1
|
Busch MR, Rajendran C, Sterner R. Structural and Functional Characterization of the Ureidoacrylate Amidohydrolase RutB from Escherichia coli. Biochemistry 2023; 62:863-872. [PMID: 36599150 DOI: 10.1021/acs.biochem.2c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We present a detailed structure-function analysis of the ureidoacrylate amidohydrolase RutB from Eschericha coli, which is an essential enzyme of the Rut pathway for pyrimidine utilization. Crystals of selenomethionine-labeled RutB were produced, which allowed us to determine the first structure of the enzyme at a resolution of 1.9 Å and to identify it as a new member of the isochorismatase-like hydrolase family. RutB was co-crystallized with the substrate analogue ureidopropionate, revealing the mode of substrate binding. Mutation of residues constituting the catalytic triad (D24A, D24N, K133A, C166A, C166S, C166T, C166Y) resulted in complete inactivation of RutB, whereas mutation of other residues close to the active site (Y29F, Y35F, N72A, W74A, W74F, E80A, E80D, S92A, S92T, S92Y, Q105A, Y136A, Y136F) leads to distinct changes of the turnover number (kcat) and/or the Michaelis constant (KM). The results of our structural and mutational studies allowed us to assign specific functions to individual residues and to formulate a plausible reaction mechanism for RutB.
Collapse
Affiliation(s)
- Markus R Busch
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Chitra Rajendran
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
2
|
Qin X, Xue B, Tian H, Fang C, Yu J, Chen C, Xue Q, Jones J, Wang X. An unconventionally secreted effector from the root knot nematode Meloidogyne incognita, Mi-ISC-1, promotes parasitism by disrupting salicylic acid biosynthesis in host plants. MOLECULAR PLANT PATHOLOGY 2022; 23:516-529. [PMID: 34923729 PMCID: PMC8916211 DOI: 10.1111/mpp.13175] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 05/14/2023]
Abstract
Plant-parasitic nematodes need to deliver effectors that suppress host immunity for successful parasitism. We have characterized a novel isochorismatase effector from the root-knot nematode Meloidogyne incognita, named Mi-ISC-1. The Mi-isc-1 gene is expressed in the subventral oesophageal glands and is up-regulated in parasitic-stage juveniles. Tobacco rattle virus-induced gene silencing targeting Mi-isc-1 attenuated M. incognita parasitism. Enzyme activity assays confirmed that Mi-ISC-1 can catalyse hydrolysis of isochorismate into 2,3-dihydro-2,3-dihydroxybenzoate in vitro. Although Mi-ISC-1 lacks a classical signal peptide for secretion at its N-terminus, a yeast invertase secretion assay showed that this protein can be secreted from eukaryotic cells. However, the subcellular localization and plasmolysis assay revealed that the unconventional secretory signal present on the Mi-ISC-1 is not recognized by the plant secretory pathway and that the effector was localized within the cytoplasm of plant cells, but not apoplast, when transiently expressed in Nicotiana benthamiana leaves by agroinfiltration. Ectopic expression of Mi-ISC-1 in N. benthamiana reduced expression of the PR1 gene and levels of salicylic acid (SA), and promoted infection by Phytophthora capsici. The cytoplasmic localization of Mi-ISC-1 is required for its function. Moreover, Mi-ISC-1 suppresses the production of SA following the reconstitution of the de novo SA biosynthesis via the isochorismate pathway in the cytoplasm of N. benthamiana leaves. These results demonstrate that M. incognita deploys a functional isochorismatase that suppresses SA-mediated plant defences by disrupting the isochorismate synthase pathway for SA biosynthesis to promote parasitism.
Collapse
Affiliation(s)
- Xin Qin
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Bowen Xue
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Haiyang Tian
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Chenjie Fang
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Jiarong Yu
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Cong Chen
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Qing Xue
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - John Jones
- School of BiologyBiomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsUK
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| | - Xuan Wang
- Key Laboratory of Integrated Management of Crop Disease and PestsMinistry of EducationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
3
|
Hubrich F, Müller M, Andexer JN. Chorismate- and isochorismate converting enzymes: versatile catalysts acting on an important metabolic node. Chem Commun (Camb) 2021; 57:2441-2463. [PMID: 33605953 DOI: 10.1039/d0cc08078k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chorismate and isochorismate represent an important branching point connecting primary and secondary metabolism in bacteria, fungi, archaea and plants. Chorismate- and isochorismate-converting enzymes are potential targets for new bioactive compounds, as well as valuable biocatalysts for the in vivo and in vitro synthesis of fine chemicals. The diversity of the products of chorismate- and isochorismate-converting enzymes is reflected in the enzymatic three-dimensional structures and molecular mechanisms. Due to the high reactivity of chorismate and its derivatives, these enzymes have evolved to be accurately tailored to their respective reaction; at the same time, many of them exhibit a fascinating flexibility regarding side reactions and acceptance of alternative substrates. Here, we give an overview of the different (sub)families of chorismate- and isochorismate-converting enzymes, their molecular mechanisms, and three-dimensional structures. In addition, we highlight important results of mutagenetic approaches that generate a broader understanding of the influence of distinct active site residues for product formation and the conversion of one subfamily into another. Based on this, we discuss to what extent the recent advances in the field might influence the general mechanistic understanding of chorismate- and isochorismate-converting enzymes. Recent discoveries of new chorismate-derived products and pathways, as well as biocatalytic conversions of non-physiological substrates, highlight how this vast field is expected to continue developing in the future.
Collapse
Affiliation(s)
- Florian Hubrich
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | | | | |
Collapse
|
4
|
Cole JC, Korb O, McCabe P, Read MG, Taylor R. Knowledge-Based Conformer Generation Using the Cambridge Structural Database. J Chem Inf Model 2018; 58:615-629. [PMID: 29425456 DOI: 10.1021/acs.jcim.7b00697] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fast generation of plausible molecular conformations is central to molecular modeling. This paper presents an approach to conformer generation that makes extensive use of the information available in the Cambridge Structural Database. By using geometric distributions derived from the Cambridge Structural Database, it is possible to create biologically relevant conformations in the majority of cases analyzed. The paper compares the performance of the approach with previously published evaluations, and presents some cases where the method fails. The method appears to show significantly improved performance in reproduction of the conformations of structures observed in the Cambridge Structural Database and the Protein Data Bank as compared to other published methods of a similar speed.
Collapse
Affiliation(s)
- Jason C Cole
- Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge CB2 1EZ , United Kingdom
| | - Oliver Korb
- Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge CB2 1EZ , United Kingdom
| | - Patrick McCabe
- Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge CB2 1EZ , United Kingdom
| | - Murray G Read
- Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge CB2 1EZ , United Kingdom
| | - Robin Taylor
- Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge CB2 1EZ , United Kingdom
| |
Collapse
|
6
|
Liu T, Song T, Zhang X, Yuan H, Su L, Li W, Xu J, Liu S, Chen L, Chen T, Zhang M, Gu L, Zhang B, Dou D. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nat Commun 2014; 5:4686. [PMID: 25156390 PMCID: PMC4348438 DOI: 10.1038/ncomms5686] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 07/14/2014] [Indexed: 11/23/2022] Open
Abstract
Plant diseases caused by fungi and oomycetes pose an increasing threat to food security and ecosystem health worldwide. These filamentous pathogens, while taxonomically distinct, modulate host defense responses by secreting effectors, which are typically identified based on the presence of signal peptides. Here we show that Phytophthora sojae and Verticillium dahliae secrete isochorismatases (PsIsc1 and VdIsc1, respectively) that are required for full pathogenesis. PsIsc1 and VdIsc1 can suppress salicylate-mediated innate immunity in planta and hydrolyse isochorismate in vitro. A conserved triad of catalytic residues is essential for both functions. Thus, the two proteins are isochorismatase effectors that disrupt the plant salicylate metabolism pathway by suppressing its precursor. Furthermore, these proteins lack signal peptides, but exhibit characteristics that lead to unconventional secretion. Therefore, this secretion pathway is a novel mechanism for delivering effectors and might play an important role in host–pathogen interactions. Salicylate is a regulator of innate immunity to infection in plants. Here, Liu et al. show that two plant pathogens secrete enzymes that disrupt salicylate biosynthesis and plant immunity, and reveal that these effectors are secreted via an unconventional mechanism.
Collapse
Affiliation(s)
- Tingli Liu
- 1] Department of Plant Pathology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China [2] Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210095, China [3]
| | - Tianqiao Song
- 1] Department of Plant Pathology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China [2]
| | - Xiong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Hongbo Yuan
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210095, China
| | - Liming Su
- Department of Plant Pathology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Wanlin Li
- Department of Plant Pathology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Jing Xu
- Department of Plant Pathology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Shiheng Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Linlin Chen
- Department of Plant Pathology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Tianzi Chen
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210095, China
| | - Meixiang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| |
Collapse
|