1
|
Seed Storage Protein, Functional Diversity and Association with Allergy. ALLERGIES 2023. [DOI: 10.3390/allergies3010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Plants are essential for humans as they serve as a source of food, fuel, medicine, oils, and more. The major elements that are utilized for our needs exist in storage organs, such as seeds. These seeds are rich in proteins, show a broad spectrum of physiological roles, and are classified based on their sequence, structure, and conserved motifs. With the improvements to our knowledge of the basic sequence and our structural understanding, we have acquired better insights into seed proteins and their role. However, we still lack a systematic analysis towards understanding the functional diversity associated within each family and their associations with allergy. This review puts together the information about seed proteins, their classification, and diverse functional roles along with their associations with allergy.
Collapse
|
2
|
Wu R, Smith CA, Buchko GW, Blaby IK, Paez-Espino D, Kyrpides NC, Yoshikuni Y, McDermott JE, Hofmockel KS, Cort JR, Jansson JK. Structural characterization of a soil viral auxiliary metabolic gene product - a functional chitosanase. Nat Commun 2022; 13:5485. [PMID: 36123347 PMCID: PMC9485262 DOI: 10.1038/s41467-022-32993-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/26/2022] [Indexed: 11/12/2022] Open
Abstract
Metagenomics is unearthing the previously hidden world of soil viruses. Many soil viral sequences in metagenomes contain putative auxiliary metabolic genes (AMGs) that are not associated with viral replication. Here, we establish that AMGs on soil viruses actually produce functional, active proteins. We focus on AMGs that potentially encode chitosanase enzymes that metabolize chitin - a common carbon polymer. We express and functionally screen several chitosanase genes identified from environmental metagenomes. One expressed protein showing endo-chitosanase activity (V-Csn) is crystalized and structurally characterized at ultra-high resolution, thus representing the structure of a soil viral AMG product. This structure provides details about the active site, and together with structure models determined using AlphaFold, facilitates understanding of substrate specificity and enzyme mechanism. Our findings support the hypothesis that soil viruses contribute auxiliary functions to their hosts.
Collapse
Affiliation(s)
- Ruonan Wu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Clyde A Smith
- Stanford Synchrotron Radiation Light source, Stanford University, Menlo Park, CA, USA
| | - Garry W Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Ian K Blaby
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Nikos C Kyrpides
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jason E McDermott
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - John R Cort
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
3
|
Wang L, Lu H, Zhan J, Shang Q, Wang L, Yin W, Sa W, Liang J. Pathogenesis-related protein-4 (PR-4) gene family in Qingke (Hordeum vulgare L. var. nudum): genome-wide identification, structural analysis and expression profile under stresses. Mol Biol Rep 2022; 49:9397-9408. [PMID: 36008607 DOI: 10.1007/s11033-022-07794-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pathogenesis-related (PR) proteins are active participants of plant defense against biotic and abiotic stresses. The PR-4 family features a Barwin domain at the C-terminus, which endows the host plant with disease resistance. However, comprehensive analysis of PR-4 genes is still lacking in Qingke (Hordeum vulgare L. var. nudum). METHODS AND RESULTS Herein, a total of four PR-4 genes were identified from the genome of Qingke through HMM profiling. Devoid of the chitin-binding domain, these 4 proteins were grouped as class II PR-4s. Phylogenic analysis revealed that 127 PR-4s from 47 species were clustered into 3 major groups, among which the four Qingke PR-4s were claded into group I. Analysis of gene structure demonstrated that no intron was found in 3 out of the 4 Qingke PR-4s, and HOVUSG0928500 was the only gene contained one intron. An array of cis-acting motifs were detected in promoters of Qingke PR-4 genes, including elements associated with hormone response, light response, stress response, growth and development processes and binding sites of transcription factors, implying their diverse role. Expression profiling confirmed that Qingke PR-4s were involved in defense response against drought, cold and powdery mildews infection, and transcription of HOVUSG1974300 and HOVUSG5705400 was differentially regulated by MeJA and SA. CONCLUSION Findings of the study provided insights into the genetic basis of the PR-4 family genes, and would promote further investigation on protein function and utilization.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, China
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, 810016, China
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, 810016, Xi'ning, China
| | - Hailing Lu
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, 810016, China
| | - Jiarong Zhan
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, 810016, China
| | - Qianhan Shang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, China
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, 810016, China
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, 810016, Xi'ning, China
| | - Li Wang
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, 810016, Xi'ning, China
| | - Wei Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, China
| | - Wei Sa
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, China.
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, 810016, China.
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, 810016, Xi'ning, China.
| |
Collapse
|
4
|
Wang L, Xu Z, Yin W, Xu K, Wang S, Shang Q, Sa W, Liang J, Wang L. Genome-wide analysis of the Thaumatin-like gene family in Qingke ( Hordeum vulgare L. var. nudum) uncovers candidates involved in plant defense against biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:912296. [PMID: 36061804 PMCID: PMC9428612 DOI: 10.3389/fpls.2022.912296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Thaumatin-like proteins (TLPs) participate in the defense responses of plants as well as their growth and development processes, including seed germination. Yet the functioning of TLP family genes, in addition to key details of their encoded protein products, has not been thoroughly investigated for Qingke (Hordeum vulgare L. var. nudum). Here, a total of 36 TLP genes were identified in the genome of Qingke via HMM profiling. Of them, 25 TLPs contained a signal peptide at the N-terminus, with most proteins predicted to localize in the cytoplasm or outer membrane. Sequence alignment and motif analysis revealed that the five REDDD residues required for β-1,3-glucanase activity were conserved in 21 of the 36 Qingke TLPs. Phylogenetically, the TLPs in plants are clustered in 10 major groups. Our analysis of gene structure did not detect an intron in 15 Qingke TLPs whereas the other 21 did contain 1-7 introns. A diverse set of cis-acting motifs were found in the promoters of the 36 TLPs, including elements related to light, hormone, and stress responses, growth and development, circadian control, and binding sites of transcription factors, thus suggesting a multifaceted role of TLPs in Qingke. Expression analyses revealed the potential involvement of TLPs in plant defense against biotic and abiotic stresses. Taken together, the findings of this study deepen our understanding of the TLP family genes in Qingke, a staple food item in Tibet, which could strengthen future investigations of protein function in barley and its improved genetic engineering.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Zepeng Xu
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Wei Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Kai Xu
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Shuai Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Qianhan Shang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Wei Sa
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Li Wang
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xining, China
| |
Collapse
|
5
|
Maia LBL, Pereira HD, Garratt RC, Brandão-Neto J, Henrique-Silva F, Toyama D, Dias RO, Bachega JFR, Peixoto JV, Silva-Filho MC. Structural and Evolutionary Analyses of PR-4 SUGARWINs Points to a Different Pattern of Protein Function. FRONTIERS IN PLANT SCIENCE 2021; 12:734248. [PMID: 34567046 PMCID: PMC8458871 DOI: 10.3389/fpls.2021.734248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
SUGARWINs are PR-4 proteins associated with sugarcane defense against phytopathogens. Their expression is induced in response to damage by Diatraea saccharalis larvae. These proteins play an important role in plant defense, in particular against fungal pathogens, such as Colletothricum falcatum (Went) and Fusarium verticillioides. The pathogenesis-related protein-4 (PR-4) family is a group of proteins equipped with a BARWIN domain, which may be associated with a chitin-binding domain also known as the hevein-like domain. Several PR-4 proteins exhibit both chitinase and RNase activity, with the latter being associated with the presence of two histidine residues H11 and H113 (BARWIN) [H44 and H146, SUGARWINs] in the BARWIN-like domain. In sugarcane, similar to other PR-4 proteins, SUGARWIN1 exhibits ribonuclease, chitosanase and chitinase activities, whereas SUGARWIN2 only exhibits chitosanase activity. In order to decipher the structural determinants involved in this diverse range of enzyme specificities, we determined the 3-D structure of SUGARWIN2, at 1.55Å by X-ray diffraction. This is the first structure of a PR-4 protein where the first histidine has been replaced by asparagine and was subsequently used to build a homology model for SUGARWIN1. Molecular dynamics simulations of both proteins revealed the presence of a flexible loop only in SUGARWIN1 and we postulate that this, together with the presence of the catalytic histidine at position 42, renders it competent as a ribonuclease. The more electropositive surface potential of SUGARWIN1 would also be expected to favor complex formation with RNA. A phylogenetic analysis of PR-4 proteins obtained from 106 Embryophyta genomes showed that both catalytic histidines are widespread among them with few replacements in these amino acid positions during the gene family evolutionary history. We observe that the H11 replacement by N11 is also present in two other sugarcane PR-4 proteins: SUGARWIN3 and SUGARWIN4. We propose that RNase activity was present in the first Embryophyta PR-4 proteins but was recently lost in members of this family during the course of evolution.
Collapse
Affiliation(s)
| | | | | | - José Brandão-Neto
- Diamond Light Source, Harwell Science and Innovation Campus Didcot, Harwell, United Kingdom
| | - Flavio Henrique-Silva
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazi
| | - Danyelle Toyama
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazi
| | - Renata O. Dias
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - José Fernando Ruggiero Bachega
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Programa de Pós-Graduação de Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Julia Vasconcellos Peixoto
- Programa de Pós-Graduação de Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcio C. Silva-Filho
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| |
Collapse
|
6
|
Zhou Z, Zhu Y, Tian Y, Yao JL, Bian S, Zhang H, Zhang R, Gao Q, Yan Z. MdPR4, a pathogenesis-related protein in apple, is involved in chitin recognition and resistance response to apple replant disease pathogens. JOURNAL OF PLANT PHYSIOLOGY 2021; 260:153390. [PMID: 33667937 DOI: 10.1016/j.jplph.2021.153390] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
To maximize breeding and exploitation of disease resistance traits for managing apple replant disease (ARD), it is of great importance to understand the mechanisms of apple root resistance. Currently, little is known about the functions of the specific genes that confer resistance traits in apple root. In this study, molecular, biochemical, and genetic approaches allowed an in-depth understanding of the role of the MdPR4 gene in the defense response of apple root. The MdPR4 encoding gene showed upregulation following ARD pathogen inoculation in our previous transcriptome data. Subcellular localization analyses revealed that MdPR4 is localized on the plasma membrane, endoplasmic reticulum, and apoplast, which is mainly determined by its signal peptide. Molecular docking analysis between MdPR4 protein with chitin molecule and in vitro MdPR4 chitin affinity assay proved its chitin-binding ability, which provided evidence for its role in chitin-mediated immune responses. Purified MdPR4 protein and MdPR4 overexpressed apple callus inhibited spore germination and mycelial growth of ARD-related Fusarium spp. pathogens. These data support the conclusion that MdPR4 is a chitin-binding protein in apple vegetative tissues that may play an important role in defense activation in response to ARD pathogen infection.
Collapse
Affiliation(s)
- Zhe Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450000, China
| | - Yanmin Zhu
- United States Department of Agriculture, Agricultural Research Service, Tree Fruit Research Laboratory, Wenatchee, WA 98801, USA
| | - Yi Tian
- National Agricultural Engineering Center for North Mountain Region of the Ministry of Science and Technology, Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Jia-Long Yao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450000, China; The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Shuxun Bian
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450000, China
| | - Hengtao Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450000, China
| | - Ruiping Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450000, China
| | - Qiming Gao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450000, China
| | - Zhenli Yan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450000, China.
| |
Collapse
|
7
|
Bange G, Altegoer F. Plants strike back: Kiwellin proteins as a modular toolbox for plant defense mechanisms. Commun Integr Biol 2019; 12:31-33. [PMID: 30891114 PMCID: PMC6419657 DOI: 10.1080/19420889.2019.1586049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 10/27/2022] Open
Abstract
Plants have to cope with numerous stresses in nature to avoid damage or cell death. We recently reported a class of plant defense proteins termed kiwellins that were initially found in kiwifruit and shown to be causative to human food allergies. While kiwifruits among other domestic fruits always contain high amounts of kiwellin protein, available transcriptome data indicate an up-regulation of kiwellin genes upon pathogen contact in various other plants. In the case of an interaction between maize plant and the smut fungus Ustilago maydis, we could identify one kiwellin (termed: ZmKWL1) highly up-regulated in response to pathogen attack. During infection of the maize plant, U. maydis secretes numerous effector proteins that modulate the host. Among 20 predicted kiwellins, ZmKWL1 specifically inhibits the metabolic activity of the secreted fungal chorismate mutase 1 (Cmu1). We expand the current knowledge on kiwellins and describe a novel class of versatile plant defense proteins.
Collapse
Affiliation(s)
- Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Florian Altegoer
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
8
|
|
9
|
Han X, Altegoer F, Steinchen W, Binnebesel L, Schuhmacher J, Glatter T, Giammarinaro PI, Djamei A, Rensing SA, Reissmann S, Kahmann R, Bange G. A kiwellin disarms the metabolic activity of a secreted fungal virulence factor. Nature 2019; 565:650-653. [PMID: 30651637 DOI: 10.1038/s41586-018-0857-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023]
Abstract
Fungi-induced plant diseases affect global food security and plant ecology. The biotrophic fungus Ustilago maydis causes smut disease in maize (Zea mays) plants by secreting numerous virulence effectors that reprogram plant metabolism and immune responses1,2. The secreted fungal chorismate mutase Cmu1 presumably affects biosynthesis of the plant immune signal salicylic acid by channelling chorismate into the phenylpropanoid pathway3. Here we show that one of the 20 maize-encoded kiwellins (ZmKWL1) specifically blocks the catalytic activity of Cmu1. ZmKWL1 hinders substrate access to the active site of Cmu1 through intimate interactions involving structural features that are specific to fungal Cmu1 orthologues. Phylogenetic analysis suggests that plant kiwellins have a versatile scaffold that can specifically counteract pathogen effectors such as Cmu1. We reveal the biological activity of a member of the kiwellin family, a widely conserved group of proteins that have previously been recognized only as important human allergens.
Collapse
Affiliation(s)
- Xiaowei Han
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Florian Altegoer
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Marburg, Germany
| | - Wieland Steinchen
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Marburg, Germany
| | - Lynn Binnebesel
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Marburg, Germany
| | - Jan Schuhmacher
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Marburg, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Timo Glatter
- Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Pietro I Giammarinaro
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Marburg, Germany
| | - Armin Djamei
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Stefan A Rensing
- Faculty of Biology, Philipps-University, Marburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Stefanie Reissmann
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Regine Kahmann
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| | - Gert Bange
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Marburg, Germany.
| |
Collapse
|
10
|
Franco FP, Dias RO, Toyama D, Henrique-Silva F, Moura DS, Silva-Filho MC. Structural and Functional Characterization of PR-4 SUGARWINs From Sugarcaneand Their Role in Plant Defense. FRONTIERS IN PLANT SCIENCE 2019; 9:1916. [PMID: 30666261 PMCID: PMC6330325 DOI: 10.3389/fpls.2018.01916] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
SUGARWIN1 and 2 are defense proteins from sugarcane. Their gene expression is known to be induced in response to wound and Diatraea saccharalis damage. Although the recombinant SUGARWIN protein does not affect insect development, it promotes significant morphological and physiological changes in Fusarium verticillioides and Colletotrichum falcatum, which lead to fungal cell death via apoptosis. In this study, we deepen our understanding of the role of SUGARWINs in plant defense and the molecular mechanisms by which these proteins affect fungi by elucidating their molecular targets. Our results show that SUGARWINs play an important role in plant defense against opportunistic pathogens. We demonstrated that SUGARWINs are induced by C. falcatum, and the induction of SUGARWINs can vary among sugarcane varieties. The sugarcane variety exhibiting the highest level of SUGARWIN induction exhibited a considerable reduction in C. falcatum infection. Furthermore, SUGARWIN1 exhibited ribonuclease, chitosanase, and chitinase activity, whereas SUGARWIN2 exhibited only chitosanase activity. This variable enzymatic specificity seems to be the result of divergent amino acid composition within the substrate-binding site.
Collapse
Affiliation(s)
- Flávia P. Franco
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Renata O. Dias
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Danyelle Toyama
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Flávio Henrique-Silva
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Daniel S. Moura
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Marcio C. Silva-Filho
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| |
Collapse
|
11
|
Olczak A, Cianci M. The signal-to-noise ratio in SAD experiments. CRYSTALLOGR REV 2017. [DOI: 10.1080/0889311x.2017.1386182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Andrzej Olczak
- Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
12
|
Bu Q, Li Z, Zhang J, Xu F, Liu J, Liu H. The crystal structure of full-length Sizzled from Xenopus laevis yields insights into Wnt-antagonistic function of secreted Frizzled-related proteins. J Biol Chem 2017; 292:16055-16069. [PMID: 28808056 DOI: 10.1074/jbc.m117.791756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/13/2017] [Indexed: 01/05/2023] Open
Abstract
The Wnt-signaling pathway is crucial to cell proliferation, differentiation, and migration. The secreted Frizzled-related proteins (sFRPs) represent the largest family of secreted Wnt inhibitors. However, their function in antagonizing Wnt signaling has remained somewhat controversial. Here, we report the crystal structure of Sizzled from Xenopus laevis, the first full-length structure of an sFRP. Tethered by an inter-domain disulfide bond and a linker, the N-terminal cysteine-rich domain (CRD) and the C-terminal netrin-like domain (NTR) of Sizzled are arranged in a tandem fashion, with the NTR domain occluding the groove of CRD for Wnt accessibility. A Dual-Luciferase assay demonstrated that removing the NTR domain and replacing the CRD groove residues His-116 and His-118 with aromatic residues may significantly enhance antagonistic function of Sizzled in inhibiting Wnt3A signaling. Sizzled is a monomer in solution, and Sizzled CRD exhibited different packing in the crystal, suggesting that sFRPs do not have a conserved CRD dimerization mode. Distinct from the canonical NTR domain, the Sizzled NTR adopts a novel α/β folding with two perpendicular helices facing the central mixed β-sheet. The subgroup of human sFRP1/2/5 and Sizzled should have a similar NTR domain that features a highly positively charged region, opposite the NTR-CRD interface, suggesting that the NTR domain in human sFRPs, at least sFRP1/2/5, is unlikely to bind to Wnt but is likely involved in biphasic Wnt signaling modulation. In summary, the Sizzled structure provides the first insights into how the CRD and the NTR domains relate to each other for modulating Wnt-antagonistic function of sFRPs.
Collapse
Affiliation(s)
- Qixin Bu
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zhiqiang Li
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Junying Zhang
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Fei Xu
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jianmei Liu
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Heli Liu
- From the State Key Laboratory of Natural and Biomimetic Drugs and .,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
13
|
Dai L, Wang D, Xie X, Zhang C, Wang X, Xu Y, Wang Y, Zhang J. The Novel Gene VpPR4-1 from Vitis pseudoreticulata Increases Powdery Mildew Resistance in Transgenic Vitis vinifera L. FRONTIERS IN PLANT SCIENCE 2016; 7:695. [PMID: 27303413 PMCID: PMC4882328 DOI: 10.3389/fpls.2016.00695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/06/2016] [Indexed: 05/04/2023]
Abstract
Pathogenesis-related proteins (PRs) can lead to increased resistance of the whole plant to pathogen attack. Here, we isolate and characterize a PR-4 protein (VpPR4-1) from a wild Chinese grape Vitis pseudoreticulata which shows greatly elevated transcription following powdery mildew infection. Its expression profiles under a number of abiotic stresses were also investigated. Powdery mildew, salicylic acid, and jasmonic acid methyl ester significantly increased the VpPR4-1 induction while NaCl and heat treatments just slightly induced VpPR4-1 expression. Abscisic acid and cold treatment slightly affected the expression level of VpPR4-1. The VpPR4-1 gene was overexpressed in 30 regenerated V. vinifera cv. Red Globe via Agrobacterium tumefaciens-mediated transformation and verified by the Western blot. The 26 transgenic grapevines exhibited higher expression levels of PR-4 protein content than wild-type vines and six of them were inoculated with powdery mildew which showed that the growth of powdery mildew was repressed. The powdery mildew-resistance of Red Globe transformed with VpPR4-1 was enhanced inoculated with powdery mildew. Moreover, other powdery mildew resistant genes were associated with feedback regulation since VpPR4-1 is in abundance. This study demonstrates that PR-4 protein in grapes plays a vital role in defense against powdery mildew invasion.
Collapse
Affiliation(s)
- Lingmin Dai
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
| | - Dan Wang
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
| | - Xiaoqing Xie
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
| | - Chaohong Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
| | - Xiping Wang
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
| | - Yan Xu
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
| | - Yuejin Wang
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
- *Correspondence: Yuejin Wang, ; Jianxia Zhang,
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
- *Correspondence: Yuejin Wang, ; Jianxia Zhang,
| |
Collapse
|
14
|
Gorgel M, Bøggild A, Ulstrup JJ, Weiss MS, Müller U, Nissen P, Boesen T. Against the odds? De novo structure determination of a pilin with two cysteine residues by sulfur SAD. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1095-101. [PMID: 25945575 DOI: 10.1107/s1399004715003272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/16/2015] [Indexed: 11/11/2022]
Abstract
Exploiting the anomalous signal of the intrinsic S atoms to phase a protein structure is advantageous, as ideally only a single well diffracting native crystal is required. However, sulfur is a weak anomalous scatterer at the typical wavelengths used for X-ray diffraction experiments, and therefore sulfur SAD data sets need to be recorded with a high multiplicity. In this study, the structure of a small pilin protein was determined by sulfur SAD despite several obstacles such as a low anomalous signal (a theoretical Bijvoet ratio of 0.9% at a wavelength of 1.8 Å), radiation damage-induced reduction of the cysteines and a multiplicity of only 5.5. The anomalous signal was improved by merging three data sets from different volumes of a single crystal, yielding a multiplicity of 17.5, and a sodium ion was added to the substructure of anomalous scatterers. In general, all data sets were balanced around the threshold values for a successful phasing strategy. In addition, a collection of statistics on structures from the PDB that were solved by sulfur SAD are presented and compared with the data. Looking at the quality indicator R(anom)/R(p.i.m.), an inconsistency in the documentation of the anomalous R factor is noted and reported.
Collapse
Affiliation(s)
- Manuela Gorgel
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Andreas Bøggild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Jakob Jensen Ulstrup
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Manfred S Weiss
- Macromolecular Crystallography (HZB-MX), Helmholtz Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - Uwe Müller
- Macromolecular Crystallography (HZB-MX), Helmholtz Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Thomas Boesen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| |
Collapse
|
15
|
Hamiaux C, Maddumage R, Middleditch MJ, Prakash R, Brummell DA, Baker EN, Atkinson RG. Crystal structure of kiwellin, a major cell-wall protein from kiwifruit. J Struct Biol 2014; 187:276-281. [PMID: 25093947 DOI: 10.1016/j.jsb.2014.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 01/13/2023]
Abstract
Kiwellin is a cysteine-rich, cell wall-associated protein with no known structural homologues. It is one of the most abundant proteins in kiwifruit (Actinidia spp.), and has been shown to be recognised by IgE of some patients allergic to kiwifruit. Cleavage of kiwellin into an N-terminal 4 kDa peptide called kissper and a core domain called KiTH is mediated by actinidin in vitro, and isolation of the kissper peptide from green-fleshed kiwifruit extracts suggested it may result from in vivo processing of kiwellin. In solution, kissper is highly flexible and displays pore-forming activity in synthetic lipid-bilayers. We present here the 2.05 Å resolution crystal structure of full-length kiwellin, purified from its native source, Actinidia chinensis (gold-fleshed kiwifruit). The structure confirms the modularity of the protein and the intrinsic flexibility of kissper and reveals that KiTH harbours a double-psi β-barrel fold hooked to an N-terminal β hairpin. Comparisons with structurally-related proteins suggest that a deep gorge located at the protein surface forms a binding site for endogenous ligands.
Collapse
Affiliation(s)
- Cyril Hamiaux
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand.
| | - Ratnasiri Maddumage
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Martin J Middleditch
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Roneel Prakash
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Edward N Baker
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ross G Atkinson
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| |
Collapse
|