1
|
Pandey S, Berger BW, Acharya R. Structural Analyses of Substrate-pH Activity Pairing Observed across Diverse Polysaccharide Lyases. Biochemistry 2023; 62:2775-2790. [PMID: 37620757 DOI: 10.1021/acs.biochem.3c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Anionic polysaccharides found in nature are functionally and structurally diverse, and so are the polysaccharide lyases (PLs) that catalyze their degradation. Atomic superposition of various PL folds according to their cleavable substrate structure confirms the occurrence of structural convergence at PL active sites. This suggests that various PL folds have emerged to cleave a particular class of anionic polysaccharide during the course of evolution. Whereas the structural and mechanistic similarity of PL active site has been highlighted in earlier studies, a detailed understanding regarding functional properties of this catalytic convergence remains an open question, especially the role of extrinsic factors such as pH in the context of substrate binding and catalysis. Our earlier structural and functional work on pH directed multisubstrate specificity of Smlt1473 inspired us to regroup PLs according to substrate type to analyze the pH dependence of their catalytic activity. Interestingly, we find that particular groups of substrates are cleaved in a particular pH range (acidic/neutral/basic) irrespective of PL fold, boosting the idea of functional convergence as well. On the basis of this observation, we set out to define structurally and computationally the key constituents of an active site among PL families. This study delineates the structural determinants of conserved "substrate-pH activity pairing" within and between PL families.
Collapse
Affiliation(s)
- Shubhant Pandey
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, 752050 Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094 Maharashtra, India
| | - Bryan W Berger
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Rudresh Acharya
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, 752050 Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094 Maharashtra, India
| |
Collapse
|
2
|
Dash P, Acharya R. Distinct Modes of Hidden Structural Dynamics in the Functioning of an Allosteric Polysaccharide Lyase. ACS CENTRAL SCIENCE 2022; 8:933-947. [PMID: 35912344 PMCID: PMC9336148 DOI: 10.1021/acscentsci.2c00277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Dynamics is an essential process to drive an enzyme to perform a function. When a protein sequence encodes for its three-dimensional structure and hence its function, it essentially defines the intrinsic dynamics of the molecule. The static X-ray crystal structure was thought to shed little insight into the molecule's dynamics until the recently available tool "Ensemble refinement" (ER). Here, we report the structure-function-dynamics of PanPL, an alginate-specific, endolytic, allosteric polysaccharide lyase belonging to the PL-5 family from Pandoraea apista. The crystal structures determined in apo and tetra-ManA bound forms reveal that the PanPL maintains a closed state with an N-terminal loop lid (N-loop-lid) arched over the active site. The B-factor analyses and ER congruently reveal how pH influences the functionally relevant atomic fluctuations at the N-loop-lid. The ER unveils enhanced fluctuations at the N-loop-lid upon substrate binding. The normal-mode analysis finds that the functional states are confined. The 1 μs simulation study suggests the existence of a hidden open state. The longer N-loop-lid selects a mechanism to adopt a closed state and undergo fluctuations to facilitate the substrate binding. Here, our work demonstrates the distinct modes of dynamics; both intrinsic and substrate-induced conformational changes are vital for enzyme functioning and allostery.
Collapse
Affiliation(s)
- Prerana Dash
- School
of Biological Sciences, National Institute
of Science Education and Research, Bhubaneswar, 752050, Odisha, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, Maharashtra, India
| | - Rudresh Acharya
- School
of Biological Sciences, National Institute
of Science Education and Research, Bhubaneswar, 752050, Odisha, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, Maharashtra, India
| |
Collapse
|
3
|
Gheorghita AA, Wolfram F, Whitfield GB, Jacobs HM, Pfoh R, Wong SSY, Guitor AK, Goodyear MC, Berezuk AM, Khursigara CM, Parsek MR, Howell PL. The Pseudomonas aeruginosa homeostasis enzyme AlgL clears the periplasmic space of accumulated alginate during polymer biosynthesis. J Biol Chem 2022; 298:101560. [PMID: 34990713 PMCID: PMC8829089 DOI: 10.1016/j.jbc.2021.101560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen and a leading cause of chronic infection in the lungs of individuals with cystic fibrosis. After colonization, P. aeruginosa often undergoes a phenotypic conversion to mucoidy, characterized by overproduction of the alginate exopolysaccharide. This conversion is correlated with poorer patient prognoses. The majority of genes required for alginate synthesis, including the alginate lyase, algL, are located in a single operon. Previous investigations of AlgL have resulted in several divergent hypotheses regarding the protein’s role in alginate production. To address these discrepancies, we determined the structure of AlgL and, using multiple sequence alignments, identified key active site residues involved in alginate binding and catalysis. In vitro enzymatic analysis of active site mutants highlights R249 and Y256 as key residues required for alginate lyase activity. In a genetically engineered P. aeruginosa strain where alginate biosynthesis is under arabinose control, we found that AlgL is required for cell viability and maintaining membrane integrity during alginate production. We demonstrate that AlgL functions as a homeostasis enzyme to clear the periplasmic space of accumulated polymer. Constitutive expression of the AlgU/T sigma factor mitigates the effects of an algL deletion during alginate production, suggesting that an AlgU/T-regulated protein or proteins can compensate for an algL deletion. Together, our study demonstrates the role of AlgL in alginate biosynthesis, explains the discrepancies observed previously across other P. aeruginosa ΔalgL genetic backgrounds, and clarifies the existing divergent data regarding the function of AlgL as an alginate degrading enzyme.
Collapse
Affiliation(s)
- Andreea A Gheorghita
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Francis Wolfram
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gregory B Whitfield
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Holly M Jacobs
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Roland Pfoh
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Steven S Y Wong
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Allison K Guitor
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mara C Goodyear
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Alison M Berezuk
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Gao SK, Yin R, Wang XC, Jiang HN, Liu XX, Lv W, Ma Y, Zhou YX. Structure Characteristics, Biochemical Properties, and Pharmaceutical Applications of Alginate Lyases. Mar Drugs 2021; 19:628. [PMID: 34822499 PMCID: PMC8618178 DOI: 10.3390/md19110628] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023] Open
Abstract
Alginate, the most abundant polysaccharides of brown algae, consists of various proportions of uronic acid epimers α-L-guluronic acid (G) and β-D-mannuronic acid (M). Alginate oligosaccharides (AOs), the degradation products of alginates, exhibit excellent bioactivities and a great potential for broad applications in pharmaceutical fields. Alginate lyases can degrade alginate to functional AOs with unsaturated bonds or monosaccharides, which can facilitate the biorefinery of brown algae. On account of the increasing applications of AOs and biorefinery of brown algae, there is a scientific need to explore the important aspects of alginate lyase, such as catalytic mechanism, structure, and property. This review covers fundamental aspects and recent developments in basic information, structural characteristics, the structure-substrate specificity or catalytic efficiency relationship, property, molecular modification, and applications. To meet the needs of biorefinery systems of a broad array of biochemical products, alginate lyases with special properties, such as salt-activated, wide pH adaptation range, and cold adaptation are outlined. Withal, various challenges in alginate lyase research are traced out, and future directions, specifically on the molecular biology part of alginate lyases, are delineated to further widen the horizon of these exceptional alginate lyases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan-Xia Zhou
- Marine College, Shandong University, Weihai 264209, China; (S.-K.G.); (R.Y.); (X.-C.W.); (H.-N.J.); (X.-X.L.); (W.L.); (Y.M.)
| |
Collapse
|
5
|
Pandey S, Mahanta P, Berger BW, Acharya R. Structural insights into the mechanism of pH-selective substrate specificity of the polysaccharide lyase Smlt1473. J Biol Chem 2021; 297:101014. [PMID: 34358563 PMCID: PMC8511899 DOI: 10.1016/j.jbc.2021.101014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/01/2022] Open
Abstract
Polysaccharide lyases (PLs) are a broad class of microbial enzymes that degrade anionic polysaccharides. Equally broad diversity in their polysaccharide substrates has attracted interest in biotechnological applications such as biomass conversion to value-added chemicals and microbial biofilm removal. Unlike other PLs, Smlt1473 present in the clinically relevant Stenotrophomonas maltophilia strain K279a demonstrates a wide range of pH-dependent substrate specificities toward multiple, diverse polysaccharides: hyaluronic acid (pH 5.0), poly-β-D-glucuronic (celluronic) acid (pH 7.0), poly-β-D-mannuronic acid, and poly-α-L-guluronate (pH 9.0). To decode the pH-driven multiple substrate specificities and selectivity in this single enzyme, we present the X-ray structures of Smlt1473 determined at multiple pH values in apo and mannuronate-bound states as well as the tetra-hyaluronate-docked structure. Our results indicate that structural flexibility in the binding site and N-terminal loop coupled with specific substrate stereochemistry facilitates distinct modes of entry for substrates having diverse charge densities and chemical structures. Our structural analyses of wild-type apo structures solved at different pH values (5.0–9.0) and pH-trapped (5.0 and 7.0) catalytically relevant wild-type mannuronate complexes (1) indicate that pH modulates the catalytic microenvironment for guiding structurally and chemically diverse polysaccharide substrates, (2) further establish that molecular-level fluctuation in the enzyme catalytic tunnel is preconfigured, and (3) suggest that pH modulates fluctuations resulting in optimal substrate binding and cleavage. Furthermore, our results provide key insight into how strategies to reengineer both flexible loop and regions distal to the active site could be developed to target new and diverse substrates in a wide range of applications.
Collapse
Affiliation(s)
- Shubhant Pandey
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Pranjal Mahanta
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, 752050, Odisha, India
| | - Bryan W Berger
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States.
| | - Rudresh Acharya
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India.
| |
Collapse
|
6
|
Wei W, Zhang X, Hou Z, Hu X, Wang Y, Wang C, Yang S, Cui H, Zhu L. Microbial Regulation of Deterioration and Preservation of Salted Kelp under Different Temperature and Salinity Conditions. Foods 2021; 10:foods10081723. [PMID: 34441501 PMCID: PMC8394645 DOI: 10.3390/foods10081723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022] Open
Abstract
High salinity is an effective measure to preserve kelp, but salted kelp can still deteriorate after long-term preservation. In order to clarify the key conditions and microbial behavior of salted kelp preservation, 10% (S10), 20% (S20), and 30% (S30) salt concentrations were evaluated at 25 °C (T25) and 4 °C (T4). After 30 days storage, these salted kelps showed different states including rot (T25S10), softening (T25S20), and undamaged (other samples). By detecting polysaccharide lyase activity and performing high-throughput sequencing of the prokaryotic 16S rRNA sequence and metagenome, we found that deteriorated kelps (T25S10 and T25S20) had significantly higher alginate lyase activity and bacterial relative abundance than other undamaged samples. Dyella, Saccharophagus, Halomonas, Aromatoleum, Ulvibacter, Rhodopirellula, and Microbulbifer were annotated with genes encoding endonuclease-type alginate lyases, while Bacillus and Thiobacillus were annotated as the exonuclease type. Additionally, no alginate lyase activity was detected in undamaged kelps, whose dominant microorganisms were halophilic archaea without alginate lyase-encoding genes. These results indicated that room-temperature storage may promote salted kelp deterioration due to the secretion of bacterial alginate lyase, while ultra-high-salinity and low-temperature storage can inhibit bacterial alginate lyase and promote the growth of halophilic archaea without alginate lyase, thus achieving the preservation of salted kelp.
Collapse
Affiliation(s)
- Wei Wei
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (W.W.); (X.Z.); (S.Y.)
| | - Xin Zhang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (W.W.); (X.Z.); (S.Y.)
| | - Zhaozhi Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.H.); (X.H.); (Y.W.); (C.W.); (H.C.)
| | - Xinyu Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.H.); (X.H.); (Y.W.); (C.W.); (H.C.)
| | - Yuan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.H.); (X.H.); (Y.W.); (C.W.); (H.C.)
| | - Caizheng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.H.); (X.H.); (Y.W.); (C.W.); (H.C.)
| | - Shujing Yang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (W.W.); (X.Z.); (S.Y.)
| | - Henglin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.H.); (X.H.); (Y.W.); (C.W.); (H.C.)
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.H.); (X.H.); (Y.W.); (C.W.); (H.C.)
- Correspondence: ; Tel.: +86-511-8878-0201
| |
Collapse
|
7
|
Zhang L, Li X, Zhang X, Li Y, Wang L. Bacterial alginate metabolism: an important pathway for bioconversion of brown algae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:158. [PMID: 34275475 PMCID: PMC8286568 DOI: 10.1186/s13068-021-02007-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Brown macroalgae have attracted great attention as an alternative feedstock for biorefining. Although direct conversion of ethanol from alginates (major components of brown macroalgae cell walls) is not amenable for industrial production, significant progress has been made not only on enzymes involved in alginate degradation, but also on metabolic pathways for biorefining at the laboratory level. In this article, we summarise recent advances on four aspects: alginate, alginate lyases, different alginate-degrading systems, and application of alginate lyases and associated pathways. This knowledge will likely inspire sustainable solutions for further application of both alginate lyases and their associated pathways.
Collapse
Affiliation(s)
- Lanzeng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xue Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiyue Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
8
|
Violot S, Galisson F, Carrique L, Jugnarain V, Conchou L, Robert X, Thureau A, Helbert W, Aghajari N, Ballut L. Exploring molecular determinants of polysaccharide Lyase family 6-1 enzyme activity. Glycobiology 2021; 31:1557-1570. [PMID: 34245266 DOI: 10.1093/glycob/cwab073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 11/14/2022] Open
Abstract
The Polysaccharide Lyase Family 6 (PL6) represents one of the 41 polysaccharide lyase families classified in the CAZy database with the vast majority of its members being alginate lyases grouped into three subfamilies, PL6_1-3. To decipher the mode of recognition and action of the enzymes belonging to subfamily PL6_1, we solved the crystal structures of Pedsa0632, Patl3640, Pedsa3628 and Pedsa3807, which all show different substrate specificities and mode of action (endo-/exo-lyase). Thorough exploration of the structures of Pedsa0632 and Patl3640 in complex with their substrates as well as docking experiments confirm that the conserved residues in subsites -1 to +3 of the catalytic site form a common platform which can accommodate various types of alginate in a very similar manner but with a series of original adaptations bringing them their specificities of action. From comparative studies with existing structures of PL6_1 alginate lyases, we observe that in the right-handed parallel β-helix fold shared by all these enzymes, the substrate binding site harbors the same overall conserved structures and organization. Despite this apparent similarity, it appears that members of the PL6_1 subfamily specifically accommodate and catalyze the degradation of different alginates suggesting that this common platform is actually a highly adaptable and specific tool.
Collapse
Affiliation(s)
- Sébastien Violot
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Frédéric Galisson
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Loïc Carrique
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Vinesh Jugnarain
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Léa Conchou
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Xavier Robert
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | | | - William Helbert
- Centre de Recherches sur les Macromolécules Végétales (CERMAV), Université Grenoble Alpes, CNRS, 38000 Grenoble, France
| | - Nushin Aghajari
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Lionel Ballut
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| |
Collapse
|
9
|
Alginate Degradation: Insights Obtained through Characterization of a Thermophilic Exolytic Alginate Lyase. Appl Environ Microbiol 2021; 87:AEM.02399-20. [PMID: 33397696 DOI: 10.1128/aem.02399-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/19/2020] [Indexed: 01/07/2023] Open
Abstract
Enzymatic depolymerization of seaweed polysaccharides is gaining interest for the production of functional oligosaccharides and fermentable sugars. Herein, we describe a thermostable alginate lyase that belongs to polysaccharide lyase family 17 (PL17) and was derived from an Arctic Mid-Ocean Ridge (AMOR) metagenomics data set. This enzyme, AMOR_PL17A, is a thermostable exolytic oligoalginate lyase (EC 4.2.2.26), which can degrade alginate, poly-β-d-mannuronate, and poly-α-l-guluronate within a broad range of pHs, temperatures, and salinity conditions. Site-directed mutagenesis showed that tyrosine Y251, previously suggested to act as a catalytic acid, indeed is essential for catalysis, whereas mutation of tyrosine Y446, previously proposed to act as a catalytic base, did not affect enzyme activity. The observed reaction products are protonated and deprotonated forms of the 4,5-unsaturated uronic acid monomer, Δ, two hydrates of DEH (4-deoxy-l-erythro-5-hexulosuronate), which are formed after ring opening, and, finally, two epimers of a 5-member hemiketal called 4-deoxy-d-manno-hexulofuranosidonate (DHF), formed through intramolecular cyclization of hydrated DEH. The detection and nuclear magnetic resonance (NMR) assignment of these hemiketals refine our current understanding of alginate degradation.IMPORTANCE The potential markets for seaweed-derived products and seaweed processing technologies are growing, yet commercial enzyme cocktails for complete conversion of seaweed to fermentable sugars are not available. Such an enzyme cocktail would require the catalytic properties of a variety of different enzymes, where fucoidanases, laminarinases, and cellulases together with endo- and exo-acting alginate lyases would be the key enzymes. Here, we present an exo-acting alginate lyase that efficiently produces monomeric sugars from alginate. Since it is only the second characterized exo-acting alginate lyase capable of degrading alginate at a high industrially relevant temperature (≥60°C), this enzyme may be of great biotechnological and industrial interest. In addition, in-depth NMR-based structural elucidation revealed previously undescribed rearrangement products of the unsaturated monomeric sugars generated from exo-acting lyases. The insight provided by the NMR assignment of these products facilitates future assessment of product formation by alginate lyases.
Collapse
|
10
|
Xu X, Zeng D, Wu D, Lin J. Single-Point Mutation Near Active Center Increases Substrate Affinity of Alginate Lyase AlgL-CD. Appl Biochem Biotechnol 2021; 193:1513-1531. [PMID: 33484450 DOI: 10.1007/s12010-021-03507-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/07/2021] [Indexed: 11/30/2022]
Abstract
Alginate lyases have been widely used for the preparation of bioactive alginate oligosaccharides. An alginate lyase AlgL-CD was rationally designed by introducing alkaline amino acid residues near active center to increase activity. One of its mutants E226K presented much higher activity than wild-type AlgL-CD. Substrate affinity of E226K increased 10 folds as the Km values indicated. The spectra of intrinsic emission fluorescence and circular dichroism of E226K suggested the whole enzyme turned to be more flexible. The 8-anilino-1-naphthalenesulfonate (ANS)-binding assay showed that the hydrophobic active center of E226K was more available to ligand. Molecular dynamic analysis of the enzyme-substrate complex showed that lid loops of the active center in E226K turned to be more opened up, which might contribute to the increase of substrate-binding affinity. Meanwhile, the catalytic residue of E226K was closer to the hydrogen donor C5 atom of the substrate to increase catalysis rate. The final degradation products of alginate by E226K were determined to be identical with that of AlgL-CD. This study provides guidance for improving enzymatic preparation efficiency of bioactive alginate oligosaccharides.
Collapse
Affiliation(s)
- Xinqi Xu
- College of Biological Sciences and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Deyang Zeng
- College of Biological Sciences and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Dongyan Wu
- College of Biological Sciences and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Juan Lin
- College of Biological Sciences and Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
11
|
Alginate Lyase Aly36B is a New Bacterial Member of the Polysaccharide Lyase Family 36 and Catalyzes by a Novel Mechanism With Lysine as Both the Catalytic Base and Catalytic Acid. J Mol Biol 2019; 431:4897-4909. [DOI: 10.1016/j.jmb.2019.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 11/22/2022]
|
12
|
Zhu B, Li K, Wang W, Ning L, Tan H, Zhao X, Yin H. Preparation of trisaccharides from alginate by a novel alginate lyase Alg7A from marine bacterium Vibrio sp. W13. Int J Biol Macromol 2019; 139:879-885. [DOI: 10.1016/j.ijbiomac.2019.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/24/2019] [Accepted: 08/01/2019] [Indexed: 01/18/2023]
|
13
|
Liu J, Yang S, Li X, Yan Q, Reaney MJT, Jiang Z. Alginate Oligosaccharides: Production, Biological Activities, and Potential Applications. Compr Rev Food Sci Food Saf 2019; 18:1859-1881. [DOI: 10.1111/1541-4337.12494] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/09/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Jun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing 100083 China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business Univ. Beijing 100048 China
| | - Shaoqing Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing 100083 China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business Univ. Beijing 100048 China
| | - Qiaojuan Yan
- Bioresource Utilization LaboratoryCollege of EngineeringChina Agricultural Univ. Beijing 100083 China
| | - Martin J. T. Reaney
- Dept. of Plant SciencesUniv. of Saskatchewan Saskatoon SK S7N 5A8 Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory (GUSTO)Dept. of Food Science and EngineeringJinan Univ. Guangzhou 510632 China
| | - Zhengqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing 100083 China
| |
Collapse
|
14
|
Stender EGP, Dybdahl Andersen C, Fredslund F, Holck J, Solberg A, Teze D, Peters GHJ, Christensen BE, Aachmann FL, Welner DH, Svensson B. Structural and functional aspects of mannuronic acid-specific PL6 alginate lyase from the human gut microbe Bacteroides cellulosilyticus. J Biol Chem 2019; 294:17915-17930. [PMID: 31530640 PMCID: PMC6879350 DOI: 10.1074/jbc.ra119.010206] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/16/2019] [Indexed: 01/28/2023] Open
Abstract
Alginate is a linear polysaccharide from brown algae consisting of 1,4-linked β-d-mannuronic acid (M) and α-l-guluronic acid (G) arranged in M, G, and mixed MG blocks. Alginate was assumed to be indigestible in humans, but bacteria isolated from fecal samples can utilize alginate. Moreover, genomes of some human gut microbiome-associated bacteria encode putative alginate-degrading enzymes. Here, we genome-mined a polysaccharide lyase family 6 alginate lyase from the gut bacterium Bacteroides cellulosilyticus (BcelPL6). The structure of recombinant BcelPL6 was solved by X-ray crystallography to 1.3 Å resolution, revealing a single-domain, monomeric parallel β-helix containing a 10-step asparagine ladder characteristic of alginate-converting parallel β-helix enzymes. Substitutions of the conserved catalytic site residues Lys-249, Arg-270, and His-271 resulted in activity loss. However, imidazole restored the activity of BcelPL6-H271N to 2.5% that of the native enzyme. Molecular docking oriented tetra-mannuronic acid for syn attack correlated with M specificity. Using biochemical analyses, we found that BcelPL6 initially releases unsaturated oligosaccharides of a degree of polymerization of 2-7 from alginate and polyM, which were further degraded to di- and trisaccharides. Unlike other PL6 members, BcelPL6 had low activity on polyMG and none on polyG. Surprisingly, polyG increased BcelPL6 activity on alginate 7-fold. LC-electrospray ionization-MS quantification of products and lack of activity on NaBH4-reduced octa-mannuronic acid indicated that BcelPL6 is an endolyase that further degrades the oligosaccharide products with an intact reducing end. We anticipate that our results advance predictions of the specificity and mode of action of PL6 enzymes.
Collapse
Affiliation(s)
- Emil G P Stender
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Christian Dybdahl Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Folmer Fredslund
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jesper Holck
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Amalie Solberg
- Department of Biotechnology and Food Science, NTNU, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - David Teze
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Bjørn E Christensen
- Department of Biotechnology and Food Science, NTNU, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Finn L Aachmann
- Department of Biotechnology and Food Science, NTNU, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Ditte H Welner
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
15
|
Xu F, Wang P, Zhang YZ, Chen XL. Diversity of Three-Dimensional Structures and Catalytic Mechanisms of Alginate Lyases. Appl Environ Microbiol 2018; 84:e02040-17. [PMID: 29150496 PMCID: PMC5772247 DOI: 10.1128/aem.02040-17] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alginate is a linear polysaccharide produced mainly by brown algae in marine environments. Alginate consists of a linear block copolymer made up of two monomeric units, β-d-mannuronate (M) and its C-5 epimer α-l-guluronate (G). Alginate lyases are polysaccharide lyases (PL) that degrade alginate via a β-elimination reaction. These enzymes play an important role in marine carbon recycling and also have widespread industrial applications. So far, more than 1,774 alginate lyase sequences have been identified and are distributed into 7 PL families. In this review, the folds, conformational changes during catalysis, and catalytic mechanisms of alginate lyases are described. Thus far, structures for 15 alginate lyases have been solved and are divided into 3 fold classes: the β-jelly roll class (PL7, -14, and -18), the (α/α)n toroid class (PL5, -15, and -17), and the β-helix fold (PL6). These enzymes adopt two different mechanisms for catalysis, and three kinds of conformational changes occur during this process. Moreover, common features in the structures, conformational changes, and catalytic mechanisms are summarized, providing a comprehensive understanding on alginate lyases.
Collapse
Affiliation(s)
- Fei Xu
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Peng Wang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Yu-Zhong Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
16
|
Qin HM, Miyakawa T, Inoue A, Nishiyama R, Nakamura A, Asano A, Sawano Y, Ojima T, Tanokura M. Structure and Polymannuronate Specificity of a Eukaryotic Member of Polysaccharide Lyase Family 14. J Biol Chem 2017; 292:2182-2190. [PMID: 28011642 PMCID: PMC5313092 DOI: 10.1074/jbc.m116.749929] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/13/2016] [Indexed: 11/06/2022] Open
Abstract
Alginate is an abundant algal polysaccharide, composed of β-d-mannuronate and its C5 epimer α-l-guluronate, that is a useful biomaterial in cell biology and tissue engineering, with applications in cancer and aging research. The alginate lyase (EC 4.2.2.3) from Aplysia kurodai, AkAly30, is a eukaryotic member of the polysaccharide lyase 14 (PL-14) family and degrades alginate by cleaving the glycosidic bond through a β-elimination reaction. Here, we present the structural basis for the substrate specificity, with a preference for polymannuronate, of AkAly30. The crystal structure of AkAly30 at a 1.77 Å resolution and the putative substrate-binding model show that the enzyme adopts a β-jelly roll fold at the core of the structure and that Lys-99, Tyr-140, and Tyr-142 form catalytic residues in the active site. Their arrangements allow the carboxyl group of mannuronate residues at subsite +1 to form ionic bonds with Lys-99. The coupled tyrosine forms a hydrogen bond network with the glycosidic bond, and the hydroxy group of Tyr-140 is located near the C5 atom of the mannuronate residue. These interactions could promote the β-elimination of the mannuronate residue at subsite +1. More interestingly, Gly-118 and the disulfide bond formed by Cys-115 and Cys-124 control the conformation of an active-site loop, which makes the space suitable for substrate entry into subsite -1. The cleavage efficiency of AkAly30 is enhanced relative to that of mutants lacking either Gly-118 or the Cys-115-Cys-124 disulfide bond. The putative binding model and mutagenesis studies provide a novel substrate recognition mode explaining the polymannuronate specificity of PL-14 alginate lyases.
Collapse
Affiliation(s)
- Hui-Min Qin
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- the College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, China
| | - Takuya Miyakawa
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akira Inoue
- the Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan, and
| | - Ryuji Nishiyama
- the Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan, and
| | - Akira Nakamura
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Atsuko Asano
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoriko Sawano
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- the Laboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, 2-8-30 Kounodai, Ichikawa-shi, Chiba 272-0827, Japan
| | - Takao Ojima
- the Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan, and
| | - Masaru Tanokura
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan,
| |
Collapse
|
17
|
Jang CH, Piao YL, Huang X, Yoon EJ, Park SH, Lee K, Zhan CG, Cho H. Modeling and Re-Engineering of Azotobacter vinelandii Alginate Lyase to Enhance Its Catalytic Efficiency for Accelerating Biofilm Degradation. PLoS One 2016; 11:e0156197. [PMID: 27253324 PMCID: PMC4890793 DOI: 10.1371/journal.pone.0156197] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023] Open
Abstract
Alginate is known to prevent elimination of Pseudomonas aeruginosa biofilms. Alginate lyase (AlgL) might therefore facilitate treatment of Pseudomonas aeruginosa-infected cystic fibrosis patients. However, the catalytic activity of wild-type AlgL is not sufficiently high. Therefore, molecular modeling and site-directed mutagenesis of AlgL might assist in enzyme engineering for therapeutic development. AlgL, isolated from Azotobacter vinelandii, catalyzes depolymerization of alginate via a β-elimination reaction. AlgL was modeled based on the crystal structure template of Sphingomonas AlgL species A1-III. Based on this computational analysis, AlgL was subjected to site-directed mutagenesis to improve its catalytic activity. The kcat/Km of the K194E mutant showed a nearly 5-fold increase against the acetylated alginate substrate, as compared to the wild-type. Double and triple mutants (K194E/K245D, K245D/K319A, K194E/K245D/E312D, and K194E/K245D/K319A) were also prepared. The most potent mutant was observed to be K194E/K245D/K319A, which has a 10-fold improved kcat value (against acetylated alginate) compared to the wild-type enzyme. The antibiofilm effect of both AlgL forms was identified in combination with piperacillin/tazobactam (PT) and the disruption effect was significantly higher in mutant AlgL combined with PT than wild-type AlgL. However, for both the wild-type and K194E/K245D/K319A mutant, the use of the AlgL enzyme alone did not show significant antibiofilm effect.
Collapse
Affiliation(s)
- Chul Ho Jang
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju, 501–757, Republic of Korea
| | - Yu Lan Piao
- Department of Polymer Science & Engineering, Chosun University, Gwangju, 501–759, South Korea
| | - Xiaoqin Huang
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, United States of America
| | - Eun Jeong Yoon
- Department of Polymer Science & Engineering, Chosun University, Gwangju, 501–759, South Korea
| | - So Hee Park
- Department of Polymer Science & Engineering, Chosun University, Gwangju, 501–759, South Korea
| | - Kyoung Lee
- Department of Microbiology, Changwon National University, Changwon, Kyongnam, 641–773, Republic of Korea
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, United States of America
| | - Hoon Cho
- Department of Polymer Science & Engineering, Chosun University, Gwangju, 501–759, South Korea
| |
Collapse
|
18
|
MacDonald LC, Weiler EB, Berger BW. Engineering broad-spectrum digestion of polyuronides from an exolytic polysaccharide lyase. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:43. [PMID: 26913076 PMCID: PMC4765187 DOI: 10.1186/s13068-016-0455-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/09/2016] [Indexed: 05/16/2023]
Abstract
BACKGROUND Macroalgae represents a promising source of fermentable carbohydrates for use in the production of energy efficient biofuel. The primary carbohydrate in brown algae is the uronic acid-containing alginate, whereas green algae contains a significant amount of glucuronan. A necessary step in the conversion of these polyuronides to bioethanol is saccharification, which can be achieved by enzymatic or chemical degradation. RESULTS Polysaccharide lyases are a class of enzymes which cleave uronic acid-containing glycans via a β-elimination mechanism, acting both endo- and exolytically on their substrates. In the present work, we characterize a putative alginate lyase from Stenotrophomonas maltophilia K279a (Smlt2602) and describe a H208F mutant that, in addition to cleaving alginate-based substrates, displays significant, exolytic glucuronan activity. CONCLUSIONS To our knowledge this is the first polysaccharide lyase to act exolytically on glucuronan and is an attractive candidate for the broad-spectrum digestion of polyuronides into fermentable monomers.
Collapse
Affiliation(s)
- Logan C. MacDonald
- />Program in Bioengineering, Lehigh University, B320 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015 USA
| | - Elizabeth B. Weiler
- />Program in Bioengineering, Lehigh University, B320 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015 USA
| | - Bryan W. Berger
- />Program in Bioengineering, Lehigh University, B320 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015 USA
- />Department of Chemical and Biomolecular Engineering, Lehigh University, B320 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015 USA
| |
Collapse
|
19
|
Mori M, Ichikawa M, Kiguchi Y, Miyazaki T, Hattori M, Nishikawa A, Tonozuka T. A Surface Loop in the N-Terminal Domain of <i>Pedobacter heparinus </i>Heparin Lyase II is Important for Activity. J Appl Glycosci (1999) 2016; 63:7-11. [PMID: 34354475 PMCID: PMC8056909 DOI: 10.5458/jag.jag.jag-2015_019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/15/2015] [Indexed: 12/02/2022] Open
Abstract
Pedobacter heparinus heparin lyase II (PhHepII) is composed of N-terminal, central, and C-terminal domains. A long surface loop, designated loop-A, is in the N-terminal domain and is composed of amino acids 84-89. In this study, we deleted two, three, or four residues in loop-A to create Δ86-87, Δ85-87, and Δ84-87 PhHepII deletion mutants. We hypothesized that the deletions would increase PhHepII thermostability. After heating purified PhHepII enzymes at 45 °C for 5 min, 6.1 % of the enzyme activity remained in wild-type PhHepII, whereas 10.6 % of the enzyme activity remained in Δ86-87 PhHepII. The results indicated that the deletion caused a significant decrease in the activity, although Δ86-87 PhHepII is slightly more thermostable than wild-type PhHepII. In addtion, Δ85-87 and Δ84-87 PhHepII had weak or no enzyme activity, even when unheated. Circular dichroism spectra showed that Δ85-87 PhHepII was properly folded. These results suggest that the flexibility of loop-A is important for PhHepII enzyme activity.
Collapse
Affiliation(s)
- Marina Mori
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology
| | - Megumi Ichikawa
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology
| | - Yumiko Kiguchi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology
| | - Takatsugu Miyazaki
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology
| | - Makoto Hattori
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology
| | - Atsushi Nishikawa
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology
| | - Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology
| |
Collapse
|
20
|
Kim HS, Chu YJ, Park CH, Lee EY, Kim HS. Site-Directed Mutagenesis-Based Functional Analysis and Characterization of Endolytic Lyase Activity of N- and C-Terminal Domains of a Novel Oligoalginate Lyase from Sphingomonas sp. MJ-3 Possessing Exolytic Lyase Activity in the Intact Enzyme. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:782-792. [PMID: 26342491 DOI: 10.1007/s10126-015-9658-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/14/2015] [Indexed: 06/05/2023]
Abstract
A novel oligoalginate lyase from a marine bacterium, Sphingomonas sp. strain MJ-3, exhibited a unique alginate degradation activity that completely depolymerizes alginate to monomers through the formation of oligomers. In order to reveal the reason why MJ-3 oligoalginate can exhibit both endolytic and exolytic alginate lyase activities, ten mutants were developed and characterized on the basis of homology modeling. When the recombinant cell lysates containing the mutated proteins of MJ-3 oligoalginate lyase were allowed to react with alginate, the Asn177Ala, His178Ala, Tyr234Phe, His389Ala, and Tyr426Phe mutants showed reduced oligoalginate lyase activity, whereas the Arg236Ala mutant exhibited endolytic activity. Interestingly, the overexpressed Arg236Ala protein (79.6 kDa) was proteolytically cleaved into two fragments, i.e., the N-terminal 32.0-kDa and the C-terminal 47.6-kDa fragments. Both the purified N-terminal and C-terminal fragments showed endolytic lyase activity. They preferentially degraded a heteropolymeric (polyMG) block than poly-β-D-mannuronate (polyM) or poly-α-L-guluronate (polyG) blocks. These results suggest that the oligoalginate lyase activity of MJ-3 enzyme is derived from the cooperative interaction between the N- and C-terminal endolytic alginate lyase domains in the intact enzyme.
Collapse
Affiliation(s)
- Hae Sol Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan, 608-736, Republic of Korea
| | - Yu Jeong Chu
- Department of Food Science and Biotechnology, Kyungsung University, Busan, 608-736, Republic of Korea
| | - Chang-Ho Park
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do, 446-701, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do, 446-701, Republic of Korea.
| | - Hee Sook Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan, 608-736, Republic of Korea.
| |
Collapse
|
21
|
Zhu B, Yin H. Alginate lyase: Review of major sources and classification, properties, structure-function analysis and applications. Bioengineered 2015; 6:125-31. [PMID: 25831216 PMCID: PMC4601208 DOI: 10.1080/21655979.2015.1030543] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022] Open
Abstract
Alginate lyases catalyze the degradation of alginate, a complex copolymer of α-L-guluronate and its C5 epimer β-D-mannuronate. The enzymes have been isolated from various kinds of organisms with different substrate specificities, including algae, marine mollusks, marine and terrestrial bacteria, and some viruses and fungi. With the progress of structural biology, many kinds of alginate lyases of different polysaccharide lyases families have been characterized by obtaining crystal structures, and the catalytic mechanism has also been elucidated. Combined with various studies, we summarized the source, classification and properties of the alginate lyases from different polysaccharide lyases families. The relationship between substrate specificity and protein sequence was also investigated.
Collapse
Affiliation(s)
- Benwei Zhu
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian, PR China
- University of Chinese Academy of Sciences; Beijing, PR China
| | - Heng Yin
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian, PR China
| |
Collapse
|
22
|
Dong S, Wei TD, Chen XL, Li CY, Wang P, Xie BB, Qin QL, Zhang XY, Pang XH, Zhou BC, Zhang YZ. Molecular insight into the role of the N-terminal extension in the maturation, substrate recognition, and catalysis of a bacterial alginate lyase from polysaccharide lyase family 18. J Biol Chem 2014; 289:29558-69. [PMID: 25210041 DOI: 10.1074/jbc.m114.584573] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial alginate lyases, which are members of several polysaccharide lyase (PL) families, have important biological roles and biotechnological applications. The mechanisms for maturation, substrate recognition, and catalysis of PL18 alginate lyases are still largely unknown. A PL18 alginate lyase, aly-SJ02, from Pseudoalteromonas sp. 0524 displays a β-jelly roll scaffold. Structural and biochemical analyses indicated that the N-terminal extension in the aly-SJ02 precursor may act as an intramolecular chaperone to mediate the correct folding of the catalytic domain. Molecular dynamics simulations and mutational assays suggested that the lid loops over the aly-SJ02 active center serve as a gate for substrate entry. Molecular docking and site-directed mutations revealed that certain conserved residues at the active center, especially those at subsites +1 and +2, are crucial for substrate recognition. Tyr(353) may function as both a catalytic base and acid. Based on our results, a model for the catalysis of aly-SJ02 in alginate depolymerization is proposed. Moreover, although bacterial alginate lyases from families PL5, 7, 15, and 18 adopt distinct scaffolds, they share the same conformation of catalytic residues, reflecting their convergent evolution. Our results provide the foremost insight into the mechanisms of maturation, substrate recognition, and catalysis of a PL18 alginate lyase.
Collapse
Affiliation(s)
- Sheng Dong
- From the State Key Laboratory of Microbial Technology and the Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Tian-Di Wei
- From the State Key Laboratory of Microbial Technology and
| | - Xiu-Lan Chen
- From the State Key Laboratory of Microbial Technology and the Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Chun-Yang Li
- From the State Key Laboratory of Microbial Technology and the Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Peng Wang
- From the State Key Laboratory of Microbial Technology and the Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Bin-Bin Xie
- From the State Key Laboratory of Microbial Technology and the Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Qi-Long Qin
- From the State Key Laboratory of Microbial Technology and the Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Xi-Ying Zhang
- From the State Key Laboratory of Microbial Technology and the Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Xiu-Hua Pang
- From the State Key Laboratory of Microbial Technology and the Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Bai-Cheng Zhou
- From the State Key Laboratory of Microbial Technology and the Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Yu-Zhong Zhang
- From the State Key Laboratory of Microbial Technology and the Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| |
Collapse
|
23
|
MacDonald LC, Berger BW. Insight into the role of substrate-binding residues in conferring substrate specificity for the multifunctional polysaccharide lyase Smlt1473. J Biol Chem 2014; 289:18022-32. [PMID: 24808176 DOI: 10.1074/jbc.m114.571299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anionic polysaccharides are of growing interest in the biotechnology industry due to their potential pharmaceutical applications in drug delivery and wound treatment. Chemical composition and polymer length strongly influence the physical and biological properties of the polysaccharide and thus its potential industrial and medical applications. One promising approach to determining monomer composition and controlling the degree of polymerization involves the use of polysaccharide lyases, which catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. Utilization of these enzymes for the production of custom-made oligosaccharides requires a high degree of control over substrate specificity. Previously, we characterized a polysaccharide lyase (Smlt1473) from Stenotrophomonas maltophilia k279a, which exhibited significant activity against hyaluronan (HA), poly-β-d-glucuronic acid (poly-GlcUA), and poly-β-d-mannuronic acid (poly-ManA) in a pH-regulated manner. Here, we utilize a sequence structure guided approach based on a homology model of Smlt1473 to identify nine putative substrate-binding residues and examine their effect on substrate specificity via site-directed mutagenesis. Interestingly, single point mutations H221F and R312L resulted in increased activity and specificity toward poly-ManA and poly-GlcUA, respectively. Furthermore, a W171A mutant nearly eliminated HA activity, while increasing poly-ManA and poly-GlcUA activity by at least 35%. The effect of these mutations was analyzed by comparison with the high resolution structure of Sphingomonas sp. A1-III alginate lyase in complex with poly-ManA tetrasaccharide and by taking into account the structural differences between HA, poly-GlcUA, and poly-ManA. Overall, our results demonstrate that even minor changes in active site architecture have a significant effect on the substrate specificity of Smlt1473, whose structural plasticity could be applied to the design of highly active and specific polysaccharide lyases.
Collapse
Affiliation(s)
| | - Bryan W Berger
- From the Program in Bioengineering and Department of Chemical Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
| |
Collapse
|
24
|
Wolfram F, Kitova EN, Robinson H, Walvoort MTC, Codée JDC, Klassen JS, Howell PL. Catalytic mechanism and mode of action of the periplasmic alginate epimerase AlgG. J Biol Chem 2014; 289:6006-19. [PMID: 24398681 DOI: 10.1074/jbc.m113.533158] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that forms chronic biofilm infections in the lungs of cystic fibrosis patients. A major component of the biofilm during these infections is the exopolysaccharide alginate, which is synthesized at the inner membrane as a homopolymer of 1-4-linked β-D-mannuronate. As the polymer passages through the periplasm, 22-44% of the mannuronate residues are converted to α-L-guluronate by the C5-epimerase AlgG to produce a polymer of alternating β-D-mannuronate and α-L-guluronate blocks and stretches of polymannuronate. To understand the molecular basis of alginate epimerization, the structure of Pseudomonas syringae AlgG has been determined at 2.1-Å resolution, and the protein was functionally characterized. The structure reveals that AlgG is a long right-handed parallel β-helix with an elaborate lid structure. Functional analysis of AlgG mutants suggests that His(319) acts as the catalytic base and that Arg(345) neutralizes the acidic group during the epimerase reaction. Water is the likely catalytic acid. Electrostatic surface potential and residue conservation analyses in conjunction with activity and substrate docking studies suggest that a conserved electropositive groove facilitates polymannuronate binding and contains at least nine substrate binding subsites. These subsites likely align the polymer in the correct register for catalysis to occur. The presence of multiple subsites, the electropositive groove, and the non-random distribution of guluronate in the alginate polymer suggest that AlgG is a processive enzyme. Moreover, comparison of AlgG and the extracellular alginate epimerase AlgE4 of Azotobacter vinelandii provides a structural rationale for the differences in their Ca(2+) dependence.
Collapse
Affiliation(s)
- Francis Wolfram
- From the Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
MacDonald LC, Berger BW. A polysaccharide lyase from Stenotrophomonas maltophilia with a unique, pH-regulated substrate specificity. J Biol Chem 2013; 289:312-25. [PMID: 24257754 DOI: 10.1074/jbc.m113.489195] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polysaccharide lyases (PLs) catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. PLs also play important roles in microbial pathogenesis, participating in bacterial invasion and toxin spread into the host tissue via degradation of the host extracellular matrix, or in microbial biofilm formation often associated with enhanced drug resistance. Stenotrophomonas maltophilia is a Gram-negative bacterium that is among the emerging multidrug-resistant organisms associated with chronic lung infections as well as with cystic fibrosis patients. A putative alginate lyase (Smlt1473) from S. maltophilia was heterologously expressed in Escherichia coli, purified in a one-step fashion via affinity chromatography, and activity as well as specificity determined for a range of polysaccharides. Interestingly, Smlt1473 catalyzed the degradation of not only alginate, but poly-β-D-glucuronic acid and hyaluronic acid as well. Furthermore, the pH optimum for enzymatic activity is substrate-dependent, with optimal hyaluronic acid degradation at pH 5, poly-β-D-glucuronic acid degradation at pH 7, and alginate degradation at pH 9. Analysis of the degradation products revealed that each substrate was cleaved endolytically into oligomers comprised predominantly of even numbers of sugar groups, with lower accumulation of trimers and pentamers. Collectively, these results imply that Smlt1473 is a multifunctional PL that exhibits broad substrate specificity, but utilizes pH as a mechanism to achieve selectivity.
Collapse
|
26
|
Farrell EK, Tipton PA. Functional characterization of AlgL, an alginate lyase from Pseudomonas aeruginosa. Biochemistry 2012; 51:10259-66. [PMID: 23215237 DOI: 10.1021/bi301425r] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alginate lyase (AlgL) catalyzes the cleavage of the polysaccharide alginate through a β-elimination reaction. In Pseudomonas aeruginosa, algL is part of the alginate biosynthetic operon, and although it is required for alginate biosynthesis, it is not clear why. Steady-state kinetic studies were performed to characterize its substrate specificity and revealed that AlgL operates preferentially on nonacetylated alginate or its precursor mannuronan. Mature alginate is secreted as a partially acetylated polysaccharide, so this observation is consistent with suggestions that AlgL serves to degrade mislocalized alginate that is trapped in the periplasmic space. The k(cat)/K(m) for the reaction increased linearly with the number of residues in the substrate, from 2.1 × 10(5) M(-1) s(-1) for the substrate containing 16 residues to 7.9 × 10(6) M(-1) s(-1) for the substrate with 280 residues. Over the same substrate size range, k(cat) varied between 10 and 30 s(-1). The variation in k(cat)/K(m) with substrate length suggests that AlgL operates in a processive manner. AlgL displayed a surprising lack of stereospecificity, in that it was able to catalyze cleavage adjacent to either mannuronate or guluronate residues in alginate. Thus, the enzyme is able to remove the C5 proton from both mannuronate and guluronate, which are C5 epimers. Exhaustive digestion of alginate by AlgL generated dimeric and trimeric products, which were characterized by (1)H nuclear magnetic resonance spectroscopy and mass spectrometry. Rapid-mixing chemical quench studies revealed that there was no lag in dimer or trimer production, indicating that AlgL operates as an exopolysaccharide lyase.
Collapse
Affiliation(s)
- Emma K Farrell
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|