritin equally in both genotypes. Increased lipid peroxidation assessed by 4HNE staining was increased threefold in Cp null mice at 72 h after pMCAO; and 3-nitrotyrosine labeling showed a similar trend. Three key pro-inflammatory cytokines (IL-1β, TNFα, and IL-6) were markedly increased at 24 h after pMCAO equally in both genotypes, and remained elevated at lower levels later, indicating that the lack of Cp does not alter key inflammatory cytokine expression after pMCAO. These data indicate that Cp expression is rapidly upregulated after pMCAO, and loss of Cp results in dysregulation of iron homeostasis, increased oxidative damage, greater lesion size and impaired recovery of function.
Collapse
Affiliation(s)
- Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Juan G Zarruk
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Lena Lößlein
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Samuel David
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
41
|
Quantitation of Glycopeptides by ESI/MS - size of the peptide part strongly affects the relative proportions and allows discovery of new glycan compositions of Ceruloplasmin. Glycoconj J 2019; 36:13-26. [PMID: 30612270 DOI: 10.1007/s10719-018-9852-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
Significant changes of glycan structures are observed in humans if diseases like cancer, arthritis or inflammation are present. Thus, interest in biomarkers based on glycan structures has rapidly emerged in recent years and monitoring disease specific changes of glycosylation and their quantification is of great interest. Mass spectrometry is most commonly used to characterize and quantify glycopeptides and glycans liberated from the glycoprotein of interest. However, ionization properties of glycopeptides can strongly depend on their composition and can therefore lead to intensities that do not reflect the actual proportions present in the intact glycoprotein. Here we show that an increase in the length of the peptide can lead to a more accurate determination and quantification of the glycans. The four glycosylation sites of human serum ceruloplasmin from 17 different individuals were analyzed using glycopeptides of varying peptide lengths, obtained by action of different proteases and by limited digestion. In most cases, highly sialylated compositions showed an increased relative abundance with increasing peptide length. We observed a relative increase of triantennary glycans of up to a factor of three and, even more, MS peaks corresponding to tetraantennary compositions on ceruloplasmin at glycosite 137N in all 17 samples, which we did not detect using a bottom up approach. The data presented here leads to the conclusion that a middle down - or when possible a top down - approach is favorable for qualitative and quantitative analysis of the glycosylation of glycoproteins.
Collapse
|
42
|
Barinov NA, Vlasova II, Sokolov AV, Kostevich VA, Dubrovin EV, Klinov DV. High-resolution atomic force microscopy visualization of metalloproteins and their complexes. Biochim Biophys Acta Gen Subj 2018; 1862:2862-2868. [DOI: 10.1016/j.bbagen.2018.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/17/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022]
|
43
|
Ilyechova EY, Miliukhina IV, Orlov IA, Muruzheva ZM, Puchkova LV, Karpenko MN. A low blood copper concentration is a co-morbidity burden factor in Parkinson’s disease development. Neurosci Res 2018; 135:54-62. [DOI: 10.1016/j.neures.2017.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/15/2017] [Accepted: 11/30/2017] [Indexed: 01/21/2023]
|
44
|
|
45
|
Lauwens S, Costas-Rodríguez M, Delanghe J, Van Vlierberghe H, Vanhaecke F. Quantification and isotopic analysis of bulk and of exchangeable and ultrafiltrable serum copper in healthy and alcoholic cirrhosis subjects. Talanta 2018; 189:332-338. [PMID: 30086927 DOI: 10.1016/j.talanta.2018.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/01/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023]
Abstract
Information on the Cu speciation in blood serum can be valuable for a better understanding of the metabolism of this essential transition metal, but Cu speciation analysis and, to an even larger extent, compound-specific high-precision Cu isotopic analysis are challenging. In this work, quantification and isotopic analysis of Cu were carried out in bulk serum and in both its exchangeable + ultrafiltrable (EXCH + UF) Cu fraction and its non-exchangeable + non-ultrafiltrable (NEXCH + NUF) fraction using quadrupole and multi-collector ICP-mass spectrometry, respectively. The EXCH + UF serum Cu represents the labile Cu pool, i.e. Cu loosely bound to proteins, such as albumin, alpha-2 macroglobulin and other low molecular weight compounds, while the NEXCH + NUF serum Cu contains the Cu firmly bound to ceruloplasmin (Cp). The method was evaluated using human, goat and fetal bovine serum and applied to serum samples from assumed healthy subjects and from patients with alcoholic liver cirrhosis (AC). The healthy subjects showed an isotopic composition of EXCH + UF serum Cu heavier (by on average + 0.4‰) than that of their total serum Cu. In general, patients with AC showed higher EXCH + UF serum Cu concentrations and significantly lower δ65CuEXCH+UF and δ65Cuserum values than did healthy subjects. Within the AC population, δ65CuEXCH+UF values were comparable to or lower than the corresponding δ65Cuserum values, potentially reflecting the extent of labile Cu deregulation. As to be expected, the NEXCH + NUF serum Cu isotopic composition was similar to that of the total serum Cu, as most of the serum Cu is firmly bound to Cp.
Collapse
Affiliation(s)
- Sara Lauwens
- Ghent University, Department of Chemistry, Atomic and Mass Spectrometry (A&MS) Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000 Ghent, Belgium
| | - Marta Costas-Rodríguez
- Ghent University, Department of Chemistry, Atomic and Mass Spectrometry (A&MS) Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000 Ghent, Belgium
| | - Joris Delanghe
- Ghent University, Department of Clinical Chemistry, Microbiology and Immunology, Campus UZ Gent, De Pintelaan 185-P8, 9000 Ghent, Belgium
| | - Hans Van Vlierberghe
- Ghent University Hospital, Department of Gastroenterology and Hepatology, Campus UZ Gent, De Pintelaan 185-1K12IE, 9000 Ghent, Belgium
| | - Frank Vanhaecke
- Ghent University, Department of Chemistry, Atomic and Mass Spectrometry (A&MS) Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000 Ghent, Belgium.
| |
Collapse
|
46
|
Karpenko MN, Ilyicheva EY, Muruzheva ZM, Milyukhina IV, Orlov YA, Puchkova LV. Role of Copper Dyshomeostasis in the Pathogenesis of Parkinson's Disease. Bull Exp Biol Med 2018; 164:596-600. [PMID: 29577200 DOI: 10.1007/s10517-018-4039-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 12/21/2022]
Abstract
Serum concentration of copper, immunoreactive polypeptides of ceruloplasmin and its oxidase activity, and the number of copper atoms per ceruloplasmin molecule were decreased in patients with Parkinson's disease in comparison with the corresponding parameters in age-matched healthy individuals, but the ratio of apoceruloplasmin to holoceruloplasmin in patients with Parkinson's disease was similar in both groups. Treatment of blood serum with Helex 100, a high-affinity copper chelator, revealed reduced content of labile copper atoms per ceruloplasmin molecule in patients with Parkinson's disease in comparison with that in healthy controls. The mechanism underlying impaired metabolic incorporation of labile copper atoms into CP molecule is discussed as a possible cause of copper dyshomeostasis associated with Parkinson's disease.
Collapse
Affiliation(s)
- M N Karpenko
- Institute of Experimental Medicine, St. Petersburg, Russia.,St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO University), St. Petersburg, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - E Yu Ilyicheva
- Institute of Experimental Medicine, St. Petersburg, Russia. .,St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO University), St. Petersburg, Russia.
| | - Z M Muruzheva
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - I V Milyukhina
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - Yu A Orlov
- St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO University), St. Petersburg, Russia
| | - L V Puchkova
- Institute of Experimental Medicine, St. Petersburg, Russia.,St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO University), St. Petersburg, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
47
|
Wang J, Li JN, Cui Z, Zhao MH. Deglycosylation influences the oxidation activity and antigenicity of myeloperoxidase. Nephrology (Carlton) 2017; 23:46-52. [DOI: 10.1111/nep.12926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Jia Wang
- Renal Division, Department of Medicine; Institute of Nephrology, Peking University; Beijing China
| | - Jian-nan Li
- Renal Division, Department of Medicine; Institute of Nephrology, Peking University; Beijing China
| | - Zhao Cui
- Renal Division, Department of Medicine; Institute of Nephrology, Peking University; Beijing China
| | - Ming-hui Zhao
- Renal Division, Department of Medicine; Institute of Nephrology, Peking University; Beijing China
- Peking-Tsinghua Center for Life Sciences; Beijing China
| |
Collapse
|
48
|
Samygina VR, Sokolov AV, Bourenkov G, Schneider TR, Anashkin VA, Kozlov SO, Kolmakov NN, Vasilyev VB. Rat ceruloplasmin: a new labile copper binding site and zinc/copper mosaic. Metallomics 2017; 9:1828-1838. [PMID: 29177316 DOI: 10.1039/c7mt00157f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ceruloplasmin (Cp) is a copper-containing multifunctional oxidase of plasma, an antioxidant, an acute-phase protein and a free radical scavenger. The structural organization of Cp causes its sensitivity to proteolysis and ROS (reactive oxygen species), which can alter some of the important Cp functions. Elucidation of the orthorhombic crystal structure of rat Cp at 2.3 Å resolution revealed the basis for stronger resistance of rat Cp to proteolysis and a new labile copper binding site. The presence of this site appears as a very rare and distinctive feature of rat Cp as was shown by sequence alignment of ceruloplasmin, hephaestin and zyklopen in the Deuterostomia taxonomic group. The trigonal crystal form of rat Cp at 3.2 Å demonstrates unexpected partial substitution of copper by zinc.
Collapse
Affiliation(s)
- V R Samygina
- Shubnikov Institute of Crystallography of FSRC "Crystallography and Photonics" RAS, Leninsky pr.59, Moscow 117333, Russia. and NRC Kurchatov Institute, Kurchatov pl. 1, Moscow 123098, Russia
| | - A V Sokolov
- Institute of Experimental Medicine, ul. Academica Pavlova, 12, Saint-Petersburg 197376, Russia and Saint-Petersburg State Universisty, Universitetskaya nab. 7-9, Saint-Petersburg 199034, Russia and Centre of Preclinical Translational Research, Almazov National Medical Research Centre, ul. Dolgoozernaya, 43, Saint-Petersburg 197371, Russia
| | - G Bourenkov
- EMBL, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - V A Anashkin
- Shubnikov Institute of Crystallography of FSRC "Crystallography and Photonics" RAS, Leninsky pr.59, Moscow 117333, Russia. and Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow 119899, Russia
| | - S O Kozlov
- Institute of Experimental Medicine, ul. Academica Pavlova, 12, Saint-Petersburg 197376, Russia
| | - N N Kolmakov
- Institute of Experimental Medicine, ul. Academica Pavlova, 12, Saint-Petersburg 197376, Russia
| | - V B Vasilyev
- Institute of Experimental Medicine, ul. Academica Pavlova, 12, Saint-Petersburg 197376, Russia and Saint-Petersburg State Universisty, Universitetskaya nab. 7-9, Saint-Petersburg 199034, Russia
| |
Collapse
|
49
|
Mukhopadhyay BP. Recognition dynamics of trinuclear copper cluster and associated histidine residues through conserved or semi-conserved water molecules in human Ceruloplasmin: The involvement of aspartic and glutamic acid gates. J Biomol Struct Dyn 2017; 36:3829-3842. [PMID: 29148316 DOI: 10.1080/07391102.2017.1401003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human Ceruloplasmin belongs to the family of multi-copper oxidases and it is involved in different physiological processes, copper ion transport, iron metabolism, iron homeostasis, and biogenic amine metabolism. MD-simulation studies have indicated the higher hydrophilic susceptibility of the trinuclear copper cluster in native CP compared to its oxygen bound form. The copper (T2/T3) atom Cu3047 of the cluster, which is close to T1 copper center Cu3052 (~13 Å) has a higher affinity for water molecules compared to other copper centers. The water molecules of W3, W4, W5, W9, and W12 conserved water sites are coordinated to Cu3047, where W3, W9, and W12 centers are found to play some crucial role in the stabilization of native trinuclear copper cluster. The hydrogen bonding interaction of Asp169, Glu112, Asp995, and Glu1032 residues with the copper-bound conserved water molecules (W3, W4, W5, W10, and W11) in native CP is observed to be unique. The conformational flexibility of Asp169 and Glu112 and their association with the copper-bound water molecules, but the absence of such interaction in O2-bound simulated structure of the enzyme is indicating some plausible rational on the role of these acidic residues in the gating of O2 molecule in the native trinuclear Cu cluster of CP. The simulation results may shade some new light on the biochemistry/chemistry of CP, specially on the hydration dynamics of the trinuclear copper cluster.
Collapse
|
50
|
Krzyminiewski R, Dobosz B, Kubiak T. The influence of radiotherapy on ceruloplasmin and transferrin in whole blood of breast cancer patients. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:345-352. [PMID: 28849262 PMCID: PMC5655575 DOI: 10.1007/s00411-017-0708-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/21/2017] [Indexed: 05/13/2023]
Abstract
Ceruloplasmin and transferrin are proteins which play a potential role in the process of breast cancer development. These molecules contain Cu2+ (ceruloplasmin) or Fe3+ ions (transferrin) and thus constitute paramagnetic centers, which can be studied using electron paramagnetic resonance method. The aim of the study was to determine how paramagnetic centers in whole blood of breast cancer patients change under the influence of radiation therapy. Samples of whole blood were taken from 17 women with breast cancer treated with radiotherapy. The measurements were carried out at 170 K using X-band electron paramagnetic resonance (EPR) spectrometer Bruker EMX-10. Two distinct EPR lines, derived from high-spin Fe3+ in transferrin and Cu2+ from ceruloplasmin, were revealed in all frozen samples. The amplitude and integrated intensity of the EPR signal from Cu2+ in ceruloplasmin significantly decreased in all patients after the delivery of the radiation fraction. When comparing the integral intensity of the signal from Fe3+ in transferrin, three different situations were identified which are patient specific: a significant increase, an insignificant change, or a significant decrease after the irradiation. A decreased level of Cu2+ from ceruloplasmin in patients after radiotherapy means a low level of ceruloplasmin in the plasma or an increased content of reduced Cu+ ions. Differences in the integrated intensity of the EPR signal from transferrin translate directly into the amount of bound iron. The observed changes could indicate how well the organism fights against cancer and how easily it adapts to the situation of biochemical stress.
Collapse
Affiliation(s)
- Ryszard Krzyminiewski
- Medical Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznań, Poland
| | - Bernadeta Dobosz
- Medical Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznań, Poland.
| | - Tomasz Kubiak
- Medical Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznań, Poland
| |
Collapse
|