1
|
Gogal RA, Nessler AJ, Thiel AC, Bernabe HV, Corrigan Grove RA, Cousineau LM, Litman JM, Miller JM, Qi G, Speranza MJ, Tollefson MR, Fenn TD, Michaelson JJ, Okada O, Piquemal JP, Ponder JW, Shen J, Smith RJH, Yang W, Ren P, Schnieders MJ. Force Field X: A computational microscope to study genetic variation and organic crystals using theory and experiment. J Chem Phys 2024; 161:012501. [PMID: 38958156 PMCID: PMC11223778 DOI: 10.1063/5.0214652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Force Field X (FFX) is an open-source software package for atomic resolution modeling of genetic variants and organic crystals that leverages advanced potential energy functions and experimental data. FFX currently consists of nine modular packages with novel algorithms that include global optimization via a many-body expansion, acid-base chemistry using polarizable constant-pH molecular dynamics, estimation of free energy differences, generalized Kirkwood implicit solvent models, and many more. Applications of FFX focus on the use and development of a crystal structure prediction pipeline, biomolecular structure refinement against experimental datasets, and estimation of the thermodynamic effects of genetic variants on both proteins and nucleic acids. The use of Parallel Java and OpenMM combines to offer shared memory, message passing, and graphics processing unit parallelization for high performance simulations. Overall, the FFX platform serves as a computational microscope to study systems ranging from organic crystals to solvated biomolecular systems.
Collapse
Affiliation(s)
- Rose A. Gogal
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Aaron J. Nessler
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Andrew C. Thiel
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Hernan V. Bernabe
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Rae A. Corrigan Grove
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Leah M. Cousineau
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jacob M. Litman
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jacob M. Miller
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Guowei Qi
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Matthew J. Speranza
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Mallory R. Tollefson
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Timothy D. Fenn
- Analytical Development, LEXEO Therapeutics, New York, New York 10010, USA
| | - Jacob J. Michaelson
- Department of Psychiatry, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242, USA
| | - Okimasa Okada
- Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan
| | | | - Jay W. Ponder
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | - Richard J. H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242, USA
| | | | - Pengyu Ren
- Department of Biomedical Engineering, University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|
2
|
Afonine PV, Adams PD, Sobolev OV, Urzhumtsev AG. Accounting for nonuniformity of bulk-solvent: A mosaic model. Protein Sci 2024; 33:e4909. [PMID: 38358136 PMCID: PMC10868464 DOI: 10.1002/pro.4909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/08/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
A flat mask-based model is almost universally used in macromolecular crystallography to account for disordered (bulk) solvent. This model assumes any voxel of the crystal unit cell that is not occupied by the atomic model is occupied by the solvent. The properties of this solvent are assumed to be exactly the same across the whole volume of the unit cell. While this is a reasonable approximation in practice, there are a number of scenarios where this model becomes suboptimal. In this work, we enumerate several of these scenarios and describe a new generalized approach to modeling the bulk-solvent which we refer to as mosaic bulk-solvent model. The mosaic bulk-solvent model allows nonuniform features of the solvent in the crystal to be accounted for in a computationally efficient way. It is implemented in the computational crystallography toolbox and the Phenix software.
Collapse
Affiliation(s)
- Pavel V. Afonine
- Molecular Biophysics & Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Paul D. Adams
- Molecular Biophysics & Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Department of BioengineeringUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Oleg V. Sobolev
- Molecular Biophysics & Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Alexandre G. Urzhumtsev
- Centre for Integrative BiologyInstitut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS–INSERM‐UdSIllkirchFrance
- Université de Lorraine, Faculté des Sciences et TechnologiesVandoeuvre‐les‐NancyFrance
| |
Collapse
|
3
|
Urzhumtsev A, Adams P, Afonine P. Universal parameters of bulk-solvent masks. Acta Crystallogr A Found Adv 2024; 80:194-201. [PMID: 38334174 PMCID: PMC10913670 DOI: 10.1107/s2053273324000299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024] Open
Abstract
The bulk solvent is a major component of biomacromolecular crystals that contributes significantly to the observed diffraction intensities. Accurate modelling of the bulk solvent has been recognized as important for many crystallographic calculations. Owing to its simplicity and modelling power, the flat (mask-based) bulk-solvent model is used by most modern crystallographic software packages to account for disordered solvent. In this model, the bulk-solvent contribution is defined by a binary mask and a scale (scattering) function. The mask is calculated on a regular grid using the atomic model coordinates and their chemical types. The grid step and two radii, solvent and shrinkage, are the three parameters that govern the mask calculation. They are highly correlated and their choice is a compromise between the computer time needed to calculate the mask and the accuracy of the mask. It is demonstrated here that this choice can be optimized using a unique value of 0.6 Å for the grid step irrespective of the data resolution, and the radii values adjusted correspondingly. The improved values were tested on a large sample of Protein Data Bank entries derived from X-ray diffraction data and are now used in the computational crystallography toolbox (CCTBX) and in Phenix as the default choice.
Collapse
Affiliation(s)
- Alexandre Urzhumtsev
- Centre for Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS-INSERM-UdS, 1 rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Paul Adams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Pavel Afonine
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
4
|
Corrigan RA, Thiel AC, Lynn JR, Casavant TL, Ren P, Ponder JW, Schnieders MJ. A generalized Kirkwood implicit solvent for the polarizable AMOEBA protein model. J Chem Phys 2023; 159:054102. [PMID: 37526158 PMCID: PMC10396400 DOI: 10.1063/5.0158914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
Computational simulation of biomolecules can provide important insights into protein design, protein-ligand binding interactions, and ab initio biomolecular folding, among other applications. Accurate treatment of the solvent environment is essential in such applications, but the use of explicit solvents can add considerable cost. Implicit treatment of solvent effects using a dielectric continuum model is an attractive alternative to explicit solvation since it is able to describe solvation effects without the inclusion of solvent degrees of freedom. Previously, we described the development and parameterization of implicit solvent models for small molecules. Here, we extend the parameterization of the generalized Kirkwood (GK) implicit solvent model for use with biomolecules described by the AMOEBA force field via the addition of corrections to the calculation of effective radii that account for interstitial spaces that arise within biomolecules. These include element-specific pairwise descreening scale factors, a short-range neck contribution to describe the solvent-excluded space between pairs of nearby atoms, and finally tanh-based rescaling of the overall descreening integral. We then apply the AMOEBA/GK implicit solvent to a set of ten proteins and achieve an average coordinate root mean square deviation for the experimental structures of 2.0 Å across 500 ns simulations. Overall, the continued development of implicit solvent models will help facilitate the simulation of biomolecules on mechanistically relevant timescales.
Collapse
Affiliation(s)
- Rae A. Corrigan
- Roy J. Carver Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Andrew C. Thiel
- Roy J. Carver Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Jack R. Lynn
- Roy J. Carver Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Thomas L. Casavant
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas in Austin, Austin, Texas 78712, USA
| | - Jay W. Ponder
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
5
|
Smietanska J, Sliwiak J, Gilski M, Dauter Z, Strzalka R, Wolny J, Jaskolski M. A new modulated crystal structure of the ANS complex of the St John's wort Hyp-1 protein with 36 protein molecules in the asymmetric unit of the supercell. Acta Crystallogr D Struct Biol 2020; 76:653-667. [PMID: 32627738 PMCID: PMC7336385 DOI: 10.1107/s2059798320006841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
Superstructure modulation, with violation of the strict short-range periodic order of consecutive crystal unit cells, is well known in small-molecule crystallography but is rarely reported for macromolecular crystals. To date, one modulated macromolecular crystal structure has been successfully determined and refined for a pathogenesis-related class 10 protein from Hypericum perforatum (Hyp-1) crystallized as a complex with 8-anilinonaphthalene-1-sulfonate (ANS) [Sliwiak et al. (2015), Acta Cryst. D71, 829-843]. The commensurate modulation in that case was interpreted in a supercell with sevenfold expansion along c. When crystallized in the additional presence of melatonin, the Hyp-1-ANS complex formed crystals with a different pattern of structure modulation, in which the supercell shows a ninefold expansion of c, manifested in the diffraction pattern by a wave of reflection-intensity modulation with crests at l = 9n and l = 9n ± 4. Despite complicated tetartohedral twinning, the structure has been successfully determined and refined to 2.3 Å resolution using a description in a ninefold-expanded supercell, with 36 independent Hyp-1 chains and 156 ANS ligands populating the three internal (95 ligands) and five interstitial (61 ligands) binding sites. The commensurate superstructures and ligand-binding sites of the two crystal structures are compared, with a discussion of the effect of melatonin on the co-crystallization process.
Collapse
Affiliation(s)
- Joanna Smietanska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - Joanna Sliwiak
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Miroslaw Gilski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Radoslaw Strzalka
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - Janusz Wolny
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| |
Collapse
|
6
|
LuCore SD, Litman JM, Powers KT, Gao S, Lynn AM, Tollefson WTA, Fenn TD, Washington MT, Schnieders MJ. Dead-End Elimination with a Polarizable Force Field Repacks PCNA Structures. Biophys J 2015; 109:816-26. [PMID: 26287633 PMCID: PMC4547145 DOI: 10.1016/j.bpj.2015.06.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/07/2015] [Accepted: 06/29/2015] [Indexed: 11/15/2022] Open
Abstract
A balance of van der Waals, electrostatic, and hydrophobic forces drive the folding and packing of protein side chains. Although such interactions between residues are often approximated as being pairwise additive, in reality, higher-order many-body contributions that depend on environment drive hydrophobic collapse and cooperative electrostatics. Beginning from dead-end elimination, we derive the first algorithm, to our knowledge, capable of deterministic global repacking of side chains compatible with many-body energy functions. The approach is applied to seven PCNA x-ray crystallographic data sets with resolutions 2.5-3.8 Å (mean 3.0 Å) using an open-source software. While PDB_REDO models average an Rfree value of 29.5% and MOLPROBITY score of 2.71 Å (77th percentile), dead-end elimination with the polarizable AMOEBA force field lowered Rfree by 2.8-26.7% and improved mean MOLPROBITY score to atomic resolution at 1.25 Å (100th percentile). For structural biology applications that depend on side-chain repacking, including x-ray refinement, homology modeling, and protein design, the accuracy limitations of pairwise additivity can now be eliminated via polarizable or quantum mechanical potentials.
Collapse
Affiliation(s)
- Stephen D LuCore
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Jacob M Litman
- Department of Biochemistry, University of Iowa, Iowa City, Iowa
| | - Kyle T Powers
- Department of Biochemistry, University of Iowa, Iowa City, Iowa
| | - Shibo Gao
- Department of Biochemistry, University of Iowa, Iowa City, Iowa
| | - Ava M Lynn
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | | | | | | | - Michael J Schnieders
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa; Department of Biochemistry, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
7
|
Weichenberger CX, Afonine PV, Kantardjieff K, Rupp B. The solvent component of macromolecular crystals. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1023-38. [PMID: 25945568 PMCID: PMC4427195 DOI: 10.1107/s1399004715006045] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/25/2015] [Indexed: 11/10/2022]
Abstract
The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initial phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands.
Collapse
Affiliation(s)
- Christian X. Weichenberger
- Center for Biomedicine, European Academy of Bozen/Bolzano (EURAC), Viale Druso 1, Bozen/Bolzano, I-39100 Südtirol/Alto Adige, Italy
| | - Pavel V. Afonine
- Physical Biosciences Division, Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Mail Stop 64R0121, Berkeley, CA 94720, USA
| | - Katherine Kantardjieff
- College of Science and Mathematics, California State University, San Marcos, CA 92078, USA
| | - Bernhard Rupp
- Department of Forensic Crystallography, k.-k. Hofkristallamt, 991 Audrey Place, Vista, CA 92084, USA
- Department of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck, Austria
| |
Collapse
|
8
|
Urzhumtsev A, Afonine PV, Lunin VY, Terwilliger TC, Adams PD. Metrics for comparison of crystallographic maps. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2593-606. [PMID: 25286844 PMCID: PMC4188004 DOI: 10.1107/s1399004714016289] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/14/2014] [Indexed: 11/11/2022]
Abstract
Numerical comparison of crystallographic contour maps is used extensively in structure solution and model refinement, analysis and validation. However, traditional metrics such as the map correlation coefficient (map CC, real-space CC or RSCC) sometimes contradict the results of visual assessment of the corresponding maps. This article explains such apparent contradictions and suggests new metrics and tools to compare crystallographic contour maps. The key to the new methods is rank scaling of the Fourier syntheses. The new metrics are complementary to the usual map CC and can be more helpful in map comparison, in particular when only some of their aspects, such as regions of high density, are of interest.
Collapse
Affiliation(s)
- Alexandre Urzhumtsev
- Centre for Integrative Biology, Department of Integrated Structural Biology, IGMBC, CNRS UMR 7104–INSERM U964–Université de Strasbourg, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
- Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France
| | - Pavel V. Afonine
- Lawrence Berkeley National Laboratory, One Cyclotron Road, BLDG 64R0121, Berkeley, CA 94720, USA
| | - Vladimir Y. Lunin
- Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino 142290, Russian Federation
| | | | - Paul D. Adams
- Lawrence Berkeley National Laboratory, One Cyclotron Road, BLDG 64R0121, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Afonine PV, Grosse-Kunstleve RW, Adams PD, Urzhumtsev A. Bulk-solvent and overall scaling revisited: faster calculations, improved results. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:625-34. [PMID: 23519671 PMCID: PMC3606040 DOI: 10.1107/s0907444913000462] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/05/2013] [Indexed: 11/10/2022]
Abstract
A fast and robust method for determining the parameters for a flat (mask-based) bulk-solvent model and overall scaling in macromolecular crystallographic structure refinement and other related calculations is described. This method uses analytical expressions for the determination of optimal values for various scale factors. The new approach was tested using nearly all entries in the PDB for which experimental structure factors are available. In general, the resulting R factors are improved compared with previously implemented approaches. In addition, the new procedure is two orders of magnitude faster, which has a significant impact on the overall runtime of refinement and other applications. An alternative function is also proposed for scaling the bulk-solvent model and it is shown that it outperforms the conventional exponential function. Similarly, alternative methods are presented for anisotropic scaling and their performance is analyzed. All methods are implemented in the Computational Crystallography Toolbox (cctbx) and are used in PHENIX programs.
Collapse
Affiliation(s)
- P V Afonine
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
10
|
Schnieders MJ, Kaoud TS, Yan C, Dalby KN, Ren P. Computational insights for the discovery of non-ATP competitive inhibitors of MAP kinases. Curr Pharm Des 2012; 18:1173-85. [PMID: 22316156 DOI: 10.2174/138161212799436368] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/06/2011] [Indexed: 12/22/2022]
Abstract
Due to their role in cellular signaling mitogen activated protein (MAP) kinases represent targets of pharmaceutical interest. However, the majority of known MAP kinase inhibitors compete with cellular ATP and target an ATP binding pocket that is highly conserved in the 500 plus representatives of the human protein kinase family. Here we review progress toward the development of non-ATP competitive MAP kinase inhibitors for the extracellular signal regulated kinases (ERK1/2), the c-jun N-terminal kinases (JNK1/2/3) and the p38 MAPKs (α, β, γ, and δ). Special emphasis is placed on the role of computational methods in the drug discovery process for MAP kinases. Topics include recent advances in X-ray crystallography theory that improve the MAP kinase structures essential to structurebased drug discovery, the use of molecular dynamics to understand the conformational heterogeneity of the activation loop and inhibitors discovered by virtual screening. The impact of an advanced polarizable force field such as AMOEBA used in conjunction with sophisticated kinetic and thermodynamic simulation methods is also discussed.
Collapse
Affiliation(s)
- Michael J Schnieders
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | |
Collapse
|
11
|
Hydration-layer models for cryo-EM image simulation. J Struct Biol 2012; 180:10-6. [PMID: 22609687 DOI: 10.1016/j.jsb.2012.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 04/23/2012] [Accepted: 04/27/2012] [Indexed: 11/21/2022]
Abstract
To compare cryo-EM images and 3D reconstructions with atomic structures in a quantitative way it is essential to model the electron scattering by solvent (water or ice) that surrounds protein assemblies. The most rigorous method for determining the density of solvating water atoms for this purpose has been to perform molecular-dynamics (MD) simulations of the protein-water system. In this paper we adapt the ideas of bulk-water modeling that are used in the refinement of X-ray crystal structures to the cryo-EM solvent-modeling problem. We present a continuum model for solvent density which matches MD-based results to within sampling errors. However, we also find that the simple binary-mask model of Jiang and Brünger (1994) performs nearly as well as the new model. We conclude that several methods are now available for rapid and accurate modeling of cryo-EM images and maps of solvated proteins.
Collapse
|
12
|
Schnieders MJ, Baltrusaitis J, Shi Y, Chattree G, Zheng L, Yang W, Ren P. The Structure, Thermodynamics and Solubility of Organic Crystals from Simulation with a Polarizable Force Field. J Chem Theory Comput 2012; 8:1721-1736. [PMID: 22582032 PMCID: PMC3348590 DOI: 10.1021/ct300035u] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An important unsolved problem in materials science is prediction of the thermodynamic stability of organic crystals and their solubility from first principles. Solubility can be defined as the saturating concentration of a molecule within a liquid solvent, where the physical picture is of solvated molecules in equilibrium with their solid phase. Despite the importance of solubility in determining the oral bioavailability of pharmaceuticals, prediction tools are currently limited to quantitative structure-property relationships that are fit to experimental solubility measurements. For the first time, we describe a consistent procedure for the prediction of the structure, thermodynamic stability and solubility of organic crystals from molecular dynamics simulations using the polarizable multipole AMOEBA force field. Our approach is based on a thermodynamic cycle that decomposes standard state solubility into the sum of solid-vapor sublimation and vapor-liquid solvation free energies [Formula: see text], which are computed via the orthogonal space random walk (OSRW) sampling strategy. Application to the n-alkylamides series from aeetamide through octanamide was selected due to the dependence of their solubility on both amide hydrogen bonding and the hydrophobic effect, which are each fundamental to protein structure and solubility. On average, the calculated absolute standard state solubility free energies are accurate to within 1.1 kcal/mol. The experimental trend of decreasing solubility as a function of n-alkylamide chain length is recapitulated by the increasing stability of the crystalline state and to a lesser degree by decreasing favorability of solvation (i.e. the hydrophobic effect). Our results suggest that coupling the polarizable AMOEBA force field with an orthogonal space based free energy algorithm, as implemented in the program Force Field X, is a consistent procedure for predicting the structure, thermodynamic stability and solubility of organic crystals.
Collapse
Affiliation(s)
- Michael J. Schnieders
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Jonas Baltrusaitis
- Departments of Chemistry and Chemical/Biochemical Engineering, University of Iowa, Iowa City, IA, 52242
| | - Yue Shi
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Gaurav Chattree
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Lianqing Zheng
- The Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Wei Yang
- The Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
| | - Pengyu Ren
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
13
|
Fenn TD, Schnieders MJ. Polarizable atomic multipole X-ray refinement: weighting schemes for macromolecular diffraction. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:957-65. [PMID: 22101822 DOI: 10.1107/s0907444911039060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/22/2011] [Indexed: 11/10/2022]
Abstract
In the past, weighting between the sum of chemical and data-based targets in macromolecular crystallographic refinement was based on comparing the gradients or Hessian diagonal terms of the two potential functions. Here, limitations of this scheme are demonstrated, especially in the context of a maximum-likelihood target that is inherently weighted by the model and data errors. In fact, the congruence between the maximum-likelihood target and a chemical potential based on polarizable atomic multipole electrostatics evaluated with Ewald summation has opened the door to a transferable static weight. An optimal static weight is derived from first principles and is demonstrated to be transferable across a broad range of data resolutions in the context of a recent implementation of X-ray crystallographic refinement using the polarizable AMOEBA force field and it is shown that the resulting models are balanced with respect to optimizing both R(free) and MolProbity scores. Conversely, the classical automatic weighting scheme is shown to lead to underfitting or overfitting of the data and poor model geometry. The benefits of this approach for low-resolution diffraction data, where the need for prior chemical information is of particular importance, are also highlighted. It is demonstrated that this method is transferable between low- and high-resolution maximum-likelihood-based crystallographic refinement, which proves for the first time that resolution-dependent parameterization of either the weight or the chemical potential is unnecessary.
Collapse
Affiliation(s)
- T D Fenn
- Department of Bioengineering, Stanford University, Stanford, California, USA.
| | | |
Collapse
|
14
|
Schnieders MJ, Fenn TD, Pande VS. Polarizable Atomic Multipole X-Ray Refinement: Particle Mesh Ewald Electrostatics for Macromolecular Crystals. J Chem Theory Comput 2011; 7:1141-56. [PMID: 26606362 DOI: 10.1021/ct100506d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Refinement of macromolecular models from X-ray crystallography experiments benefits from prior chemical knowledge at all resolutions. As the quality of the prior chemical knowledge from quantum or classical molecular physics improves, in principle so will resulting structural models. Due to limitations in computer performance and electrostatic algorithms, commonly used macromolecules X-ray crystallography refinement protocols have had limited support for rigorous molecular physics in the past. For example, electrostatics is often neglected in favor of nonbonded interactions based on a purely repulsive van der Waals potential. In this work we present advanced algorithms for desktop workstations that open the door to X-ray refinement of even the most challenging macromolecular data sets using state-of-the-art classical molecular physics. First we describe theory for particle mesh Ewald (PME) summation that consistently handles the symmetry of all 230 space groups, replicates of the unit cell such that the minimum image convention can be used with a real space cutoff of any size and the combination of space group symmetry with replicates. An implementation of symmetry accelerated PME for the polarizable atomic multipole optimized energetics for biomolecular applications (AMOEBA) force field is presented. Relative to a single CPU core performing calculations on a P1 unit cell, our AMOEBA engine called Force Field X (FFX) accelerates energy evaluations by more than a factor of 24 on an 8-core workstation with a Tesla GPU coprocessor for 30 structures that contain 240 000 atoms on average in the unit cell. The benefit of AMOEBA electrostatics evaluated with PME for macromolecular X-ray crystallography refinement is demonstrated via rerefinement of 10 crystallographic data sets that range in resolution from 1.7 to 4.5 Å. Beginning from structures obtained by local optimization without electrostatics, further optimization using AMOEBA with PME electrostatics improved agreement of the model with the data (Rfree was lowered by 0.5%), improved geometric features such as favorable (ϕ, ψ) backbone conformations, and lowered the average potential energy per residue by over 10 kcal/mol. Furthermore, the MolProbity structure validation tool indicates that the geometry of these rerefined structures is consistent with X-ray crystallographic data collected up to 2.2 Å, which is 0.9 Å better than the actual mean quality (3.1 Å). We conclude that polarizable AMOEBA-assisted X-ray refinement offers advantages to methods that neglect electrostatics and is now efficient enough for routine use.
Collapse
Affiliation(s)
| | - Timothy D Fenn
- Department of Molecular and Cellular Physiology.,Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, United States
| | | |
Collapse
|