1
|
Xu S, Shen C, Li C, Dong W, Yang G. Genome sequencing and comparative genome analysis of Rhizoctonia solani AG-3. Front Microbiol 2024; 15:1360524. [PMID: 38638902 PMCID: PMC11024465 DOI: 10.3389/fmicb.2024.1360524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Rhizoctonia solani AG-3 is a plant pathogenic fungus that belongs to the group of multinucleate Rhizoctonia. According to its internal transcribed spacer (ITS) cluster analysis and host range, it is divided into TB, PT, and TM subgroups. AG-3 TB mainly causes tobacco target spots, AG-3 PT mainly causes potato black scurf, and AG-3 TM mainly causes tomato leaf blight. In our previous study, we found that all 36 tobacco target spot strains isolated from Yunnan (Southwest China) were classified into AG-3 TB subgroup, while only two of the six tobacco target spot strains isolated from Liaoning (Northeast China) were classified into AG-3 TB subgroup, and the remaining four strains were classified into AG-3 TM subgroup, which had a unique taxonomic status, and there was no previous report on the whole genome information of AG-3 TM subgroup. In this study, the whole genomes of R. solani AG-3 strains 3T-1 (AG-3 TM isolated from Liaoning) and MJ-102 (AG-3 TB isolated from Yunnan) isolated from tobacco target spot in Liaoning and Yunnan were sequenced by IIumina and PacBio sequencing platforms. Comparative genomic analysis was performed with the previously reported AG-3 PT strain Rhs1AP, revealing their differences in genomes and virulence factors. The results indicated that the genome size of 3T-1 was 42,103,597 bp with 11,290 coding genes and 49.74% GC content, and the genome size of MJ-102 was 41,908,281 bp with 10,592 coding genes and 48.91% GC content. Through comparative genomic analysis with the previously reported strain Rhs1AP (AG-3 PT), it was found that the GC content between the genomes was similar, but the strains 3T-1 and MJ-102 contained more repetitive sequences. Similarly, there are similarities between their virulence factors, but there are also some differences. In addition, the results of collinearity analysis showed that 3T-1 and MJ-102 had lower similarity and longer evolutionary distance with Rhs1AP, but the genetic relationship between 3T-1 and MJ-102 was closer. This study can lay a foundation for studying the molecular pathogenesis and virulence factors of R. solani AG-3, and revealing its genomic composition will also help to develop more effective disease control strategies.
Collapse
Affiliation(s)
| | | | | | | | - Genhua Yang
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Giang PD, Churchman LR, Buczynski JB, Bell SG, Stok JE, De Voss JJ. CYP108N14: A Monoterpene Monooxygenase from Rhodococcus globerulus. Arch Biochem Biophys 2024; 752:109852. [PMID: 38072297 DOI: 10.1016/j.abb.2023.109852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/29/2024]
Abstract
Rhodococcus globerulus (R. globerulus) was isolated from the soil beneath a Eucalypt tree. Metabolic growth studies revealed that R. globerulus was capable of living on certain monoterpenes, including 1,8-cineole and p-cymene, as sole sources of carbon and energy. Multiple P450 genes were identified in the R. globerulus genome that shared homology to known bacterial, monoterpene hydroxylating P450s. To date, two of these P450s have been expressed and characterised as 1,8-cineole (CYP176A1) and p-cymene (CYP108N12) monooxygenases that are believed to initiate the biodegradation of these terpenes. In this work, another putative P450 gene (CYP108N14) was identified in R. globerulus genome. Given its amino acid sequence identity to other monoterpene hydroxylating P450s it was hypothesised to catalyse monoterpene hydroxylation. These include CYP108A1 from Pseudomonas sp. (47 % identity, 68 % similarity) which hydroxylates α-terpineol, and CYP108N12 also from R. globerulus (62 % identity, 77 % similarity). Also present in the operon containing CYP108N14 were putative ferredoxin and ferredoxin reductase genes, suggesting a typical Class I P450 system. CYP108N14 was successfully over-expressed heterologously and purified, resulting in a good yield of CYP108N14 holoprotein. However, neither the ferredoxin nor ferredoxin reductase could be produced heterologously. Binding studies with CYP108N14 revealed a preference for the monoterpenes p-cymene, (R)-limonene, (S)-limonene, (S)-α-terpineol and (S)-4-terpineol. An active catalytic system was reconstituted with the non-native redox partners cymredoxin (from the CYP108N12 system) and putidaredoxin reductase (from the CYP101A1 system). CYP108N14 when supported by these redox partners was able to catalyse the hydroxylation of the five aforementioned substrates selectively at the methyl benzylic/allylic positions.
Collapse
Affiliation(s)
- Peter D Giang
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Brisbane, Australia
| | - Luke R Churchman
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Brisbane, Australia
| | - Julia B Buczynski
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Brisbane, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jeanette E Stok
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Brisbane, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Brisbane, Australia.
| |
Collapse
|
3
|
Yang H, Yu F, Qian Z, Huang T, Peng T, Hu Z. Cytochrome P450 for environmental remediation: catalytic mechanism, engineering strategies and future prospects. World J Microbiol Biotechnol 2023; 40:33. [PMID: 38057619 DOI: 10.1007/s11274-023-03823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/29/2023] [Indexed: 12/08/2023]
Abstract
Environmental pollution is a global concern. Various organic compounds are released into the environment through wastewater, waste gas, and waste residue, ultimately accumulating in the environment and the food chain. This poses a significant threat to both human health and ecology. Currently, a growing body of research has demonstrated that microorganisms employ their Cytochrome P450 (CYP450) system for biodegradation, offering a crucial approach for eliminating these pollutants in environmental remediation. CYP450, a ubiquitous catalyst in nature, includes a vast array of family members distributed widely across various organisms, including bacteria, fungi, and mammals. These enzymes participate in the metabolism of diverse organic compounds. Furthermore, the rapid advancements in enzyme and protein engineering have led to increased utilization of engineered CYP450s in environmental remediation, enhancing their efficiency in pollutant removal. This article presents an overview of the current understanding of various members of the CYP450 superfamily involved in transforming organic pollutants and the engineering of biodegrading CYP450s. Additionally, it explores the catalytic mechanisms, current practical applications of CYP450-based systems, their potential applications, and the prospects in bioremediation.
Collapse
Affiliation(s)
- Haichen Yang
- Department of Biology, Shantou University, Shantou, 515063, Guangdong, People's Republic of China
| | - Fei Yu
- Department of Biology, Shantou University, Shantou, 515063, Guangdong, People's Republic of China
| | - Zhihui Qian
- Department of Biology, Shantou University, Shantou, 515063, Guangdong, People's Republic of China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, 515063, Guangdong, People's Republic of China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, 515063, Guangdong, People's Republic of China.
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, 515063, Guangdong, People's Republic of China.
- Guangdong Research Center of Offshore Environmental Pollution Control Engineering, Shantou University, Shantou, 515063, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
CYP108N12 initiates p-cymene biodegradation in Rhodococcus globerulus. Arch Biochem Biophys 2022; 730:109410. [PMID: 36155781 DOI: 10.1016/j.abb.2022.109410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
Rhodococcus globerulus (R. globerulus) isolated from soil beneath Eucalyptus sp. was found to live on the monoterpenes 1,8-cineole, p-cymene and (R)- and (S)-limonene as sole sources of carbon and energy. Previous metabolic studies revealed that R. globerulus is capable of living on 1,8-cineole, the main monoterpene component of eucalyptus essential oil through the activity of cytochrome P450cin (CYP176A1) [1]. Genomic sequencing of R. globerulus revealed a novel putative cytochrome P450 (CYP108N12) that shares 48% sequence identity with CYP108A1 (P450terp) from Pseudomonas sp., an α-terpineol hydroxylase. Given the sequence similarity between CYP108N12 and P450terp, it was hypothesised that CYP108N12 may be responsible for initiating the biodegradation of a monoterpene structurally similar to α-terpineol such as (R)-limonene, (S)-limonene or p-cymene. Encoded within the operon containing CYP108N12 were two putative bacterial P450 redox partners and putative alcohol and aldehyde dehydrogenases, suggesting a complete catalytic system for activating these monoterpenes. Binding studies revealed that p-cymene and (R)- and (S)-limonene all bound tightly to CYP108N12 but α-terpineol did not. A catalytically active system was reconstituted using the non-native redox partner putidaredoxin and putidaredoxin reductase that act with CYP101A1 (P450cam) from Pseudomonas. This reconstituted system catalysed the hydroxylation of p-cymene to 4-isopropylbenzyl alcohol, and (R)- and (S)-limonene to (R)- and (S)-perillyl alcohol, respectively. R. globerulus was successfully grown on solely p-cymene, (R)-limonene or (S)-limonene. CYP108N12 was detected when R. globerulus was grown on p-cymene, but not either limonene enantiomer. The native function of CYP108N12 is therefore proposed to be initiation of p-cymene biodegradation by methyl oxidation and is a potentially attractive biocatalyst capable of specific benzylic and allylic hydroxylation.
Collapse
|
5
|
Mueller J, Willett H, Feist AM, Niu W. Engineering Pseudomonas putida for Improved Utilization of Syringyl Aromatics. Biotechnol Bioeng 2022; 119:2541-2550. [PMID: 35524438 PMCID: PMC9378539 DOI: 10.1002/bit.28131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/22/2022] [Accepted: 05/01/2022] [Indexed: 11/08/2022]
Abstract
Lignin is a largely untapped source for the bioproduction of value‐added chemicals. Pseudomonas putida KT2440 has emerged as a strong candidate for bioprocessing of lignin feedstocks due to its resistance to several industrial solvents, broad metabolic capabilities, and genetic amenability. Here we demonstrate the engineering of P. putida for the ability to metabolize syringic acid, one of the major products that comes from the breakdown of the syringyl component of lignin. The rational design was first applied for the construction of strain Sy‐1 by overexpressing a native vanillate demethylase. Subsequent adaptive laboratory evolution (ALE) led to the generation of mutations that achieved robust growth on syringic acid as a sole carbon source. The best mutant showed a 30% increase in the growth rate over the original engineered strain. Genomic sequencing revealed multiple mutations repeated in separate evolved replicates. Reverse engineering of mutations identified in agmR, gbdR, fleQ, and the intergenic region of gstB and yadG into the parental strain recaptured the improved growth of the evolved strains to varied extent. These findings thus reveal the ability of P. putida to utilize lignin more fully as a feedstock and make it a more economically viable chassis for chemical production.
Collapse
Affiliation(s)
- Joshua Mueller
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Howard Willett
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Wei Niu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States.,The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| |
Collapse
|
6
|
Chao RR, Lau ICK, Coleman T, Churchman LR, Child SA, Lee JHZ, Bruning JB, De Voss JJ, Bell SG. The stereoselective oxidation of para-substituted benzenes by a cytochrome P450 biocatalyst. Chemistry 2021; 27:14765-14777. [PMID: 34350662 DOI: 10.1002/chem.202102757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 11/10/2022]
Abstract
The serine 244 to aspartate (S244D) variant of the cytochrome P450 enzyme CYP199A4 was used to expand its substrate range beyond benzoic acids. Substrates, in which the carboxylate group of the benzoic acid moiety is replaced, were oxidised with high activity by the S244D mutant (product formation rates > 60 nmol.(nmol-CYP) -1 .min -1 ) and with total turnover numbers of up to 20,000. Ethyl α-hydroxylation was more rapid than methyl oxidation, styrene epoxidation and S -oxidation. The S244D mutant catalysed the ethyl hydroxylation, epoxidation and sulfoxidation reactions with an excess of one stereoisomer (in some instances up to >98%). The crystal structure of 4-methoxybenzoic acid-bound CYP199A4 S244D showed that the active site architecture and the substrate orientation were similar to that of the WT enzyme. Overall, this work demonstrates that CYP199A4 can catalyse the stereospecific hydroxylation, epoxidation or sulfoxidation of substituted benzene substrates under mild conditions resulting in more sustainable transformations using this heme monooxygenase enzyme.
Collapse
Affiliation(s)
- Rebecca R Chao
- The University of Adelaide, Department of Chemistry, AUSTRALIA
| | - Ian C-K Lau
- The University of Adelaide, Department of Chemistry, AUSTRALIA
| | - Tom Coleman
- The University of Adelaide, Department of Chemistry, AUSTRALIA
| | - Luke R Churchman
- The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Stella A Child
- The University of Adelaide, Department of Chemistry, AUSTRALIA
| | - Joel H Z Lee
- The University of Adelaide, The Department of Chemistry, AUSTRALIA
| | - John B Bruning
- The University of Adelaide, School of Biological Sciences, AUSTRALIA
| | - James J De Voss
- The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Stephen Graham Bell
- University of Adelaide, School of Chemistry & Physics, North Terrace, 5005, Adelaide, AUSTRALIA
| |
Collapse
|
7
|
Ancient Bacterial Class Alphaproteobacteria Cytochrome P450 Monooxygenases Can Be Found in Other Bacterial Species. Int J Mol Sci 2021; 22:ijms22115542. [PMID: 34073951 PMCID: PMC8197338 DOI: 10.3390/ijms22115542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cytochrome P450 monooxygenases (CYPs/P450s), heme-thiolate proteins, are well-known players in the generation of chemicals valuable to humans and as a drug target against pathogens. Understanding the evolution of P450s in a bacterial population is gaining momentum. In this study, we report comprehensive analysis of P450s in the ancient group of the bacterial class Alphaproteobacteria. Genome data mining and annotation of P450s in 599 alphaproteobacterial species belonging to 164 genera revealed the presence of P450s in only 241 species belonging to 82 genera that are grouped into 143 P450 families and 214 P450 subfamilies, including 77 new P450 families. Alphaproteobacterial species have the highest average number of P450s compared to Firmicutes species and cyanobacterial species. The lowest percentage of alphaproteobacterial species P450s (2.4%) was found to be part of secondary metabolite biosynthetic gene clusters (BGCs), compared other bacterial species, indicating that during evolution large numbers of P450s became part of BGCs in other bacterial species. Our study identified that some of the P450 families found in alphaproteobacterial species were passed to other bacterial species. This is the first study to report on the identification of CYP125 P450, cholesterol and cholest-4-en-3-one hydroxylase in alphaproteobacterial species (Phenylobacterium zucineum) and to predict cholesterol side-chain oxidation capability (based on homolog proteins) by P. zucineum.
Collapse
|
8
|
Bracco P, Wijma HJ, Nicolai B, Buitrago JAR, Klünemann T, Vila A, Schrepfer P, Blankenfeldt W, Janssen DB, Schallmey A. CYP154C5 Regioselectivity in Steroid Hydroxylation Explored by Substrate Modifications and Protein Engineering*. Chembiochem 2020; 22:1099-1110. [PMID: 33145893 PMCID: PMC8048783 DOI: 10.1002/cbic.202000735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/03/2020] [Indexed: 12/27/2022]
Abstract
CYP154C5 from Nocardia farcinica is a P450 monooxygenase able to hydroxylate a range of steroids with high regio- and stereoselectivity at the 16α-position. Using protein engineering and substrate modifications based on the crystal structure of CYP154C5, an altered regioselectivity of the enzyme in steroid hydroxylation had been achieved. Thus, conversion of progesterone by mutant CYP154C5 F92A resulted in formation of the corresponding 21-hydroxylated product 11-deoxycorticosterone in addition to 16α-hydroxylation. Using MD simulation, this altered regioselectivity appeared to result from an alternative binding mode of the steroid in the active site of mutant F92A. MD simulation further suggested that the entrance of water to the active site caused higher uncoupling in this mutant. Moreover, exclusive 15α-hydroxylation was observed for wild-type CYP154C5 in the conversion of 5α-androstan-3-one, lacking an oxy-functional group at C17. Overall, our data give valuable insight into the structure-function relationship of this cytochrome P450 monooxygenase for steroid hydroxylation.
Collapse
Affiliation(s)
- Paula Bracco
- Biocatalysis, Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Hein J Wijma
- Department of Biochemistry Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Bastian Nicolai
- Biocatalysis, Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Jhon Alexander Rodriguez Buitrago
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Thomas Klünemann
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Agustina Vila
- Biocatalysis, Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Patrick Schrepfer
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Dick B Janssen
- Department of Biochemistry Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| |
Collapse
|
9
|
Finnigan JD, Young C, Cook DJ, Charnock SJ, Black GW. Cytochromes P450 (P450s): A review of the class system with a focus on prokaryotic P450s. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:289-320. [PMID: 32951814 DOI: 10.1016/bs.apcsb.2020.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytochromes P450 (P450s) are a large superfamily of heme-containing monooxygenases. P450s are found in all Kingdoms of life and exhibit incredible diversity, both at sequence level and also on a biochemical basis. In the majority of cases, P450s can be assigned into one of ten classes based on their associated redox partners, domain architecture and cellular localization. Prokaryotic P450s now represent a large diverse collection of annotated/known enzymes, of which many have great potential biocatalytic potential. The self-sufficient P450 classes (Class VII/VIII) have been explored significantly over the past decade, with many annotated and biochemically characterized members. It is clear that the prokaryotic P450 world is expanding rapidly, as the number of published genomes and metagenome studies increases, and more P450 families are identified and annotated (CYP families).
Collapse
Affiliation(s)
| | - Carl Young
- Prozomix Limited, Haltwhistle, Northumberland, United Kingdom
| | - Darren J Cook
- Prozomix Limited, Haltwhistle, Northumberland, United Kingdom
| | | | - Gary W Black
- Hub for Biotechnology in the Built Environment, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
10
|
Samantarrai D, Lakshman Sagar A, Gudla R, Siddavattam D. TonB-Dependent Transporters in Sphingomonads: Unraveling Their Distribution and Function in Environmental Adaptation. Microorganisms 2020; 8:microorganisms8030359. [PMID: 32138166 PMCID: PMC7142613 DOI: 10.3390/microorganisms8030359] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/24/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
TonB-dependent transport system plays a critical role in the transport of nutrients across the energy-deprived outer membrane of Gram-negative bacteria. It contains a specialized outer membrane TonB-dependent transporter (TBDT) and energy generating (ExbB/ExbD) and transducing (TonB) inner membrane multi-protein complex, called TonB complex. Very few TonB complex protein-coding sequences exist in the genomes of Gram-negative bacteria. Interestingly, the TBDT coding alleles are phenomenally high, especially in the genomes of bacteria surviving in complex and stressful environments. Sphingomonads are known to survive in highly polluted environments using rare, recalcitrant, and toxic substances as their sole source of carbon. Naturally, they also contain a huge number of TBDTs in the outer membrane. Out of them, only a few align with the well-characterized TBDTs. The functions of the remaining TBDTs are not known. Predictions made based on genome context and expression pattern suggest their involvement in the transport of xenobiotic compounds across the outer membrane.
Collapse
|
11
|
Kan J, Peng T, Huang T, Xiong G, Hu Z. NarL, a Novel Repressor for CYP108j1 Expression during PAHs Degradation in Rhodococcus sp. P14. Int J Mol Sci 2020; 21:ijms21030983. [PMID: 32024188 PMCID: PMC7037279 DOI: 10.3390/ijms21030983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
Rhodococcus sp. P14 was isolated from crude-oil-contaminated sediments, and a wide range of polycyclic aromatic hydrocarbons (PAHs) could be used as the sole source of carbon and energy. A key CYP450 gene, designated as cyp108j1 and involved in the degradation of PAHs, was identified and was able to hydroxylate various PAHs. However, the regulatory mechanism of the expression of cyp108j1 remains unknown. In this study, we found that the expression of cyp108j1 is negatively regulated by a LuxR (helix-turn-helix transcription factors in acyl-homoserine lactones-mediated quorum sensing) family regulator, NarL (nitrate-dependent two-component regulatory factor), which is located upstream of cyp108j1. Further analysis revealed that NarL can directly bind to the promoter region of cyp108j1. Mutational experiments demonstrated that the binding site between NarL and the cyp108j1 promoter was the palindromic sequence GAAAGTTG-CAACTTTC. Together, the finding reveal that NarL is a novel repressor for the expression of cyp108j1 during PAHs degradation.
Collapse
Affiliation(s)
- Jie Kan
- Department of Biology, Shantou University, Shantou 515063, China; (J.K.); (T.P.); (T.H.)
| | - Tao Peng
- Department of Biology, Shantou University, Shantou 515063, China; (J.K.); (T.P.); (T.H.)
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou 515063, China; (J.K.); (T.P.); (T.H.)
| | - Guangming Xiong
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, 24103 Kiel, Germany;
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou 515063, China; (J.K.); (T.P.); (T.H.)
- Correspondence:
| |
Collapse
|
12
|
Sarkar MR, Bell SG. Complementary and selective oxidation of hydrocarbon derivatives by two cytochrome P450 enzymes of the same family. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01040e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cytochrome P450 enzymes CYP101B1 and CYP101C1, from a Novosphingobium bacterium, can efficiently hydroxylate hydrocarbon derivatives containing a carbonyl moiety. Cyclic ketones (C9 to C15) were oxidised with contrasting yet high selectivity.
Collapse
Affiliation(s)
| | - Stephen G. Bell
- Department of Chemistry
- University of Adelaide
- Adelaide
- Australia
| |
Collapse
|
13
|
Child SA, Flint KL, Bruning JB, Bell SG. The characterisation of two members of the cytochrome P450 CYP150 family: CYP150A5 and CYP150A6 from Mycobacterium marinum. Biochim Biophys Acta Gen Subj 2019; 1863:925-934. [PMID: 30826435 DOI: 10.1016/j.bbagen.2019.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/20/2019] [Accepted: 02/27/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Actinobacteria, including the Mycobacteria, have a large component of cytochrome P450 family monooxygenases. This includes Mycobacterium tuberculosis, M. ulcerans and M. marinum, and M. vanbaalenii. These enzymes can abstract CH bonds and have important roles in natural product biosynthesis. METHODS Two members of the bacterial CYP150 family, CYP150A5 and CYP150A6 from M. marinum, were produced, purified and characterised. The potential substrate ranges of both enzymes were analysed and the monooxygenase activity of CYP150A5 was reconstituted using a physiological electron transfer partner system. CYP150A6 was structurally characterised by X-ray crystallography. RESULTS CYP150A5 was shown to bind various norisoprenoids and terpenoids. It could regioselectively hydroxylate β-ionol. The X-ray crystal structure of substrate-free CYP150A6 was solved to 1.5 Å. This displayed an open conformation with short F and G helices, an unresolved F-G loop region and exposed active site pocket. The active site residues could be identified and important variations were found among the CYP150A enzymes. Haem-binding azole inhibitors were identified for both enzymes. CONCLUSIONS The structure of CYP150A6 will facilitate the identification of physiological substrates and the design of better inhibitors for members of this P450 family. Based on the observed differences in substrate binding preference and sequence variations among the active site residues, their roles are predicted to be different. GENERAL SIGNIFICANCE Multiple CYP150 family members were found in many bacteria and are prevalent in the Mycobacteria including several human pathogens. Inhibition and structural data are reported here for these enzymes for the first time.
Collapse
Affiliation(s)
- Stella A Child
- Department of Chemistry, University of Adelaide, SA 5005, Australia
| | - Kate L Flint
- Department of Chemistry, University of Adelaide, SA 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, SA 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, SA 5005, Australia.
| |
Collapse
|
14
|
Structural and functional characterisation of the cytochrome P450 enzyme CYP268A2 from Mycobacterium marinum. Biochem J 2018; 475:705-722. [DOI: 10.1042/bcj20170946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 11/17/2022]
Abstract
Members of the cytochrome P450 monooxygenase family CYP268 are found across a broad range of Mycobacterium species including the pathogens Mycobacterium avium, M. colombiense, M. kansasii, and M. marinum. CYP268A2, from M. marinum, which is the first member of this family to be studied, was purified and characterised. CYP268A2 was found to bind a variety of substrates with high affinity, including branched and straight chain fatty acids (C10–C12), acetate esters, and aromatic compounds. The enzyme was also found to bind phenylimidazole inhibitors but not larger azoles, such as ketoconazole. The monooxygenase activity of CYP268A2 was efficiently reconstituted using heterologous electron transfer partner proteins. CYP268A2 hydroxylated geranyl acetate and trans-pseudoionone at a terminal methyl group to yield (2E,6E)-8-hydroxy-3,7-dimethylocta-2,6-dien-1-yl acetate and (3E,5E,9E)-11-hydroxy-6,10-dimethylundeca-3,5,9-trien-2-one, respectively. The X-ray crystal structure of CYP268A2 was solved to a resolution of 2.0 Å with trans-pseudoionone bound in the active site. The overall structure was similar to that of the related phytanic acid monooxygenase CYP124A1 enzyme from Mycobacterium tuberculosis, which shares 41% sequence identity. The active site is predominantly hydrophobic, but includes the Ser99 and Gln209 residues which form hydrogen bonds with the terminal carbonyl group of the pseudoionone. The structure provided an explanation on why CYP268A2 shows a preference for shorter substrates over the longer chain fatty acids which bind to CYP124A1 and the selective nature of the catalysed monooxygenase activity.
Collapse
|
15
|
Guo C, Wu ZL. Construction and functional analysis of a whole-cell biocatalyst based on CYP108N7. Enzyme Microb Technol 2017; 106:28-34. [DOI: 10.1016/j.enzmictec.2017.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/31/2022]
|
16
|
Sarkar MR, Lee JHZ, Bell SG. The Oxidation of Hydrophobic Aromatic Substrates by Using a Variant of the P450 Monooxygenase CYP101B1. Chembiochem 2017; 18:2119-2128. [PMID: 28868671 DOI: 10.1002/cbic.201700316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 11/10/2022]
Abstract
The cytochrome P450 monooxygenase CYP101B1, from a Novosphingobium bacterium is able to bind and oxidise aromatic substrates but at a lower activity and efficiency than norisoprenoids and monoterpenoid esters. Histidine 85 of CYP101B1 aligns with tyrosine 96 of CYP101A1, which, in the latter enzyme forms the only hydrophilic interaction with its substrate, camphor. The histidine residue of CYP101B1 was mutated to phenylalanine with the aim of improving the activity of the enzyme for hydrophobic substrates. The H85F mutant lowered the binding affinity and activity of the enzyme for β-ionone and altered the oxidation selectivity. This variant also showed enhanced affinity and activity towards alkylbenzenes, styrenes and methylnaphthalenes. For example the rate of product formation for acenaphthene oxidation was improved sixfold to 245 nmol per nmol CYP per min. Certain disubstituted naphthalenes and substrates, such as phenylcyclohexane and biphenyls, were oxidised with lower activity by the H85F variant. Variants at H85 (A and G) designed to introduce additional space into the active site so as to accommodate these larger substrates did not improve the oxidation activity. As the H85F mutant of CYP101B1 improved the oxidation of hydrophobic substrates, this residue is likely to be in the substrate binding pocket or the access channel of the enzyme. The side chain of the histidine might interact with the carbonyl groups of the favoured norisoprenoid substrates of CYP101B1.
Collapse
Affiliation(s)
- Md Raihan Sarkar
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Joel H Z Lee
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
17
|
Hall EA, Sarkar MR, Bell SG. The selective oxidation of substituted aromatic hydrocarbons and the observation of uncoupling via redox cycling during naphthalene oxidation by the CYP101B1 system. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00088j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidation of polyaromatic hydrocarbons by P450s can be lowered by redox cycling but CYP101B1 regioselectively hydroxylated substituted naphthalenes and biphenyls.
Collapse
Affiliation(s)
- Emma A. Hall
- Department of Chemistry
- University of Adelaide
- Australia
| | | | | |
Collapse
|
18
|
Sarkar MR, Hall EA, Dasgupta S, Bell SG. The Use of Directing Groups Enables the Selective and Efficient Biocatalytic Oxidation of Unactivated Adamantyl C-H Bonds. ChemistrySelect 2016. [DOI: 10.1002/slct.201601615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Md. Raihan Sarkar
- Department of Chemistry; University Adelaide; Adelaide, SA 5005 Australia
| | - Emma A. Hall
- Department of Chemistry; University Adelaide; Adelaide, SA 5005 Australia
| | - Samrat Dasgupta
- Department of Chemistry; University Adelaide; Adelaide, SA 5005 Australia
| | - Stephen G. Bell
- Department of Chemistry; University Adelaide; Adelaide, SA 5005 Australia
| |
Collapse
|
19
|
Lee CW, Yu SC, Lee JH, Park SH, Park H, Oh TJ, Lee JH. Crystal Structure of a Putative Cytochrome P450 Alkane Hydroxylase (CYP153D17) from Sphingomonas sp. PAMC 26605 and Its Conformational Substrate Binding. Int J Mol Sci 2016; 17:ijms17122067. [PMID: 27941697 PMCID: PMC5187867 DOI: 10.3390/ijms17122067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/29/2016] [Accepted: 12/06/2016] [Indexed: 01/07/2023] Open
Abstract
Enzymatic alkane hydroxylation reactions are useful for producing pharmaceutical and agricultural chemical intermediates from hydrocarbons. Several cytochrome P450 enzymes catalyze the regio- and stereo-specific hydroxylation of alkanes. We evaluated the substrate binding of a putative CYP alkane hydroxylase (CYP153D17) from the bacterium Sphingomonas sp. PAMC 26605. Substrate affinities to C10-C12 n-alkanes and C10-C14 fatty acids with Kd values varied from 0.42 to 0.59 μM. A longer alkane (C12) bound more strongly than a shorter alkane (C10), while shorter fatty acids (C10, capric acid; C12, lauric acid) bound more strongly than a longer fatty acid (C14, myristic acid). These data displayed a broad substrate specificity of CYP153D17, hence it was named as a putative CYP alkane hydroxylase. Moreover, the crystal structure of CYP153D17 was determined at 3.1 Å resolution. This is the first study to provide structural information for the CYP153D family. Structural analysis showed that a co-purified alkane-like compound bound near the active-site heme group. The alkane-like substrate is in the hydrophobic pocket containing Thr74, Met90, Ala175, Ile240, Leu241, Val244, Leu292, Met295, and Phe393. Comparison with other CYP structures suggested that conformational changes in the β1-β2, α3-α4, and α6-α7 connecting loop are important for incorporating the long hydrophobic alkane-like substrate. These results improve the understanding of the catalytic mechanism of CYP153D17 and provide valuable information for future protein engineering studies.
Collapse
Affiliation(s)
- Chang Woo Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 406-840, Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea.
| | - Sang-Cheol Yu
- Department of BT-Convergent Pharmaceutical Engineering, Sunmoon University, Asansi 336-708, Korea.
| | - Joo-Ho Lee
- Department of BT-Convergent Pharmaceutical Engineering, Sunmoon University, Asansi 336-708, Korea.
| | - Sun-Ha Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 406-840, Korea.
| | - Hyun Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 406-840, Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea.
| | - Tae-Jin Oh
- Department of BT-Convergent Pharmaceutical Engineering, Sunmoon University, Asansi 336-708, Korea.
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 406-840, Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea.
| |
Collapse
|
20
|
Luo A, Wu YR, Xu Y, Kan J, Qiao J, Liang L, Huang T, Hu Z. Characterization of a cytochrome P450 monooxygenase capable of high molecular weight PAHs oxidization from Rhodococcus sp. P14. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.07.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Plotnikova EG, Shumkova ES, Shumkov MS. Whole-cell bacterial biosensors for the detection of aromatic hydrocarbons and their chlorinated derivatives (Review). APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816040128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Hall EA, Bell SG. The efficient and selective biocatalytic oxidation of norisoprenoid and aromatic substrates by CYP101B1 from Novosphingobium aromaticivorans DSM12444. RSC Adv 2015. [DOI: 10.1039/c4ra14010a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CYP101B1 fromNovosphingobium aromaticivoransoxidises ionone derivatives and phenylcyclohexane with high activity and regioselectivity.
Collapse
Affiliation(s)
- Emma A. Hall
- School of Chemistry and Physics
- University of Adelaide
- Australia
| | - Stephen G. Bell
- School of Chemistry and Physics
- University of Adelaide
- Australia
| |
Collapse
|
23
|
Mortazavi B, Horel A, Anders JS, Mirjafari A, Beazley MJ, Sobecky PA. Enhancing the biodegradation of oil in sandy sediments with choline: a naturally methylated nitrogen compound. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 182:53-62. [PMID: 23896678 DOI: 10.1016/j.envpol.2013.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/03/2013] [Accepted: 06/05/2013] [Indexed: 06/02/2023]
Abstract
We investigated how additions of choline, a naturally occurring methylated nitrogen-containing compound, accelerated hydrocarbon degradation in sandy sediments contaminated with moderately weathered crude oil (4000 mg kg(-1) sediment). Addition of lauroylcholine chloride (LCC) and tricholine citrate (TCC) to oil contaminated sediments resulted in 1.6 times higher hydrocarbon degradation rates compared to treatments without added choline derivatives. However, the degradation rate constant for the oil contaminated sediments amended with LCC was similar to that in contaminated sediments amended with inorganic nitrogen, phosphorus, and glucose. Additions of LLC and TCC to sediments containing extensively weathered oil also resulted in enhanced mineralization rates. Cultivation-free 16S rRNA analysis revealed the presence of an extant microbial community with clones closely related to known hydrocarbon degraders from the Gammaproteobacteria, Alphaproteobacteria, and Firmicutes phyla. The results demonstrate that the addition of minimal amounts of organic compounds to oil contaminated sediments enhances the degradation of hydrocarbons.
Collapse
Affiliation(s)
- Behzad Mortazavi
- Department of Biological Sciences, Box 870344, University of Alabama, Tuscaloosa, AL 35487, USA; Dauphin Island Sea Lab, Dauphin Island, AL 36528, USA.
| | | | | | | | | | | |
Collapse
|