1
|
Glover H, Saßmannshausen T, Bertrand Q, Trabuco M, Slavov C, Bacchin A, Andres F, Kondo Y, Stipp R, Wranik M, Khusainov G, Carrillo M, Kekilli D, Nan J, Gonzalez A, Cheng R, Neidhart W, Weinert T, Leonarski F, Dworkowski F, Kepa M, Wachtveitl J, Hennig M, Standfuss J. Photoswitch dissociation from a G protein-coupled receptor resolved by time-resolved serial crystallography. Nat Commun 2024; 15:10837. [PMID: 39738009 DOI: 10.1038/s41467-024-55109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans. The binding and dissociation of ligands tunes the inherent conformational flexibility of these important drug targets towards distinct functional states. Here we show how to trigger and resolve protein-ligand interaction dynamics within the human adenosine A2A receptor. For this, we designed seven photochemical affinity switches derived from the anti-Parkinson's drug istradefylline. In a rational approach based on UV/Vis spectroscopy, time-resolved absorption spectroscopy, differential scanning fluorimetry and cryo-crystallography, we identified compounds suitable for time-resolved serial crystallography. Our analysis of millisecond-scale dynamics revealed how trans-to-cis isomerization shifts selected istradefylline derivatives within the binding pocket. Depending on the chemical nature of the ligand, interactions between extracellular loops 2 and 3, acting as a lid on the binding pocket, are disrupted and rearrangement of the orthosteric binding pocket is invoked upon ligand dissociation. This innovative approach provides insights into GPCR dynamics at the atomic level, offering potential for developing novel pharmaceuticals.
Collapse
Affiliation(s)
- Hannah Glover
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Torben Saßmannshausen
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
| | | | | | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
- Department of Chemistry, University of South Florida, Tampa, USA
| | | | - Fabio Andres
- leadXpro AG, Park Innovaare, Villigen PSI, Switzerland
| | - Yasushi Kondo
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Robin Stipp
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | | | | | | | - Demet Kekilli
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Jie Nan
- MaxIV Laboratory, Lund University, Lund, Sweden
| | | | - Robert Cheng
- leadXpro AG, Park Innovaare, Villigen PSI, Switzerland
| | | | | | | | | | - Michal Kepa
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
| | | | | |
Collapse
|
2
|
Rodrigues MJ, Cabry M, Collie G, Carter M, McAndrew C, Owen RL, Bellenie BR, Le Bihan YV, van Montfort RLM. Specific radiation damage to halogenated inhibitors and ligands in protein-ligand crystal structures. J Appl Crystallogr 2024; 57:1951-1965. [PMID: 39628887 PMCID: PMC11611281 DOI: 10.1107/s1600576724010549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
Protein-inhibitor crystal structures aid medicinal chemists in efficiently improving the potency and selectivity of small-molecule inhibitors. It is estimated that a quarter of lead molecules in drug discovery projects are halogenated. Protein-inhibitor crystal structures have shed light on the role of halogen atoms in ligand binding. They form halogen bonds with protein atoms and improve shape complementarity of inhibitors with protein binding sites. However, specific radiation damage (SRD) can cause cleavage of carbon-halogen (C-X) bonds during X-ray diffraction data collection. This study shows significant C-X bond cleavage in protein-ligand structures of the therapeutic cancer targets B-cell lymphoma 6 (BCL6) and heat shock protein 72 (HSP72) complexed with halogenated ligands, which is dependent on the type of halogen and chemical structure of the ligand. The study found that metrics used to evaluate the fit of the ligand to the electron density deteriorated with increasing X-ray dose, and that SRD eliminated the anomalous signal from brominated ligands. A point of diminishing returns is identified, where collecting highly redundant data reduces the anomalous signal that may be used to identify binding sites of low-affinity ligands or for experimental phasing. Straightforward steps are proposed to mitigate the effects of C-X bond cleavage on structures of proteins bound to halogenated ligands and to improve the success of anomalous scattering experiments.
Collapse
Affiliation(s)
- Matthew J. Rodrigues
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
- Division of Structural BiologyThe Institute of Cancer ResearchLondonSW3 6JBUnited Kingdom
| | - Marc Cabry
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
- Division of Structural BiologyThe Institute of Cancer ResearchLondonSW3 6JBUnited Kingdom
| | - Gavin Collie
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
- Division of Structural BiologyThe Institute of Cancer ResearchLondonSW3 6JBUnited Kingdom
| | - Michael Carter
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
| | - Craig McAndrew
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
| | - Robin L. Owen
- Diamond Light Source Harwell Science and Innovation Campus DidcotOX11 0DEUnited Kingdom
| | - Benjamin R. Bellenie
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
| | - Yann-Vaï Le Bihan
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
- Division of Structural BiologyThe Institute of Cancer ResearchLondonSW3 6JBUnited Kingdom
| | - Rob L. M. van Montfort
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
- Division of Structural BiologyThe Institute of Cancer ResearchLondonSW3 6JBUnited Kingdom
| |
Collapse
|
3
|
Tušar L, Loboda J, Impens F, Sosnowski P, Van Quickelberghe E, Vidmar R, Demol H, Sedeyn K, Saelens X, Vizovišek M, Mihelič M, Fonović M, Horvat J, Kosec G, Turk B, Gevaert K, Turk D. Proteomic data and structure analysis combined reveal interplay of structural rigidity and flexibility on selectivity of cysteine cathepsins. Commun Biol 2023; 6:450. [PMID: 37095140 PMCID: PMC10124925 DOI: 10.1038/s42003-023-04772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
Addressing the elusive specificity of cysteine cathepsins, which in contrast to caspases and trypsin-like proteases lack strict specificity determining P1 pocket, calls for innovative approaches. Proteomic analysis of cell lysates with human cathepsins K, V, B, L, S, and F identified 30,000 cleavage sites, which we analyzed by software platform SAPS-ESI (Statistical Approach to Peptidyl Substrate-Enzyme Specific Interactions). SAPS-ESI is used to generate clusters and training sets for support vector machine learning. Cleavage site predictions on the SARS-CoV-2 S protein, confirmed experimentally, expose the most probable first cut under physiological conditions and suggested furin-like behavior of cathepsins. Crystal structure analysis of representative peptides in complex with cathepsin V reveals rigid and flexible sites consistent with analysis of proteomics data by SAPS-ESI that correspond to positions with heterogeneous and homogeneous distribution of residues. Thereby support for design of selective cleavable linkers of drug conjugates and drug discovery studies is provided.
Collapse
Affiliation(s)
- Livija Tušar
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000, Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Jure Loboda
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000, Ljubljana, Slovenia
- The Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology and UGent Department of Biomolecular Medicine, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
| | - Piotr Sosnowski
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Emmy Van Quickelberghe
- VIB-UGent Center for Medical Biotechnology and UGent Department of Biomolecular Medicine, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
| | - Robert Vidmar
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Hans Demol
- VIB-UGent Center for Medical Biotechnology and UGent Department of Biomolecular Medicine, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
| | - Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology and, Department for Biochemistry and Microbiology, Ghent University, 9052, Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology and, Department for Biochemistry and Microbiology, Ghent University, 9052, Ghent, Belgium
| | - Matej Vizovišek
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Marko Mihelič
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Marko Fonović
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Jaka Horvat
- Acies Bio d.o.o., Tehnološki park 21, 1000, Ljubljana, Slovenia
| | - Gregor Kosec
- Acies Bio d.o.o., Tehnološki park 21, 1000, Ljubljana, Slovenia
| | - Boris Turk
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000, Ljubljana, Slovenia
- Faculty of Chemistry, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology and UGent Department of Biomolecular Medicine, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium.
| | - Dušan Turk
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000, Ljubljana, Slovenia.
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Mun SA, Park J, Kang JY, Park T, Jin M, Yang J, Eom SH. Structural and biochemical insights into Zn 2+-bound EF-hand proteins, EFhd1 and EFhd2. IUCRJ 2023; 10:233-245. [PMID: 36862489 PMCID: PMC9980392 DOI: 10.1107/s2052252523001501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
EF-hand proteins, which contain a Ca2+-binding EF-hand motif, are involved in regulating diverse cellular functions. Ca2+ binding induces conformational changes that modulate the activities of EF-hand proteins. Moreover, these proteins occasionally modify their activities by coordinating metals other than Ca2+, including Mg2+, Pb2+ and Zn2+, within their EF-hands. EFhd1 and EFhd2 are homologous EF-hand proteins with similar structures. Although separately localized within cells, both are actin-binding proteins that modulate F-actin rearrangement through Ca2+-independent actin-binding and Ca2+-dependent actin-bundling activity. Although Ca2+ is known to affect the activities of EFhd1 and EFhd2, it is not known whether their actin-related activities are affected by other metals. Here, the crystal structures of the EFhd1 and EFhd2 core domains coordinating Zn2+ ions within their EF-hands are reported. The presence of Zn2+ within EFhd1 and EFhd2 was confirmed by analyzing anomalous signals and the difference between anomalous signals using data collected at the peak positions as well as low-energy remote positions at the Zn K-edge. EFhd1 and EFhd2 were also found to exhibit Zn2+-independent actin-binding and Zn2+-dependent actin-bundling activity. This suggests the actin-related activities of EFhd1 and EFhd2 could be regulated by Zn2+ as well as Ca2+.
Collapse
Affiliation(s)
- Sang A Mun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jongseo Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jung Youn Kang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Taein Park
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Minwoo Jin
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jihyeong Yang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Soo Hyun Eom
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
5
|
Lugmayr W, Kotov V, Goessweiner-Mohr N, Wald J, DiMaio F, Marlovits TC. StarMap: a user-friendly workflow for Rosetta-driven molecular structure refinement. Nat Protoc 2023; 18:239-264. [PMID: 36323866 DOI: 10.1038/s41596-022-00757-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/08/2022] [Indexed: 01/13/2023]
Abstract
Cryogenic electron microscopy (cryo-EM) data represent density maps of macromolecular systems at atomic or near-atomic resolution. However, building and refining 3D atomic models by using data from cryo-EM maps is not straightforward and requires significant hands-on experience and manual intervention. We recently developed StarMap, an easy-to-use interface between the popular structural display program ChimeraX and Rosetta, a powerful molecular modeling engine. StarMap offers a general approach for refining structural models of biological macromolecules into cryo-EM density maps by combining Monte Carlo sampling with local density-guided optimization, Rosetta-based all-atom refinement and real-space B-factor calculations in a straightforward workflow. StarMap includes options for structural symmetry, local refinements and independent model validation. The overall quality of the refinement and the structure resolution is then assessed via analytical outputs, such as magnification calibration (pixel size calibration) and Fourier shell correlations. Z-scores reported by StarMap provide an easily interpretable indicator of the goodness of fit for each residue and can be plotted to evaluate structural models and improve local residue refinements, as well as to identify flexible regions and potentially functional sites in large macromolecular complexes. The protocol requires general computer skills, without the need for coding expertise, because most parts of the workflow can be operated by clicking tabs within the ChimeraX graphical user interface. Time requirements for the model refinement depend on the size and quality of the input data; however, this step can typically be completed within 1 d. The analytical parts of the workflow are completed within minutes.
Collapse
Affiliation(s)
- Wolfgang Lugmayr
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany.,CSSB Centre for Structural Systems Biology, Hamburg, Germany.,Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.,Research Institute of Molecular Pathology (IMP), Vienna, Austria.,Institute for Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna, Austria
| | - Vadim Kotov
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany.,CSSB Centre for Structural Systems Biology, Hamburg, Germany.,Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.,Research Institute of Molecular Pathology (IMP), Vienna, Austria.,Institute for Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna, Austria.,Evotec SE, Hamburg, Germany
| | - Nikolaus Goessweiner-Mohr
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany.,CSSB Centre for Structural Systems Biology, Hamburg, Germany.,Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.,Research Institute of Molecular Pathology (IMP), Vienna, Austria.,Institute for Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna, Austria.,Johannes Kepler University, Institute of Biophysics, Linz, Austria
| | - Jiri Wald
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany.,CSSB Centre for Structural Systems Biology, Hamburg, Germany.,Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.,Research Institute of Molecular Pathology (IMP), Vienna, Austria.,Institute for Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna, Austria
| | - Frank DiMaio
- University of Washington, Department of Biochemistry, Seattle, WA, USA
| | - Thomas C Marlovits
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany. .,CSSB Centre for Structural Systems Biology, Hamburg, Germany. .,Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany. .,Research Institute of Molecular Pathology (IMP), Vienna, Austria. .,Institute for Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
6
|
Pearce NM, Skyner R, Krojer T. Experiences From Developing Software for Large X-Ray Crystallography-Driven Protein-Ligand Studies. Front Mol Biosci 2022; 9:861491. [PMID: 35480897 PMCID: PMC9035521 DOI: 10.3389/fmolb.2022.861491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The throughput of macromolecular X-ray crystallography experiments has surged over the last decade. This remarkable gain in efficiency has been facilitated by increases in the availability of high-intensity X-ray beams, (ultra)fast detectors and high degrees of automation. These developments have in turn spurred the development of several dedicated centers for crystal-based fragment screening which enable the preparation and collection of hundreds of single-crystal diffraction datasets per day. Crystal structures of target proteins in complex with small-molecule ligands are of immense importance for structure-based drug design (SBDD) and their rapid turnover is a prerequisite for accelerated development cycles. While the experimental part of the process is well defined and has by now been established at several synchrotron sites, it is noticeable that software and algorithmic aspects have received far less attention, as well as the implications of new methodologies on established paradigms for structure determination, analysis, and visualization. We will review three key areas of development of large-scale protein-ligand studies. First, we will look into new software developments for batch data processing, followed by a discussion of the methodological changes in the analysis, modeling, refinement and deposition of structures for SBDD, and the changes in mindset that these new methods require, both on the side of depositors and users of macromolecular models. Finally, we will highlight key new developments for the presentation and analysis of the collections of structures that these experiments produce, and provide an outlook for future developments.
Collapse
Affiliation(s)
- Nicholas M. Pearce
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, Netherlands
| | - Rachael Skyner
- OMass Therapeutics, The Oxford Science Park, Oxford, United Kingdom
| | | |
Collapse
|
7
|
Borges RJ, Salvador GHM, Pimenta DC, Dos Santos LD, Fontes MRM, Usón I. SEQUENCE SLIDER: integration of structural and genetic data to characterize isoforms from natural sources. Nucleic Acids Res 2022; 50:e50. [PMID: 35104880 PMCID: PMC9122596 DOI: 10.1093/nar/gkac029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/05/2022] [Accepted: 01/30/2022] [Indexed: 12/28/2022] Open
Abstract
Proteins isolated from natural sources can be composed of a mixture of isoforms with similar physicochemical properties that coexist in the final steps of purification. Yet, even where unverified, the assumed sequence is enforced throughout the structural studies. Herein, we propose a novel perspective to address the usually neglected sequence heterogeneity of natural products by integrating biophysical, genetic and structural data in our program SEQUENCE SLIDER. The aim is to assess the evidence supporting chemical composition in structure determination. Locally, we interrogate the experimental map to establish which side chains are supported by the structural data, and the genetic information relating sequence conservation is integrated into this statistic. Hence, we build a constrained peptide database, containing most probable sequences to interpret mass spectrometry data (MS). In parallel, we perform MS de novo sequencing with genomic-based algorithms to detect point mutations. We calibrated SLIDER with Gallus gallus lysozyme, whose sequence is unequivocally established and numerous natural isoforms are reported. We used SLIDER to characterize a metalloproteinase and a phospholipase A2-like protein from the venom of Bothrops moojeni and a crotoxin from Crotalus durissus collilineatus. This integrated approach offers a more realistic structural descriptor to characterize macromolecules isolated from natural sources.
Collapse
Affiliation(s)
- Rafael J Borges
- Departament of Biophysics and Pharmacology, Biosciences Institute, São Paulo State University (UNESP), Botucatu, São Paulo 18618-689, Brazil.,Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Guilherme H M Salvador
- Departament of Biophysics and Pharmacology, Biosciences Institute, São Paulo State University (UNESP), Botucatu, São Paulo 18618-689, Brazil
| | - Daniel C Pimenta
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, São Paulo 05503-900, Brazil
| | - Lucilene D Dos Santos
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, São Paulo 18618-687, Brazil.,Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu, São Paulo 18607-440, Brazil
| | - Marcos R M Fontes
- Departament of Biophysics and Pharmacology, Biosciences Institute, São Paulo State University (UNESP), Botucatu, São Paulo 18618-689, Brazil
| | - Isabel Usón
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona 08028, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
8
|
Vant JW, Lahey SLJ, Jana K, Shekhar M, Sarkar D, Munk BH, Kleinekathöfer U, Mittal S, Rowley C, Singharoy A. Flexible Fitting of Small Molecules into Electron Microscopy Maps Using Molecular Dynamics Simulations with Neural Network Potentials. J Chem Inf Model 2020; 60:2591-2604. [PMID: 32207947 PMCID: PMC7311632 DOI: 10.1021/acs.jcim.9b01167] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Despite significant advances in resolution, the potential for cryo-electron microscopy (EM) to be used in determining the structures of protein-drug complexes remains unrealized. Determination of accurate structures and coordination of bound ligands necessitates simultaneous fitting of the models into the density envelopes, exhaustive sampling of the ligand geometries, and, most importantly, concomitant rearrangements in the side chains to optimize the binding energy changes. In this article, we present a flexible-fitting pipeline where molecular dynamics flexible fitting (MDFF) is used to refine structures of protein-ligand complexes from 3 to 5 Å electron density data. Enhanced sampling is employed to explore the binding pocket rearrangements. To provide a model that can accurately describe the conformational dynamics of the chemically diverse set of small-molecule drugs inside MDFF, we use QM/MM and neural-network potential (NNP)/MM models of protein-ligand complexes, where the ligand is represented using the QM or NNP model, and the protein is represented using established molecular mechanical force fields (e.g., CHARMM). This pipeline offers structures commensurate to or better than recently submitted high-resolution cryo-EM or X-ray models, even when given medium to low-resolution data as input. The use of the NNPs makes the algorithm more robust to the choice of search models, offering a radius of convergence of 6.5 Å for ligand structure determination. The quality of the predicted structures was also judged by density functional theory calculations of ligand strain energy. This strain potential energy is found to systematically decrease with better fitting to density and improved ligand coordination, indicating correct binding interactions. A computationally inexpensive protocol for computing strain energy is reported as part of the model analysis protocol that monitors both the ligand fit as well as model quality.
Collapse
Affiliation(s)
- John W. Vant
- School of Molecular Sciences, Arizona State University, Tempe, USA
| | - Shae-Lynn J. Lahey
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Kalyanashis Jana
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - Mrinal Shekhar
- School of Molecular Sciences, Arizona State University, Tempe, USA
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, USA
| | - Daipayan Sarkar
- School of Molecular Sciences, Arizona State University, Tempe, USA
| | - Barbara H. Munk
- School of Molecular Sciences, Arizona State University, Tempe, USA
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - Sumit Mittal
- School of Molecular Sciences, Arizona State University, Tempe, USA
- School of Advanced Sciences and Languages, VIT Bhopal University, Bhopal, India
| | - Christopher Rowley
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | |
Collapse
|
9
|
Pražnikar J, Tomić M, Turk D. Validation and quality assessment of macromolecular structures using complex network analysis. Sci Rep 2019; 9:1678. [PMID: 30737447 PMCID: PMC6368557 DOI: 10.1038/s41598-019-38658-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
Validation of three-dimensional structures is at the core of structural determination methods. The local validation criteria, such as deviations from ideal bond length and bonding angles, Ramachandran plot outliers and clashing contacts, are a standard part of structure analysis before structure deposition, whereas the global and regional packing may not yet have been addressed. In the last two decades, three-dimensional models of macromolecules such as proteins have been successfully described by a network of nodes and edges. Amino acid residues as nodes and close contact between the residues as edges have been used to explore basic network properties, to study protein folding and stability and to predict catalytic sites. Using complex network analysis, we introduced common network parameters to distinguish between correct and incorrect three-dimensional protein structures. The analysis showed that correct structures have a higher average node degree, higher graph energy, and lower shortest path length than their incorrect counterparts. Thus, correct protein models are more densely intra-connected, and in turn, the transfer of information between nodes/amino acids is more efficient. Moreover, protein graph spectra were used to investigate model bias in protein structure.
Collapse
Affiliation(s)
- Jure Pražnikar
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, Koper, Slovenia.
- Department of Biochemistry, Molecular and Structural Biology, Institute Jožef Stefan, Jamova 39, Ljubljana, Slovenia.
| | - Miloš Tomić
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, Koper, Slovenia
| | - Dušan Turk
- Department of Biochemistry, Molecular and Structural Biology, Institute Jožef Stefan, Jamova 39, Ljubljana, Slovenia
- Center of excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, Ljubljana, Slovenia
| |
Collapse
|
10
|
The cysteine-reactive small molecule ebselen facilitates effective SOD1 maturation. Nat Commun 2018; 9:1693. [PMID: 29703933 PMCID: PMC5923229 DOI: 10.1038/s41467-018-04114-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/04/2018] [Indexed: 11/20/2022] Open
Abstract
Superoxide dismutase-1 (SOD1) mutants, including those with unaltered enzymatic activity, are known to cause amyotrophic lateral sclerosis (ALS). Several destabilizing factors contribute to pathogenicity including a reduced ability to complete the normal maturation process which comprises folding, metal cofactor acquisition, intra-subunit disulphide bond formation and dimerization. Immature SOD1 forms toxic oligomers and characteristic large insoluble aggregates within motor system cells. Here we report that the cysteine-reactive molecule ebselen efficiently confers the SOD1 intra-subunit disulphide and directs correct SOD1 folding, depopulating the globally unfolded precursor associated with aggregation and toxicity. Assisted formation of the unusual SOD1 cytosolic disulphide bond could have potential therapeutic applications. In less reducing environments, ebselen forms a selenylsulphide with Cys111 and restores the monomer–dimer equilibrium of A4V SOD1 to wild-type. Ebselen is therefore a potent bifunctional pharmacological chaperone for SOD1 that combines properties of the SOD1 chaperone hCCS and the recently licenced antioxidant drug, edaravone. Mutations in superoxide dismutase-1 (SOD1) cause amyotrophic lateral sclerosis (ALS). Here the authors present the SOD1 crystal structure bound to the small cysteine-reactive molecule ebselen and show that ebselen is a chaperone for SOD1.
Collapse
|
11
|
Porebski PJ, Sroka P, Zheng H, Cooper DR, Minor W. Molstack-Interactive visualization tool for presentation, interpretation, and validation of macromolecules and electron density maps. Protein Sci 2017; 27:86-94. [PMID: 28815771 DOI: 10.1002/pro.3272] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 11/07/2022]
Abstract
Our understanding of the world of biomolecular structures is based upon the interpretation of macromolecular models, of which ∼90% are an interpretation of electron density maps. This structural information guides scientific progress and exploration in many biomedical disciplines. The Protein Data Bank's web portals have made these structures available for mass scientific consumption and greatly broaden the scope of information presented in scientific publications. The portals provide numerous quality metrics; however, the portion of the structure that is most vital for interpretation of the function may have the most difficult to interpret electron density and this ambiguity is not reflected by any single metric. The possible consequences of basing research on suboptimal models make it imperative to inspect the agreement of a model with its experimental evidence. Molstack, a web-based interactive publishing platform for structural data, allows users to present density maps and structural models by displaying a collection of maps and models, including different interpretation of one's own data, re-refinements, and corrections of existing structures. Molstack organizes the sharing and dissemination of these structural models along with their experimental evidence as an interactive session. Molstack was designed with three groups of users in mind; researchers can present the evidence of their interpretation, reviewers and readers can independently judge the experimental evidence of the authors' conclusions, and other researchers can present or even publish their new hypotheses in the context of prior results. The server is available at http://molstack.bioreproducibility.org.
Collapse
Affiliation(s)
- Przemyslaw J Porebski
- Department of Biological Physics & Molecular Physiology, University of Virginia, Charlottesville, Virginia
| | - Piotr Sroka
- Department of Biological Physics & Molecular Physiology, University of Virginia, Charlottesville, Virginia
| | - Heping Zheng
- Department of Biological Physics & Molecular Physiology, University of Virginia, Charlottesville, Virginia
| | - David R Cooper
- Department of Biological Physics & Molecular Physiology, University of Virginia, Charlottesville, Virginia
| | - Wladek Minor
- Department of Biological Physics & Molecular Physiology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
12
|
Mihelič M, Vlahoviček-Kahlina K, Renko M, Mesnage S, Doberšek A, Taler-Verčič A, Jakas A, Turk D. The mechanism behind the selection of two different cleavage sites in NAG-NAM polymers. IUCRJ 2017; 4:185-198. [PMID: 28250957 PMCID: PMC5330529 DOI: 10.1107/s2052252517000367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Peptidoglycan is a giant molecule that forms the cell wall that surrounds bacterial cells. It is composed of alternating N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) residues connected by β-(1,4)-glycosidic bonds and cross-linked with short polypeptide chains. Owing to the increasing antibiotic resistance against drugs targeting peptidoglycan synthesis, studies of enzymes involved in the degradation of peptidoglycan, such as N-acetylglucos-aminidases, may expose new, valuable drug targets. The scientific challenge addressed here is how lysozymes, muramidases which are likely to be the most studied enzymes ever, and bacterial N-acetylglucosaminidases discriminate between two glycosidic bonds that are different in sequence yet chemically equivalent in the same NAG-NAM polymers. In spite of more than fifty years of structural studies of lysozyme, it is still not known how the enzyme selects the bond to be cleaved. Using macromolecular crystallography, chemical synthesis and molecular modelling, this study explains how these two groups of enzymes based on an equivalent structural core exhibit a difference in selectivity. The crystal structures of Staphylococcus aureusN-acetylglucosaminidase autolysin E (AtlE) alone and in complex with fragments of peptidoglycan revealed that N-acetylglucosaminidases and muramidases approach the substrate at alternate glycosidic bond positions from opposite sides. The recognition pocket for NAM residues in the active site of N-acetylglucosaminidases may make them a suitable drug target.
Collapse
Affiliation(s)
- Marko Mihelič
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | | | - Miha Renko
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Stephane Mesnage
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, England
| | - Andreja Doberšek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Ajda Taler-Verčič
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Andreja Jakas
- Division of Organic Chemistry, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Dušan Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Vitvitsky V, Yadav PK, An S, Seravalli J, Cho US, Banerjee R. Structural and Mechanistic Insights into Hemoglobin-catalyzed Hydrogen Sulfide Oxidation and the Fate of Polysulfide Products. J Biol Chem 2017; 292:5584-5592. [PMID: 28213526 DOI: 10.1074/jbc.m117.774943] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/15/2017] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide is a cardioprotective signaling molecule but is toxic at elevated concentrations. Red blood cells can synthesize H2S but, lacking organelles, cannot dispose of H2S via the mitochondrial sulfide oxidation pathway. We have recently shown that at high sulfide concentrations, ferric hemoglobin oxidizes H2S to a mixture of thiosulfate and iron-bound polysulfides in which the latter species predominates. Here, we report the crystal structure of human hemoglobin containing low spin ferric sulfide, the first intermediate in heme-catalyzed sulfide oxidation. The structure provides molecular insights into why sulfide is susceptible to oxidation in human hemoglobin but is stabilized against it in HbI, a specialized sulfide-carrying hemoglobin from a mollusk adapted to life in a sulfide-rich environment. We have also captured a second sulfide bound at a postulated ligand entry/exit site in the α-subunit of hemoglobin, which, to the best of our knowledge, represents the first direct evidence for this site being used to access the heme iron. Hydrodisulfide, a postulated intermediate at the junction between thiosulfate and polysulfide formation, coordinates ferric hemoglobin and, in the presence of air, generated thiosulfate. At low sulfide/heme iron ratios, the product distribution between thiosulfate and iron-bound polysulfides was approximately equal. The iron-bound polysulfides were unstable at physiological glutathione concentrations and were reduced with concomitant formation of glutathione persulfide, glutathione disulfide, and H2S. Hence, although polysulfides are unlikely to be stable in the reducing intracellular milieu, glutathione persulfide could serve as a persulfide donor for protein persulfidation, a posttranslational modification by which H2S is postulated to signal.
Collapse
Affiliation(s)
- Victor Vitvitsky
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Pramod K Yadav
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Sojin An
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Javier Seravalli
- the Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - Uhn-Soo Cho
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Ruma Banerjee
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| |
Collapse
|
14
|
Liebschner D, Afonine PV, Moriarty NW, Poon BK, Sobolev OV, Terwilliger TC, Adams PD. Polder maps: improving OMIT maps by excluding bulk solvent. Acta Crystallogr D Struct Biol 2017; 73:148-157. [PMID: 28177311 PMCID: PMC5297918 DOI: 10.1107/s2059798316018210] [Citation(s) in RCA: 493] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/14/2016] [Indexed: 11/10/2022] Open
Abstract
The crystallographic maps that are routinely used during the structure-solution workflow are almost always model-biased because model information is used for their calculation. As these maps are also used to validate the atomic models that result from model building and refinement, this constitutes an immediate problem: anything added to the model will manifest itself in the map and thus hinder the validation. OMIT maps are a common tool to verify the presence of atoms in the model. The simplest way to compute an OMIT map is to exclude the atoms in question from the structure, update the corresponding structure factors and compute a residual map. It is then expected that if these atoms are present in the crystal structure, the electron density for the omitted atoms will be seen as positive features in this map. This, however, is complicated by the flat bulk-solvent model which is almost universally used in modern crystallographic refinement programs. This model postulates constant electron density at any voxel of the unit-cell volume that is not occupied by the atomic model. Consequently, if the density arising from the omitted atoms is weak then the bulk-solvent model may obscure it further. A possible solution to this problem is to prevent bulk solvent from entering the selected OMIT regions, which may improve the interpretative power of residual maps. This approach is called a polder (OMIT) map. Polder OMIT maps can be particularly useful for displaying weak densities of ligands, solvent molecules, side chains, alternative conformations and residues both in terminal regions and in loops. The tools described in this manuscript have been implemented and are available in PHENIX.
Collapse
Affiliation(s)
- Dorothee Liebschner
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA
| | - Pavel V. Afonine
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA
| | - Nigel W. Moriarty
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA
| | - Billy K. Poon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA
| | - Oleg V. Sobolev
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA
| | | | - Paul D. Adams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
15
|
Electric-field-stimulated protein mechanics. Nature 2016; 540:400-405. [PMID: 27926732 DOI: 10.1038/nature20571] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 10/24/2016] [Indexed: 12/17/2022]
Abstract
The internal mechanics of proteins-the coordinated motions of amino acids and the pattern of forces constraining these motions-connects protein structure to function. Here we describe a new method combining the application of strong electric field pulses to protein crystals with time-resolved X-ray crystallography to observe conformational changes in spatial and temporal detail. Using a human PDZ domain (LNX2PDZ2) as a model system, we show that protein crystals tolerate electric field pulses strong enough to drive concerted motions on the sub-microsecond timescale. The induced motions are subtle, involve diverse physical mechanisms, and occur throughout the protein structure. The global pattern of electric-field-induced motions is consistent with both local and allosteric conformational changes naturally induced by ligand binding, including at conserved functional sites in the PDZ domain family. This work lays the foundation for comprehensive experimental study of the mechanical basis of protein function.
Collapse
|
16
|
Lamba V, Yabukarski F, Pinney M, Herschlag D. Evaluation of the Catalytic Contribution from a Positioned General Base in Ketosteroid Isomerase. J Am Chem Soc 2016; 138:9902-9. [PMID: 27410422 DOI: 10.1021/jacs.6b04796] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Proton transfer reactions are ubiquitous in enzymes and utilize active site residues as general acids and bases. Crystal structures and site-directed mutagenesis are routinely used to identify these residues, but assessment of their catalytic contribution remains a major challenge. In principle, effective molarity measurements, in which exogenous acids/bases rescue the reaction in mutants lacking these residues, can estimate these catalytic contributions. However, these exogenous moieties can be restricted in reactivity by steric hindrance or enhanced by binding interactions with nearby residues, thereby resulting in over- or underestimation of the catalytic contribution, respectively. With these challenges in mind, we investigated the catalytic contribution of an aspartate general base in ketosteroid isomerase (KSI) by exogenous rescue. In addition to removing the general base, we systematically mutated nearby residues and probed each mutant with a series of carboxylate bases of similar pKa but varying size. Our results underscore the need for extensive and multifaceted variation to assess and minimize steric and positioning effects and determine effective molarities that estimate catalytic contributions. We obtained consensus effective molarities of ∼5 × 10(4) M for KSI from Comamonas testosteroni (tKSI) and ∼10(3) M for KSI from Pseudomonas putida (pKSI). An X-ray crystal structure of a tKSI general base mutant showed no additional structural rearrangements, and double mutant cycles revealed similar contributions from an oxyanion hole mutation in the wild-type and base-rescued reactions, providing no indication of mutational effects extending beyond the general base site. Thus, the high effective molarities suggest a large catalytic contribution associated with the general base. A significant portion of this effect presumably arises from positioning of the base, but its large magnitude suggests the involvement of additional catalytic mechanisms as well.
Collapse
Affiliation(s)
- Vandana Lamba
- Department of Biochemistry, ‡Department of Chemistry, #Department of Chemical Engineering, §Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Filip Yabukarski
- Department of Biochemistry, ‡Department of Chemistry, #Department of Chemical Engineering, §Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Margaux Pinney
- Department of Biochemistry, ‡Department of Chemistry, #Department of Chemical Engineering, §Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Daniel Herschlag
- Department of Biochemistry, ‡Department of Chemistry, #Department of Chemical Engineering, §Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
17
|
van Marrewijk LM, Polyak SW, Hijnen M, Kuruvilla D, Chang MR, Shin Y, Kamenecka TM, Griffin PR, Bruning JB. SR2067 Reveals a Unique Kinetic and Structural Signature for PPARγ Partial Agonism. ACS Chem Biol 2016; 11:273-83. [PMID: 26579553 DOI: 10.1021/acschembio.5b00580] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic full agonists of PPARγ have been prescribed for the treatment of diabetes due to their ability to regulate glucose homeostasis and insulin sensitization. While the use of full agonists of PPARγ has been hampered due to severe side effects, partial agonists have shown promise due to their decreased incidence of such side effects in preclinical models. No kinetic information has been forthcoming in regard to the mechanism of full versus partial agonism of PPARγ to date. Here, we describe the discovery of a partial agonist, SR2067. A co-crystal structure obtained at 2.2 Å resolution demonstrates that interactions with the β-sheet are driven exclusively via hydrophobic interactions mediated through a naphthalene group, an observation that is unique from other partial agonists. Surface plasmon resonance revealed that SR2067 binds to the receptor with higher affinity (KD = 513 nM) as compared to that of full agonist rosiglitazone, yet it has a much slower off rate compared to that of rosiglitazone.
Collapse
Affiliation(s)
- Laura M. van Marrewijk
- School
of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Steven W. Polyak
- School
of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marcel Hijnen
- GE Healthcare Life Sciences ANZ, Melbourne, Victoria 3121, Australia
| | - Dana Kuruvilla
- Department
of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - Mi Ra Chang
- Department
of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - Youseung Shin
- Department
of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - Theodore M. Kamenecka
- Department
of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - Patrick R. Griffin
- Department
of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - John B. Bruning
- School
of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
18
|
Matsuoka R, Shimada A, Komuro Y, Sugita Y, Kohda D. Rational design of crystal contact-free space in protein crystals for analyzing spatial distribution of motions within protein molecules. Protein Sci 2016; 25:754-68. [PMID: 26694222 DOI: 10.1002/pro.2867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 12/16/2022]
Abstract
Contacts with neighboring molecules in protein crystals inevitably restrict the internal motions of intrinsically flexible proteins. The resultant clear electron densities permit model building, as crystallographic snapshot structures. Although these still images are informative, they could provide biased pictures of the protein motions. If the mobile parts are located at a site lacking direct contacts in rationally designed crystals, then the amplitude of the movements can be experimentally analyzed. We propose a fusion protein method, to create crystal contact-free space (CCFS) in protein crystals and to place the mobile parts in the CCFS. Conventional model building fails when large amplitude motions exist. In this study, the mobile parts appear as smeared electron densities in the CCFS, by suitable processing of the X-ray diffraction data. We applied the CCFS method to a highly mobile presequence peptide bound to the mitochondrial import receptor, Tom20, and a catalytically relevant flexible segment in the oligosaccharyltransferase, AglB. These two examples demonstrated the general applicability of the CCFS method to the analysis of the spatial distribution of motions within protein molecules.
Collapse
Affiliation(s)
- Rei Matsuoka
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Atsushi Shimada
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan.,RIKEN Structural Biology Laboratory, Tsurumi, Yokohama, 230-0045, Japan
| | - Yasuaki Komuro
- RIKEN Theoretical Molecular Science Laboratory and iTHES, Wako, Saitama, 351-0198, Japan.,Department of physics, Graduate School of Science and Engineering, Chuo University, Bunkyo-Ku, Tokyo, 112-8551, Japan
| | - Yuji Sugita
- RIKEN Theoretical Molecular Science Laboratory and iTHES, Wako, Saitama, 351-0198, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan.,Research Center for Live-Protein Dynamics, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
19
|
Abstract
The final step of RNA crystallography involves the fitting of coordinates into electron density maps. The large number of backbone atoms in RNA presents a difficult and tedious challenge, particularly when experimental density is poor. The ERRASER-Phenix pipeline can improve an initial set of RNA coordinates automatically based on a physically realistic model of atomic-level RNA interactions. The pipeline couples diffraction-based refinement in Phenix with the Rosetta-based real-space refinement protocol ERRASER (Enumerative Real-Space Refinement ASsisted by Electron density under Rosetta). The combination of ERRASER and Phenix can improve the geometrical quality of RNA crystallographic models while maintaining or improving the fit to the diffraction data (as measured by R free). Here we present a complete tutorial for running ERRASER-Phenix through the Phenix GUI, from the command-line, and via an application in the Rosetta On-line Server that Includes Everyone (ROSIE).
Collapse
Affiliation(s)
- Fang-Chieh Chou
- Department of Biochemistry, Stanford University, 279 Campus Drive, Stanford, CA, 94305, USA
| | | | | | | |
Collapse
|
20
|
Fung HYJ, Fu SC, Brautigam CA, Chook YM. Structural determinants of nuclear export signal orientation in binding to exportin CRM1. eLife 2015; 4:e10034. [PMID: 26349033 PMCID: PMC4596688 DOI: 10.7554/elife.10034] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/08/2015] [Indexed: 12/03/2022] Open
Abstract
The Chromosome Region of Maintenance 1 (CRM1) protein mediates nuclear export of hundreds of proteins through recognition of their nuclear export signals (NESs), which are highly variable in sequence and structure. The plasticity of the CRM1-NES interaction is not well understood, as there are many NES sequences that seem incompatible with structures of the NES-bound CRM1 groove. Crystal structures of CRM1 bound to two different NESs with unusual sequences showed the NES peptides binding the CRM1 groove in the opposite orientation (minus) to that of previously studied NESs (plus). Comparison of minus and plus NESs identified structural and sequence determinants for NES orientation. The binding of NESs to CRM1 in both orientations results in a large expansion in NES consensus patterns and therefore a corresponding expansion of potential NESs in the proteome.
Collapse
Affiliation(s)
- Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Szu-Chin Fu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chad A Brautigam
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
21
|
New method to compute Rcomplete enables maximum likelihood refinement for small datasets. Proc Natl Acad Sci U S A 2015; 112:8999-9003. [PMID: 26150515 DOI: 10.1073/pnas.1502136112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The crystallographic reliability index [Formula: see text] is based on a method proposed more than two decades ago. Because its calculation is computationally expensive its use did not spread into the crystallographic community in favor of the cross-validation method known as [Formula: see text]. The importance of [Formula: see text] has grown beyond a pure validation tool. However, its application requires a sufficiently large dataset. In this work we assess the reliability of [Formula: see text] and we compare it with k-fold cross-validation, bootstrapping, and jackknifing. As opposed to proper cross-validation as realized with [Formula: see text], [Formula: see text] relies on a method of reducing bias from the structural model. We compare two different methods reducing model bias and question the widely spread notion that random parameter shifts are required for this purpose. We show that [Formula: see text] has as little statistical bias as [Formula: see text] with the benefit of a much smaller variance. Because the calculation of [Formula: see text] is based on the entire dataset instead of a small subset, it allows the estimation of maximum likelihood parameters even for small datasets. [Formula: see text] enables maximum likelihood-based refinement to be extended to virtually all areas of crystallographic structure determination including high-pressure studies, neutron diffraction studies, and datasets from free electron lasers.
Collapse
|
22
|
Schürmann M, Meijers R, Schneider TR, Steinbüchel A, Cianci M. 3-Sulfinopropionyl-coenzyme A (3SP-CoA) desulfinase from Advenella mimigardefordensis DPN7(T): crystal structure and function of a desulfinase with an acyl-CoA dehydrogenase fold. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1360-72. [PMID: 26057676 PMCID: PMC4461206 DOI: 10.1107/s1399004715006616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/01/2015] [Indexed: 01/19/2023]
Abstract
3-Sulfinopropionyl-coenzyme A (3SP-CoA) desulfinase (AcdDPN7; EC 3.13.1.4) was identified during investigation of the 3,3'-dithiodipropionic acid (DTDP) catabolic pathway in the betaproteobacterium Advenella mimigardefordensis strain DPN7(T). DTDP is an organic disulfide and a precursor for the synthesis of polythioesters (PTEs) in bacteria, and is of interest for biotechnological PTE production. AcdDPN7 catalyzes sulfur abstraction from 3SP-CoA, a key step during the catabolism of DTDP. Here, the crystal structures of apo AcdDPN7 at 1.89 Å resolution and of its complex with the CoA moiety from the substrate analogue succinyl-CoA at 2.30 Å resolution are presented. The apo structure shows that AcdDPN7 belongs to the acyl-CoA dehydrogenase superfamily fold and that it is a tetramer, with each subunit containing one flavin adenine dinucleotide (FAD) molecule. The enzyme does not show any dehydrogenase activity. Dehydrogenase activity would require a catalytic base (Glu or Asp residue) at either position 246 or position 366, where a glutamine and a glycine are instead found, respectively, in this desulfinase. The positioning of CoA in the crystal complex enabled the modelling of a substrate complex containing 3SP-CoA. This indicates that Arg84 is a key residue in the desulfination reaction. An Arg84Lys mutant showed a complete loss of enzymatic activity, suggesting that the guanidinium group of the arginine is essential for desulfination. AcdDPN7 is the first desulfinase with an acyl-CoA dehydrogenase fold to be reported, which underlines the versatility of this enzyme scaffold.
Collapse
Affiliation(s)
- Marc Schürmann
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Rob Meijers
- European Molecular Biology Laboratory Hamburg Unit, EMBL, Notkestrasse 85, 22603 Hamburg, Germany
| | - Thomas R. Schneider
- European Molecular Biology Laboratory Hamburg Unit, EMBL, Notkestrasse 85, 22603 Hamburg, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Michele Cianci
- European Molecular Biology Laboratory Hamburg Unit, EMBL, Notkestrasse 85, 22603 Hamburg, Germany
| |
Collapse
|
23
|
Yamashita S, Martinez A, Tomita K. Measurement of Acceptor-TΨC Helix Length of tRNA for Terminal A76-Addition by A-Adding Enzyme. Structure 2015; 23:830-842. [PMID: 25914059 DOI: 10.1016/j.str.2015.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 02/25/2015] [Accepted: 03/23/2015] [Indexed: 11/25/2022]
Abstract
The 3'-terminal CCA (C74C75A76-3') of tRNA is required for protein synthesis. In Aquifex aeolicus, the CCA-3' is synthesized by CC-adding and A-adding enzymes, although in most organisms, CCA is synthesized by a single CCA-adding enzyme. The mechanisms by which the A-adding enzyme adds only A76, but not C74C75, onto tRNA remained elusive. The complex structures of the enzyme with various tRNAs revealed the presence of a single tRNA binding site on the enzyme, with the enzyme measuring the acceptor-TΨC helix length of tRNA. The 3'-C75 of tRNA lacking A76 can reach the active site and the size and shape of the nucleotide binding pocket at the insertion stage are suitable for ATP. The 3'-C74 of tRNA lacking C75A76 cannot reach the active site, although CTP or ATP can bind the active pocket. Thus, the A-adding enzyme adds only A76, but not C74C75, onto tRNA.
Collapse
Affiliation(s)
- Seisuke Yamashita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Anna Martinez
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Kozo Tomita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
24
|
Afonine PV, Moriarty NW, Mustyakimov M, Sobolev OV, Terwilliger TC, Turk D, Urzhumtsev A, Adams PD. FEM: feature-enhanced map. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:646-66. [PMID: 25760612 PMCID: PMC4356370 DOI: 10.1107/s1399004714028132] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 12/25/2014] [Indexed: 11/29/2022]
Abstract
A method is presented that modifies a 2mFobs - DFmodel σA-weighted map such that the resulting map can strengthen a weak signal, if present, and can reduce model bias and noise. The method consists of first randomizing the starting map and filling in missing reflections using multiple methods. This is followed by restricting the map to regions with convincing density and the application of sharpening. The final map is then created by combining a series of histogram-equalized intermediate maps. In the test cases shown, the maps produced in this way are found to have increased interpretability and decreased model bias compared with the starting 2mFobs - DFmodel σA-weighted map.
Collapse
Affiliation(s)
- Pavel V. Afonine
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS64R0121, Berkeley, CA 94720, USA
| | - Nigel W. Moriarty
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS64R0121, Berkeley, CA 94720, USA
| | - Marat Mustyakimov
- Biology and Soft Matter Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Oleg V. Sobolev
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS64R0121, Berkeley, CA 94720, USA
| | | | - Dusan Turk
- Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Alexandre Urzhumtsev
- Centre for Integrative Biology, IGBMC, CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
- Département de Physique, Faculté des Sciences et des Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France
| | - Paul D. Adams
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS64R0121, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
25
|
Jansen KB, Baker SL, Sousa MC. Crystal structure of BamB bound to a periplasmic domain fragment of BamA, the central component of the β-barrel assembly machine. J Biol Chem 2014; 290:2126-36. [PMID: 25468906 DOI: 10.1074/jbc.m114.584524] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The β-barrel assembly machinery (BAM) mediates folding and insertion of β-barrel outer membrane proteins (OMPs) into the outer membrane of Gram-negative bacteria. BAM is a five-protein complex consisting of the β-barrel OMP BamA and lipoproteins BamB, -C, -D, and -E. High resolution structures of all the individual BAM subunits and a BamD-BamC complex have been determined. However, the overall complex architecture remains elusive. BamA is the central component of BAM and consists of a membrane-embedded β-barrel and a periplasmic domain with five polypeptide translocation-associated (POTRA) motifs thought to interact with the accessory lipoproteins. Here we report the crystal structure of a fusion between BamB and a POTRA3-5 fragment of BamA. Extended loops 13 and 17 protruding from one end of the BamB β-propeller contact the face of the POTRA3 β-sheet in BamA. The interface is stabilized by several hydrophobic contacts, a network of hydrogen bonds, and a cation-π interaction between BamA Tyr-255 and BamB Arg-195. Disruption of BamA-BamB binding by BamA Y255A and probing of the interface by disulfide bond cross-linking validate the physiological relevance of the observed interface. Furthermore, the structure is consistent with previously published mutagenesis studies. The periplasmic five-POTRA domain of BamA is flexible in solution due to hinge motions in the POTRA2-3 linker. Modeling BamB in complex with full-length BamA shows BamB binding at the POTRA2-3 hinge, suggesting a role in modulation of BamA flexibility and the conformational changes associated with OMP folding and insertion.
Collapse
Affiliation(s)
- Katarina Bartoš Jansen
- From the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - Susan Lynn Baker
- From the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - Marcelo Carlos Sousa
- From the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
26
|
Urzhumtsev A. To free or not to free? ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:3088-9. [DOI: 10.1107/s1399004714025413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Pražnikar J, Turk D. Free kick instead of cross-validation in maximum-likelihood refinement of macromolecular crystal structures. ACTA ACUST UNITED AC 2014; 70:3124-34. [PMID: 25478831 PMCID: PMC4257616 DOI: 10.1107/s1399004714021336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 09/25/2014] [Indexed: 11/12/2022]
Abstract
The maximum-likelihood free-kick target, which calculates model error estimates from the work set and a randomly displaced model, proved superior in the accuracy and consistency of refinement of crystal structures compared with the maximum-likelihood cross-validation target, which calculates error estimates from the test set and the unperturbed model. The refinement of a molecular model is a computational procedure by which the atomic model is fitted to the diffraction data. The commonly used target in the refinement of macromolecular structures is the maximum-likelihood (ML) function, which relies on the assessment of model errors. The current ML functions rely on cross-validation. They utilize phase-error estimates that are calculated from a small fraction of diffraction data, called the test set, that are not used to fit the model. An approach has been developed that uses the work set to calculate the phase-error estimates in the ML refinement from simulating the model errors via the random displacement of atomic coordinates. It is called ML free-kick refinement as it uses the ML formulation of the target function and is based on the idea of freeing the model from the model bias imposed by the chemical energy restraints used in refinement. This approach for the calculation of error estimates is superior to the cross-validation approach: it reduces the phase error and increases the accuracy of molecular models, is more robust, provides clearer maps and may use a smaller portion of data for the test set for the calculation of Rfree or may leave it out completely.
Collapse
Affiliation(s)
- Jure Pražnikar
- Department of Biochemistry and Molecular and Structural Biology, Institute Joǽef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
| | - Dušan Turk
- Department of Biochemistry and Molecular and Structural Biology, Institute Joǽef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
28
|
Terwilliger TC, Bricogne G. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2533-43. [PMID: 25286839 PMCID: PMC4188001 DOI: 10.1107/s1399004714017040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/23/2014] [Indexed: 11/22/2022]
Abstract
Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering.
Collapse
Affiliation(s)
- Thomas C. Terwilliger
- Bioscience Division, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87507, USA
| | - Gerard Bricogne
- Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX, England
| |
Collapse
|
29
|
McGreevy R, Singharoy A, Li Q, Zhang J, Xu D, Perozo E, Schulten K. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2344-55. [PMID: 25195748 PMCID: PMC4157446 DOI: 10.1107/s1399004714013856] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/13/2014] [Indexed: 01/07/2023]
Abstract
X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of D-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.
Collapse
Affiliation(s)
- Ryan McGreevy
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Abhishek Singharoy
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qufei Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jingfen Zhang
- Department of Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Dong Xu
- Department of Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Klaus Schulten
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
30
|
Lyons JA, Parker JL, Solcan N, Brinth A, Li D, Shah STA, Caffrey M, Newstead S. Structural basis for polyspecificity in the POT family of proton-coupled oligopeptide transporters. EMBO Rep 2014; 15:886-93. [PMID: 24916388 PMCID: PMC4149780 DOI: 10.15252/embr.201338403] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
An enigma in the field of peptide transport is the structural basis for ligand promiscuity, as exemplified by PepT1, the mammalian plasma membrane peptide transporter. Here, we present crystal structures of di- and tripeptide-bound complexes of a bacterial homologue of PepT1, which reveal at least two mechanisms for peptide recognition that operate within a single, centrally located binding site. The dipeptide was orientated laterally in the binding site, whereas the tripeptide revealed an alternative vertical binding mode. The co-crystal structures combined with functional studies reveal that biochemically distinct peptide-binding sites likely operate within the POT/PTR family of proton-coupled symporters and suggest that transport promiscuity has arisen in part through the ability of the binding site to accommodate peptides in multiple orientations for transport.
Collapse
Affiliation(s)
- Joseph A Lyons
- Schools of Medicine and Biochemistry & Immunology, Trinity College Dublin, Dublin, Ireland
| | - Joanne L Parker
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Nicolae Solcan
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Alette Brinth
- Schools of Medicine and Biochemistry & Immunology, Trinity College Dublin, Dublin, Ireland
| | - Dianfan Li
- Schools of Medicine and Biochemistry & Immunology, Trinity College Dublin, Dublin, Ireland
| | - Syed T A Shah
- Schools of Medicine and Biochemistry & Immunology, Trinity College Dublin, Dublin, Ireland
| | - Martin Caffrey
- Schools of Medicine and Biochemistry & Immunology, Trinity College Dublin, Dublin, Ireland
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Chu J, Haynes RD, Corbel SY, Li P, González-González E, Burg JS, Ataie NJ, Lam AJ, Cranfill PJ, Baird MA, Davidson MW, Ng HL, Garcia KC, Contag CH, Shen K, Blau HM, Lin MZ. Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein. Nat Methods 2014; 11:572-8. [PMID: 24633408 PMCID: PMC4008650 DOI: 10.1038/nmeth.2888] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/16/2014] [Indexed: 12/21/2022]
Abstract
A method for non-invasive visualization of genetically labeled cells in animal disease models with micrometer-level resolution would greatly facilitate development of cell-based therapies. Imaging of fluorescent proteins (FPs) using red excitation light in the 'optical window' above 600 nm is one potential method for visualizing implanted cells. However, previous efforts to engineer FPs with peak excitation beyond 600 nm have resulted in undesirable reductions in brightness. Here we report three new red-excitable monomeric FPs obtained by structure-guided mutagenesis of mNeptune. Two of these, mNeptune2 and mNeptune2.5, demonstrate improved maturation and brighter fluorescence than mNeptune, whereas the third, mCardinal, has a red-shifted excitation spectrum without reduction in brightness. We show that mCardinal can be used to non-invasively and longitudinally visualize the differentiation of myoblasts into myocytes in living mice with high anatomical detail.
Collapse
Affiliation(s)
- Jun Chu
- 1] Department of Bioengineering, Stanford University, Stanford, California, USA. [2] Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Russell D Haynes
- 1] Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA. [2] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Stéphane Y Corbel
- 1] Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA. [2] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Pengpeng Li
- Department of Biological Sciences, Stanford University, Stanford, California, USA
| | - Emilio González-González
- 1] Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA. [2] Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California, USA
| | - John S Burg
- 1] Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA. [2] Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Niloufar J Ataie
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Amy J Lam
- 1] Department of Bioengineering, Stanford University, Stanford, California, USA. [2] Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Paula J Cranfill
- 1] Department of Biological Science, Florida State University, Tallahassee, Florida, USA. [2] National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Michelle A Baird
- 1] Department of Biological Science, Florida State University, Tallahassee, Florida, USA. [2] National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Michael W Davidson
- 1] Department of Biological Science, Florida State University, Tallahassee, Florida, USA. [2] National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Ho-Leung Ng
- 1] Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, USA. [2] University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - K Christopher Garcia
- 1] Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA. [2] Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA. [3] Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Christopher H Contag
- 1] Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA. [2] Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California, USA
| | - Kang Shen
- 1] Department of Biological Sciences, Stanford University, Stanford, California, USA. [2] Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Helen M Blau
- 1] Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA. [2] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Z Lin
- 1] Department of Bioengineering, Stanford University, Stanford, California, USA. [2] Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA. [3] Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
32
|
Turk D. MAIN software for density averaging, model building, structure refinement and validation. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1342-57. [PMID: 23897458 PMCID: PMC3727325 DOI: 10.1107/s0907444913008408] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/26/2013] [Indexed: 11/11/2022]
Abstract
MAIN is software that has been designed to interactively perform the complex tasks of macromolecular crystal structure determination and validation. Using MAIN, it is possible to perform density modification, manual and semi-automated or automated model building and rebuilding, real- and reciprocal-space structure optimization and refinement, map calculations and various types of molecular structure validation. The prompt availability of various analytical tools and the immediate visualization of molecular and map objects allow a user to efficiently progress towards the completed refined structure. The extraordinary depth perception of molecular objects in three dimensions that is provided by MAIN is achieved by the clarity and contrast of colours and the smooth rotation of the displayed objects. MAIN allows simultaneous work on several molecular models and various crystal forms. The strength of MAIN lies in its manipulation of averaged density maps and molecular models when noncrystallographic symmetry (NCS) is present. Using MAIN, it is possible to optimize NCS parameters and envelopes and to refine the structure in single or multiple crystal forms.
Collapse
Affiliation(s)
- Dušan Turk
- Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, Ljubljana, Slovenia.
| |
Collapse
|
33
|
Iwig JS, Vercoulen Y, Das R, Barros T, Limnander A, Che Y, Pelton JG, Wemmer DE, Roose JP, Kuriyan J. Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1. eLife 2013; 2:e00813. [PMID: 23908768 PMCID: PMC3728621 DOI: 10.7554/elife.00813] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/18/2013] [Indexed: 11/13/2022] Open
Abstract
RasGRP1 and SOS are Ras-specific nucleotide exchange factors that have distinct roles in lymphocyte development. RasGRP1 is important in some cancers and autoimmune diseases but, in contrast to SOS, its regulatory mechanisms are poorly understood. Activating signals lead to the membrane recruitment of RasGRP1 and Ras engagement, but it is unclear how interactions between RasGRP1 and Ras are suppressed in the absence of such signals. We present a crystal structure of a fragment of RasGRP1 in which the Ras-binding site is blocked by an interdomain linker and the membrane-interaction surface of RasGRP1 is hidden within a dimerization interface that may be stabilized by the C-terminal oligomerization domain. NMR data demonstrate that calcium binding to the regulatory module generates substantial conformational changes that are incompatible with the inactive assembly. These features allow RasGRP1 to be maintained in an inactive state that is poised for activation by calcium and membrane-localization signals. DOI:http://dx.doi.org/10.7554/eLife.00813.001 Individual cells within the human body must grow, divide or specialize to perform the tasks required of them. The fates of these cells are often directed by proteins in the Ras family, which detect signals from elsewhere in the body and orchestrate responses within each cell. The activities of these proteins must be tightly controlled, because cancers and developmental diseases can result if Ras proteins are not properly regulated. Binding to the small molecule GTP activates Ras and causes conformational changes that allow it to interact with other proteins in various signaling pathways in the cell. GTP is loaded into Ras by proteins called nucleotide exchange factors, which can replace ‘used’ nucleotides with ‘fresh’ ones to activate Ras. These nucleotide exchange factors are also tightly regulated. For example, the genes for many exchange factors are only switched on after particular signals are received, which can restrict their presence to defined times and locations (e.g., cells or tissues). Also, when activating signals are absent, nucleotide exchange factors commonly reside in the cytoplasm, whereas the Ras proteins remain bound to lipid membranes inside the cell. RasGRP1 is a nucleotide exchange factor that controls the development of immune cells, and leukemia and lupus can result if it is not regulated correctly. However, many questions about RasGRP1 remain unanswered, including how it is able to remain inactive, and how it is activated by various different signals. Iwig et al. have now revealed the mechanisms through which RasGRP1 suppresses Ras signaling in immune cells by solving the structures of two fragments of RasGRP1 and then using a combination of structural, biochemical and cell-based methods to explore how it is activated. These analyses revealed that inactive RasGRP1 adopts a conformation in which one of its regulatory elements blocks access to the Ras binding site. Surprisingly, RasGRP1 can form dimers; this hides the portions of the protein that associate with the membrane and thereby keeps RasGRP1 away from Ras. Iwig et al. also found that two signals, calcium ions and a lipid called diacylglycerol, overcome these inhibitory mechanisms by changing the conformation of RasGRP1 and recruiting it to the membrane. These studies provide a framework for understanding how disease-associated mutations in RasGRP1 bypass the regulatory mechanisms that insure proper immune cell development, and will be critical for developing therapeutic agents that inhibit RasGRP1 activity. DOI:http://dx.doi.org/10.7554/eLife.00813.002
Collapse
Affiliation(s)
- Jeffrey S Iwig
- Department of Molecular and Cell Biology , University of California, Berkeley , Berkeley , United States ; California Institute for Quantitative Biosciences , University of California, Berkeley , Berkeley , United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bum-Erdene K, Gagarinov IA, Collins PM, Winger M, Pearson AG, Wilson JC, Leffler H, Nilsson UJ, Grice ID, Blanchard H. Investigation into the Feasibility of Thioditaloside as a Novel Scaffold for Galectin-3-Specific Inhibitors. Chembiochem 2013; 14:1331-42. [DOI: 10.1002/cbic.201300245] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Indexed: 01/02/2023]
|
35
|
Pryor EE, Horanyi PS, Clark KM, Fedoriw N, Connelly SM, Koszelak-Rosenblum M, Zhu G, Malkowski MG, Wiener MC, Dumont ME. Structure of the integral membrane protein CAAX protease Ste24p. Science 2013; 339:1600-4. [PMID: 23539602 DOI: 10.1126/science.1232048] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Posttranslational lipidation provides critical modulation of the functions of some proteins. Isoprenoids (i.e., farnesyl or geranylgeranyl groups) are attached to cysteine residues in proteins containing C-terminal CAAX sequence motifs (where A is an aliphatic residue and X is any residue). Isoprenylation is followed by cleavage of the AAX amino acid residues and, in some cases, by additional proteolytic cuts. We determined the crystal structure of the CAAX protease Ste24p, a zinc metalloprotease catalyzing two proteolytic steps in the maturation of yeast mating pheromone a-factor. The Ste24p core structure is a ring of seven transmembrane helices enclosing a voluminous cavity containing the active site and substrate-binding groove. The cavity is accessible to the external milieu by means of gaps between splayed transmembrane helices. We hypothesize that cleavage proceeds by means of a processive mechanism of substrate insertion, translocation, and ejection.
Collapse
|
36
|
Chou FC, Sripakdeevong P, Dibrov SM, Hermann T, Das R. Correcting pervasive errors in RNA crystallography through enumerative structure prediction. Nat Methods 2013; 10:74-6. [PMID: 23202432 PMCID: PMC3531565 DOI: 10.1038/nmeth.2262] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 10/30/2012] [Indexed: 12/25/2022]
Abstract
Three-dimensional RNA models fitted into crystallographic density maps exhibit pervasive conformational ambiguities, geometric errors and steric clashes. To address these problems, we present enumerative real-space refinement assisted by electron density under Rosetta (ERRASER), coupled to Python-based hierarchical environment for integrated 'xtallography' (PHENIX) diffraction-based refinement. On 24 data sets, ERRASER automatically corrects the majority of MolProbity-assessed errors, improves the average R(free) factor, resolves functionally important discrepancies in noncanonical structure and refines low-resolution models to better match higher-resolution models.
Collapse
Affiliation(s)
- Fang-Chieh Chou
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Sergey M. Dibrov
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Thomas Hermann
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
37
|
Coincon M, Wang W, Sygusch J, Seah SYK. Crystal structure of reaction intermediates in pyruvate class II aldolase: substrate cleavage, enolate stabilization, and substrate specificity. J Biol Chem 2012; 287:36208-21. [PMID: 22908224 PMCID: PMC3476288 DOI: 10.1074/jbc.m112.400705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/16/2012] [Indexed: 11/06/2022] Open
Abstract
Crystal structures of divalent metal-dependent pyruvate aldolase, HpaI, in complex with substrate and cleavage products were determined to 1.8-2.0 Å resolution. The enzyme·substrate complex with 4-hydroxy-2-ketoheptane-1,7-dioate indicates that water molecule W2 bound to the divalent metal ion initiates C3-C4 bond cleavage. The binding mode of the aldehyde donor delineated a solvent-filled capacious binding locus lined with predominantly hydrophobic residues. The absence of direct interactions with the aldehyde aliphatic carbons accounts for the broad specificity and lack of stereospecific control by the enzyme. Enzymatic complex structures formed with keto acceptors, pyruvate, and 2-ketobutyrate revealed bidentate interaction with the divalent metal ion by C1-carboxyl and C2-carbonyl oxygens and water molecule W4 that is within close contact of the C3 carbon. Arg(70) assumes a multivalent role through its guanidinium moiety interacting with all active site enzymatic species: C2 oxygen in substrate, pyruvate, and ketobutyrate; substrate C4 hydroxyl; aldehyde C1 oxygen; and W4. The multiple interactions made by Arg(70) stabilize the negatively charged C4 oxygen following proton abstraction, the aldehyde alignment in aldol condensation, and the pyruvate enolate upon aldol cleavage as well as support proton exchange at C3. This role is corroborated by loss of aldol cleavage ability and pyruvate C3 proton exchange activity and by a 730-fold increase in the dissociation constant toward the pyruvate enolate analog oxalate in the R70A mutant. Based on the crystal structures, a mechanism is proposed involving the two enzyme-bound water molecules, W2 and W4, in acid/base catalysis that facilitates reversible aldol cleavage. The same reaction mechanism promotes decarboxylation of oxaloacetate.
Collapse
Affiliation(s)
- Mathieu Coincon
- From the Department of Biochemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Weijun Wang
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jurgen Sygusch
- From the Department of Biochemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Stephen Y. K. Seah
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
38
|
Jacobsen D, Bao ZQ, O’Brien P, Brooks CL, Young MA. Price to be paid for two-metal catalysis: magnesium ions that accelerate chemistry unavoidably limit product release from a protein kinase. J Am Chem Soc 2012; 134:15357-70. [PMID: 22891849 PMCID: PMC3446636 DOI: 10.1021/ja304419t] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Indexed: 11/28/2022]
Abstract
Incorporation of divalent metal ions into an active site is a fundamental catalytic tool used by diverse enzymes. Divalent cations are used by protein kinases to both stabilize ATP binding and accelerate chemistry. Kinetic analysis establishes that Cyclin-dependent kinase 2 (CDK2) requires simultaneous binding of two Mg(2+) ions for catalysis of phosphoryl transfer. This tool, however, comes with a price: the rate-acceleration effects are opposed by an unavoidable rate-limiting consequence of the use of two Mg(2+) ions by CDK2. The essential metal ions stabilize ADP product binding and limit the overall rate of the reaction. We demonstrate that product release is rate limiting for activated CDK2 and evaluate the effects of the two catalytically essential Mg(2+) ions on the stability of the ADP product within the active site. We present two new crystal structures of CDK2 bound to ADP showing how the phosphate groups can be coordinated by either one or two Mg(2+) ions, with the occupancy of one site in a weaker equilibrium. Molecular dynamics simulations indicate that ADP phosphate mobility is more restricted when ADP is coordinated by two Mg(2+) ions compared to one. The structural similarity between the rigid ADP·2Mg product and the cooperatively assembled transition state provides a mechanistic rational for the rate-limiting ADP release that is observed. We demonstrate that although the simultaneous binding of two Mg(2+) ions is essential for efficient phosphoryl transfer, the presence of both Mg(2+) ions in the active site also cooperatively increases ADP affinity and opposes its release. Evolution of protein kinases must have involved careful tuning of the affinity for the second Mg(2+) ion in order to balance the needs to stabilize the chemical transition state and allow timely product release. The link between Mg(2+) site affinity and activity presents a chemical handle that may be used by regulatory factors as well as explain some mutational effects.
Collapse
Affiliation(s)
- Douglas
M. Jacobsen
- Department of Computational Medicine and Bioinformatics, Department of Pharmacology, Department of Biological
Chemistry, Department of Chemistry, Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109,
United States
| | - Zhao-Qin Bao
- Department of Computational Medicine and Bioinformatics, Department of Pharmacology, Department of Biological
Chemistry, Department of Chemistry, Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109,
United States
| | - Patrick O’Brien
- Department of Computational Medicine and Bioinformatics, Department of Pharmacology, Department of Biological
Chemistry, Department of Chemistry, Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109,
United States
| | - Charles L. Brooks
- Department of Computational Medicine and Bioinformatics, Department of Pharmacology, Department of Biological
Chemistry, Department of Chemistry, Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109,
United States
| | - Matthew A. Young
- Department of Computational Medicine and Bioinformatics, Department of Pharmacology, Department of Biological
Chemistry, Department of Chemistry, Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109,
United States
| |
Collapse
|
39
|
Vitali J, Singh AK, Soares AS, Colaneri MJ. Structure of the catalytic chain of Methanococcus jannaschii aspartate transcarbamoylase in a hexagonal crystal form: insights into the path of carbamoyl phosphate to the active site of the enzyme. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:527-34. [PMID: 22691781 PMCID: PMC3374506 DOI: 10.1107/s1744309112011037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 03/13/2012] [Indexed: 11/10/2022]
Abstract
Crystals of the catalytic chain of Methanococcus jannaschii aspartate transcarbamoylase (ATCase) grew in the presence of the regulatory chain in the hexagonal space group P6(3)22, with one monomer per asymmetric unit. This is the first time that crystals with only one monomer in the asymmetric unit have been obtained; all known structures of the catalytic subunit contain several crystallographically independent monomers. The symmetry-related chains form the staggered dimer of trimers observed in the other known structures of the catalytic subunit. The central channel of the catalytic subunit contains a sulfate ion and a K(+) ion as well as a glycerol molecule at its entrance. It is possible that it is involved in channeling carbamoyl phosphate (CP) to the active site of the enzyme. A second sulfate ion near Arg164 is near the second CP position in the wild-type Escherichia coli ATCase structure complexed with CP. It is suggested that this position may also be in the path that CP takes when binding to the active site in a partial diffusion process at 310 K. Additional biochemical studies of carbamoylation and the molecular organization of this enzyme in M. jannaschii will provide further insight into these points.
Collapse
Affiliation(s)
- Jacqueline Vitali
- Department of Physics, Cleveland State University, Euclid Avenue at East 24th Street, Cleveland, OH 44115, USA.
| | | | | | | |
Collapse
|
40
|
Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD. Towards automated crystallographic structure refinement with phenix.refine. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:352-67. [PMID: 22505256 PMCID: PMC3322595 DOI: 10.1107/s0907444912001308] [Citation(s) in RCA: 4322] [Impact Index Per Article: 332.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/11/2012] [Indexed: 11/10/2022]
Abstract
phenix.refine is a program within the PHENIX package that supports crystallographic structure refinement against experimental data with a wide range of upper resolution limits using a large repertoire of model parameterizations. It has several automation features and is also highly flexible. Several hundred parameters enable extensive customizations for complex use cases. Multiple user-defined refinement strategies can be applied to specific parts of the model in a single refinement run. An intuitive graphical user interface is available to guide novice users and to assist advanced users in managing refinement projects. X-ray or neutron diffraction data can be used separately or jointly in refinement. phenix.refine is tightly integrated into the PHENIX suite, where it serves as a critical component in automated model building, final structure refinement, structure validation and deposition to the wwPDB. This paper presents an overview of the major phenix.refine features, with extensive literature references for readers interested in more detailed discussions of the methods.
Collapse
Affiliation(s)
- Pavel V Afonine
- Lawrence Berkeley National Laboratory, One Cyclotron Road, MS64R0121, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
A new understanding of the decoding principle on the ribosome. Nature 2012; 484:256-9. [PMID: 22437501 DOI: 10.1038/nature10913] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 02/01/2012] [Indexed: 11/09/2022]
Abstract
During protein synthesis, the ribosome accurately selects transfer RNAs (tRNAs) in accordance with the messenger RNA (mRNA) triplet in the decoding centre. tRNA selection is initiated by elongation factor Tu, which delivers tRNA to the aminoacyl tRNA-binding site (A site) and hydrolyses GTP upon establishing codon-anticodon interactions in the decoding centre. At the following proofreading step the ribosome re-examines the tRNA and rejects it if it does not match the A codon. It was suggested that universally conserved G530, A1492 and A1493 of 16S ribosomal RNA, critical for tRNA binding in the A site, actively monitor cognate tRNA, and that recognition of the correct codon-anticodon duplex induces an overall ribosome conformational change (domain closure). Here we propose an integrated mechanism for decoding based on six X-ray structures of the 70S ribosome determined at 3.1-3.4 Å resolution, modelling cognate or near-cognate states of the decoding centre at the proofreading step. We show that the 30S subunit undergoes an identical domain closure upon binding of either cognate or near-cognate tRNA. This conformational change of the 30S subunit forms a decoding centre that constrains the mRNA in such a way that the first two nucleotides of the A codon are limited to form Watson-Crick base pairs. When U·G and G·U mismatches, generally considered to form wobble base pairs, are at the first or second codon-anticodon position, the decoding centre forces this pair to adopt the geometry close to that of a canonical C·G pair. This by itself, or with distortions in the codon-anticodon mini-helix and the anticodon loop, causes the near-cognate tRNA to dissociate from the ribosome.
Collapse
|
42
|
Kumar V, Gupta GD. Low-resolution structure of Drosophila translin. FEBS Open Bio 2012; 2:37-46. [PMID: 23650579 PMCID: PMC3642112 DOI: 10.1016/j.fob.2012.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 11/27/2022] Open
Abstract
Crystals of native Drosophila melanogaster translin diffracted to 7 Å resolution. Reductive methylation of the protein improved crystal quality. The native and methylated proteins showed similar profiles in size-exclusion chromatography analyses but the methylated protein displayed reduced DNA-binding activity. Crystals of the methylated protein diffracted to 4.2 Å resolution at BM14 of the ESRF synchrotron. Crystals with 49% solvent content belonged to monoclinic space group P21 with eight protomers in the asymmetric unit. Only 2% of low-resolution structures with similar low percentage solvent content were found in the PDB. The crystal structure, solved by molecular replacement method, refined to R work (R free) of 0.24 (0.29) with excellent stereochemistry. The crystal structure clearly shows that drosophila protein exists as an octamer, and not as a decamer as expected from gel-filtration elution profiles. The similar octameric quaternary fold in translin orthologs and in translin-TRAX complexes suggests an up-down dimer as the basic structural subunit of translin-like proteins. The drosophila oligomer displays asymmetric assembly and increased radius of gyration that accounts for the observed differences between the elution profiles of human and drosophila proteins on gel-filtration columns. This study demonstrates clearly that low-resolution X-ray structure can be useful in understanding complex biological oligomers.
Collapse
Affiliation(s)
- Vinay Kumar
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | |
Collapse
|
43
|
Marfori M, Lonhienne TG, Forwood JK, Kobe B. Structural Basis of High-Affinity Nuclear Localization Signal Interactions with Importin-α. Traffic 2012; 13:532-48. [DOI: 10.1111/j.1600-0854.2012.01329.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Jade K. Forwood
- School of Biomedical Sciences; Charles Sturt University; Wagga Wagga; NSW; 2650; Australia
| | | |
Collapse
|
44
|
Mosser R, Reddy MCM, Bruning JB, Sacchettini JC, Reinhart GD. Structure of the apo form of Bacillus stearothermophilus phosphofructokinase. Biochemistry 2012; 51:769-75. [PMID: 22212099 DOI: 10.1021/bi201548p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of the unliganded form of Bacillus stearothermophilus phosphofructokinase (BsPFK) was determined using molecular replacement to 2.8 Å resolution (Protein Data Bank entry 3U39 ). The apo BsPFK structure serves as the basis for the interpretation of any structural changes seen in the binary or ternary complexes. When the apo BsPFK structure is compared with the previously published liganded structures of BsPFK, the structural impact that the binding of the ligands produces is revealed. This comparison shows that the apo form of BsPFK resembles the substrate-bound form of BsPFK, a finding that differs from previous predictions.
Collapse
Affiliation(s)
- Rockann Mosser
- Department of Biochemistry and Biophysics, Texas A&M University and Texas AgriLife Research, College Station, Texas 77843-2128, United States
| | | | | | | | | |
Collapse
|
45
|
Conformational flexibility of the ligand-binding domain dimer in kainate receptor gating and desensitization. J Neurosci 2011; 31:2916-24. [PMID: 21414913 DOI: 10.1523/jneurosci.4771-10.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AMPA- and kainate (KA)-selective ionotropic glutamate receptors (iGluRs) respond to agonist by opening (gating), then closing (desensitizing) in quick succession. Gating has been linked to agonist-induced changes within the ligand-binding domain (LBD), and desensitization to rearrangement of a dimer formed by neighboring LBDs. To explore the role of dimer conformation in both gating and desensitization, we compared the conformational effects of two kainate receptor mutants. The first, GluK2-D776K, blocks desensitization of macroscopic current responses ("macroscopic desensitization"). The second, GluK2-M770K, accelerates macroscopic desensitization and eliminates the effects of external ions on channel kinetics. Using structures determined by x-ray crystallography, we found that in both mutants the introduced lysines act as tethered cations, displacing sodium ions from their binding sites within the dimer interface. This results in new inter- and intra-protomer contacts in D776K and M770K respectively, explaining the effects of these mutations on dimer stability and desensitization kinetics. Further, chloride binding was unaffected by the M770K mutation, even though binding of sodium ions has been proposed to promote dimer stability by stabilizing anion binding. This suggests sodium binding may affect receptor function more directly than currently supposed. Notably, we also observed a ligand-specific shift in dimer conformation when comparing LBD dimers in complex with glutamate or the partial agonist KA, revealing a previously unidentified role for dimer orientation in iGluR gating.
Collapse
|
46
|
Mirković B, Renko M, Turk S, Sosič I, Jevnikar Z, Obermajer N, Turk D, Gobec S, Kos J. Novel mechanism of cathepsin B inhibition by antibiotic nitroxoline and related compounds. ChemMedChem 2011; 6:1351-6. [PMID: 21598397 DOI: 10.1002/cmdc.201100098] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/04/2011] [Indexed: 12/26/2022]
Affiliation(s)
- Bojana Mirković
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jenkins JL, Krucinska J, McCarty RM, Bandarian V, Wedekind JE. Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation. J Biol Chem 2011; 286:24626-37. [PMID: 21592962 DOI: 10.1074/jbc.m111.230375] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Riboswitches are RNA regulatory elements that govern gene expression by recognition of small molecule ligands via a high affinity aptamer domain. Molecular recognition can lead to active or attenuated gene expression states by controlling accessibility to mRNA signals necessary for transcription or translation. Key areas of inquiry focus on how an aptamer attains specificity for its effector, the extent to which the aptamer folds prior to encountering its ligand, and how ligand binding alters expression signal accessibility. Here we present crystal structures of the preQ(1) riboswitch from Thermoanaerobacter tengcongensis in the preQ(1)-bound and free states. Although the mode of preQ(1) recognition is similar to that observed for preQ(0), surface plasmon resonance revealed an apparent K(D) of 2.1 ± 0.3 nm for preQ(1) but a value of 35.1 ± 6.1 nm for preQ(0). This difference can be accounted for by interactions between the preQ(1) methylamine and base G5 of the aptamer. To explore conformational states in the absence of metabolite, the free-state aptamer structure was determined. A14 from the ceiling of the ligand pocket shifts into the preQ(1)-binding site, resulting in "closed" access to the metabolite while simultaneously increasing exposure of the ribosome-binding site. Solution scattering data suggest that the free-state aptamer is compact, but the "closed" free-state crystal structure is inadequate to describe the solution scattering data. These observations are distinct from transcriptional preQ(1) riboswitches of the same class that exhibit strictly ligand-dependent folding. Implications for gene regulation are discussed.
Collapse
Affiliation(s)
- Jermaine L Jenkins
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
48
|
Femtosecond X-ray protein nanocrystallography. Nature 2011; 470:73-7. [PMID: 21293373 DOI: 10.1038/nature09750] [Citation(s) in RCA: 1225] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 12/09/2010] [Indexed: 11/08/2022]
Abstract
X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.
Collapse
|
49
|
Sippel KH, Venkatakrishnan B, Boehlein SK, Sankaran B, Quirit JG, Govindasamy L, Agbandje-McKenna M, Goodison S, Rosser CJ, McKenna R. Insights into Mycoplasma genitalium metabolism revealed by the structure of MG289, an extracytoplasmic thiamine binding lipoprotein. Proteins 2011; 79:528-36. [PMID: 21117240 PMCID: PMC3017431 DOI: 10.1002/prot.22900] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mycoplasma genitalium is one of the smallest organisms capable of self-replication and its sequence is considered a starting point for understanding the minimal genome required for life. MG289, a putative phosphonate substrate binding protein, is considered to be one of these essential genes. The crystal structure of MG289 has been solved at 1.95 Å resolution. The structurally identified thiamine binding region reveals possible mechanisms for ligand promiscuity. MG289 was determined to be an extracytoplasmic thiamine binding lipoprotein. Computational analysis, size exclusion chromatography, and small angle X-ray scattering indicates that MG289 homodimerizes in a concentration-dependant manner. Comparisons to the thiamine pyrophosphate binding homolog Cypl reveal insights into the metabolic differences between mycoplasmal species including identifying possible kinases for cofactor phosphorylation and describing the mechanism of thiamine transport into the cell. These results provide a baseline to build our understanding of the minimal metabolic requirements of a living organism.
Collapse
Affiliation(s)
- Katherine H. Sippel
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610
| | | | - Susan K. Boehlein
- Program in Plant Molecular and Cellular Biology and Horticultural Sciences, University of Florida, Gainesville, FL 32610
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Lawrence Berkeley Laboratory, Berkeley CA 94720
| | - Jeanne G. Quirit
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Lakshamanan Govindasamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Steve Goodison
- Department of Surgery Jacksonville, Shands Health Science Center, FL 32209, USA
| | | | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610,Correspondence to: Robert McKenna. Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610. Phone: (352)392-5696. Fax: (352)392-3422.
| |
Collapse
|
50
|
Whittaker MM, Lerch TF, Kirillova O, Chapman MS, Whittaker JW. Subunit dissociation and metal binding by Escherichia coli apo-manganese superoxide dismutase. Arch Biochem Biophys 2010; 505:213-25. [PMID: 21044611 DOI: 10.1016/j.abb.2010.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/24/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
Abstract
Metal binding by apo-manganese superoxide dismutase (apo-MnSOD) is essential for functional maturation of the enzyme. Previous studies have demonstrated that metal binding by apo-MnSOD is conformationally gated, requiring protein reorganization for the metal to bind. We have now solved the X-ray crystal structure of apo-MnSOD at 1.9Å resolution. The organization of active site residues is independent of the presence of the metal cofactor, demonstrating that protein itself templates the unusual metal coordination geometry. Electrophoretic analysis of mixtures of apo- and (Mn₂)-MnSOD, dye-conjugated protein, or C-terminal Strep-tag II fusion protein reveals a dynamic subunit exchange process associated with cooperative metal binding by the two subunits of the dimeric protein. In contrast, (S126C) (SS) apo-MnSOD, which contains an inter-subunit covalent disulfide-crosslink, exhibits anti-cooperative metal binding. The protein concentration dependence of metal uptake kinetics implies that protein dissociation is involved in metal binding by the wild type apo-protein, although other processes may also contribute to gating metal uptake. Protein concentration dependent small-zone size exclusion chromatography is consistent with apo-MnSOD dimer dissociation at low protein concentration (K(D)=1×10⁻⁵ M). Studies on metal uptake by apo-MnSOD in Escherichia coli cells show that the protein exhibits similar behavior in vivo and in vitro.
Collapse
Affiliation(s)
- Mei M Whittaker
- Institute for Environmental Health, Oregon Health and Science University, Beaverton, 97006-8921, USA
| | | | | | | | | |
Collapse
|