1
|
Baljinnyam T, Conrad JW, Sowers ML, Chang-Gu B, Herring JL, Hackfeld LC, Zhang K, Sowers LC. Characterization of a Novel Thermostable DNA Lyase Used To Prepare DNA for Next-Generation Sequencing. Chem Res Toxicol 2023; 36:162-176. [PMID: 36647573 PMCID: PMC9945173 DOI: 10.1021/acs.chemrestox.2c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recently, we constructed a hybrid thymine DNA glycosylase (hyTDG) by linking a 29-amino acid sequence from the human thymine DNA glycosylase with the catalytic domain of DNA mismatch glycosylase (MIG) from M. thermoautotrophicum, increasing the overall activity of the glycosylase. Previously, it was shown that a tyrosine to lysine (Y126K) mutation in the catalytic site of MIG could convert the glycosylase activity to a lyase activity. We made the corresponding mutation to our hyTDG to create a hyTDG-lyase (Y163K). Here, we report that the hybrid mutant has robust lyase activity, has activity over a broad temperature range, and is active under multiple buffer conditions. The hyTDG-lyase cleaves an abasic site similar to endonuclease III (Endo III). In the presence of β-mercaptoethanol (β-ME), the abasic site unsaturated aldehyde forms a β-ME adduct. The hyTDG-lyase maintains its preference for cleaving opposite G, as with the hyTDG glycosylase, and the hyTDG-lyase and hyTDG glycosylase can function in tandem to cleave T:G mismatches. The hyTDG-lyase described here should be a valuable tool in studies examining DNA damage and repair. Future studies will utilize these enzymes to quantify T:G mispairs in cells, tissues, and genomic DNA using next-generation sequencing.
Collapse
Affiliation(s)
- Tuvshintugs Baljinnyam
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States
| | - James W Conrad
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States
| | - Mark L Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States.,MD-PhD Combined Degree Program University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States
| | - Bruce Chang-Gu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States.,MD-PhD Combined Degree Program University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States
| | - Jason L Herring
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States
| | - Linda C Hackfeld
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States
| | - Lawrence C Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States.,Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States
| |
Collapse
|
2
|
Pidugu LS, Servius HW, Sevdalis SE, Cook ME, Varney KM, Pozharski E, Drohat AC. Characterizing inhibitors of human AP endonuclease 1. PLoS One 2023; 18:e0280526. [PMID: 36652434 PMCID: PMC9847973 DOI: 10.1371/journal.pone.0280526] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
AP endonuclease 1 (APE1) processes DNA lesions including apurinic/apyrimidinic sites and 3´-blocking groups, mediating base excision repair and single strand break repair. Much effort has focused on developing specific inhibitors of APE1, which could have important applications in basic research and potentially lead to clinical anticancer agents. We used structural, biophysical, and biochemical methods to characterize several reported inhibitors, including 7-nitroindole-2-carboxylic acid (CRT0044876), given its small size, reported potency, and widespread use for studying APE1. Intriguingly, NMR chemical shift perturbation (CSP) experiments show that CRT0044876 and three similar indole-2-carboxylic acids bind a pocket distal from the APE1 active site. A crystal structure confirms these findings and defines the pose for 5-nitroindole-2-carboxylic acid. However, dynamic light scattering experiments show the indole compounds form colloidal aggregates that could bind (sequester) APE1, causing nonspecific inhibition. Endonuclease assays show the compounds lack significant APE1 inhibition under conditions (detergent) that disrupt aggregation. Thus, binding of the indole-2-carboxylic acids at the remote pocket does not inhibit APE1 repair activity. Myricetin also forms aggregates and lacks APE1 inhibition under aggregate-disrupting conditions. Two other reported compounds (MLS000552981, MLS000419194) inhibit APE1 in vitro with low micromolar IC50 and do not appear to aggregate in this concentration range. However, NMR CSP experiments indicate the compounds do not bind specifically to apo- or Mg2+-bound APE1, pointing to a non-specific mode of inhibition, possibly DNA binding. Our results highlight methods for rigorous interrogation of putative APE1 inhibitors and should facilitate future efforts to discover compounds that specifically inhibit this important repair enzyme.
Collapse
Affiliation(s)
- Lakshmi S. Pidugu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Hardler W. Servius
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Spiridon E. Sevdalis
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mary E. Cook
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kristen M. Varney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Center for Biomolecular Therapeutics, Institute for Bioscience and Biotechnology Research, Rockville, Maryland, United States of America
- * E-mail: (EP); (ACD)
| | - Alexander C. Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (EP); (ACD)
| |
Collapse
|
3
|
Kaur R, Aboelnga MM, Nikkel DJ, Wetmore SD. The metal dependence of single-metal mediated phosphodiester bond cleavage: a QM/MM study of a multifaceted human enzyme. Phys Chem Chem Phys 2022; 24:29130-29140. [PMID: 36444615 DOI: 10.1039/d2cp04338f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleases catalyze the cleavage of phosphodiester bonds in nucleic acids using a range of metal cofactors. Although it is well accepted that many nucleases rely on two metal ions, the one-metal mediated pathway is debated. Furthermore, one-metal mediated nucleases maintain activity in the presence of many different metals, but the underlying reasons for this broad metal specificity are unknown. The human apurinic/apyrimidinic endonuclease (APE1), which plays a key role in DNA repair, transcription regulation, and gene expression, is a prototypical example of a one-metal dependent nuclease. Although Mg2+ is the native metal cofactor, APE1 remains catalytically active in the presence of several metals, with the rate decreasing as Mg2+ > Mn2+ > Ni2+ > Zn2+, while Ca2+ completely abolished the activity. The present work uses quantum mechanics-molecular mechanics techniques to map APE1-facilitated phosphodiester bond hydrolysis in the presence of these metals. The structural differences in stationary points along the reaction pathway shed light on the interplay between several factors that allow APE1 to remain catalytically active for various metals, with the trend in the barrier heights correlating with the experimentally reported APE1 catalytic activity. In contrast, Ca2+ significantly changes the metal coordination and active site geometry, and thus completely inhibits catalysis. Our work thereby provides support for the controversial single-metal mediated phosphodiester bond cleavage and clarifies uncertainties regarding the role of the metal and metal identity in this important reaction. This information is key for future medicinal and biotechnological applications including disease diagnosis and treatment, and protein engineering.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Mohamed M Aboelnga
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Dylan J Nikkel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| |
Collapse
|
4
|
Bakman AS, Ishchenko AA, Saparbaev M, Fedorova OS, Kuznetsov NA. Pre-steady-state kinetic and mutational insights into mechanisms of endo- and exonuclease DNA processing by mutant forms of human AP endonuclease. Biochim Biophys Acta Gen Subj 2022; 1866:130198. [PMID: 35809816 DOI: 10.1016/j.bbagen.2022.130198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022]
Abstract
Human apurinic/apyrimidinic endonuclease APE1 catalyzes endonucleolytic hydrolysis of phosphodiester bonds on the 5' side of structurally unrelated damaged nucleotides in DNA or native nucleotides in RNA. APE1 additionally possesses 3'-5'-exonuclease, 3'-phosphodiesterase, and 3'-phosphatase activities. According to structural data, endo- and exonucleolytic cleavage of DNA is executed in different complexes when the excised residue is everted from the duplex or placed within the intrahelical DNA cavity without nucleotide flipping. In this study, we investigated the functions of residues Arg177, Arg181, Tyr171 and His309 in the APE1 endo- and exonucleolytic reactions. The interaction between residues Arg177 and Met270, which was hypothesized recently to be a switch for endo- and exonucleolytic catalytic mode regulation, was verified by pre-steady-state kinetic analysis of the R177A APE1 mutant. The function of another DNA-binding-site residue, Arg181, was analyzed too; it changed its conformation when enzyme-substrate and enzyme-product complexes were compared. Mutation R181A significantly facilitated the product dissociation stage and only weakly affected DNA-binding affinity. Moreover, R181A reduced the catalytic rate constant severalfold due to a loss of contact with a phosphate group. Finally, the protonation/deprotonation state of residues Tyr171 and His309 in the catalytic reaction was verified by their substitution. Mutations Y171F and H309A inhibited the chemical step of the AP endonucleolytic reaction by several orders of magnitude with retention of capacity for (2R,3S)-2-(hydroxymethyl)-3-hydroxytetrahydrofuran-containing-DNA binding and without changes in the pH dependence profile of AP endonuclease activity, indicating that deprotonation of these residues is likely not important for the catalytic reaction.
Collapse
Affiliation(s)
- Artemiy S Bakman
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexander A Ishchenko
- Group «Mechanisms of DNA Repair and Carcinogenesis», CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Murat Saparbaev
- Group «Mechanisms of DNA Repair and Carcinogenesis», CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
5
|
Bulygin AA, Fedorova OS, Kuznetsov NA. Insights into Mechanisms of Damage Recognition and Catalysis by APE1-like Enzymes. Int J Mol Sci 2022; 23:ijms23084361. [PMID: 35457179 PMCID: PMC9026830 DOI: 10.3390/ijms23084361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Apurinic/apyrimidinic (AP) endonucleases are the key DNA repair enzymes in the base excision repair (BER) pathway, and are responsible for hydrolyzing phosphodiester bonds on the 5′ side of an AP site. The enzymes can recognize not only AP sites but also some types of damaged bases, such as 1,N6-ethenoadenosine, α-adenosine, and 5,6-dihydrouridine. Here, to elucidate the mechanism underlying such a broad substrate specificity as that of AP endonucleases, we performed a computational study of four homologous APE1-like endonucleases: insect (Drosophila melanogaster) Rrp1, amphibian (Xenopus laevis) APE1 (xAPE1), fish (Danio rerio) APE1 (zAPE1), and human APE1 (hAPE1). The contact between the amino acid residues of the active site of each homologous APE1-like enzyme and the set of damaged DNA substrates was analyzed. A comparison of molecular dynamic simulation data with the known catalytic efficiency of these enzymes allowed us to gain a deep insight into the differences in the efficiency of the cleavage of various damaged nucleotides. The obtained data support that the amino acid residues within the “damage recognition” loop containing residues Asn222–Ala230 significantly affect the catalytic-complex formation. Moreover, every damaged nucleotide has its unique position and a specific set of interactions with the amino acid residues of the active site.
Collapse
Affiliation(s)
- Anatoly A. Bulygin
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia;
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Olga S. Fedorova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia;
- Correspondence: (O.S.F.); (N.A.K.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia;
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence: (O.S.F.); (N.A.K.)
| |
Collapse
|
6
|
Comparative Analysis of Exo- and Endonuclease Activities of APE1-like Enzymes. Int J Mol Sci 2022; 23:ijms23052869. [PMID: 35270011 PMCID: PMC8911113 DOI: 10.3390/ijms23052869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/05/2022] Open
Abstract
Apurinic/apyrimidinic (AP)-endonucleases are multifunctional enzymes that are required for cell viability. AP-endonucleases incise DNA 5′ to an AP-site; can recognize and process some damaged nucleosides; and possess 3′-phosphodiesterase, 3′-phosphatase, and endoribonuclease activities. To elucidate the mechanism of substrate cleavage in detail, we analyzed the effect of mono- and divalent metal ions on the exo- and endonuclease activities of four homologous APE1-like endonucleases (from an insect (Rrp1), amphibian (xAPE1), fish (zAPE1), and from humans (hAPE1)). It was found that the enzymes had similar patterns of dependence on metal ions’ concentrations in terms of AP-endonuclease activity, suggesting that the main biological function (AP-site cleavage) was highly conserved among evolutionarily distant species. The efficiency of the 3′-5′ exonuclease activity was the highest in hAPE1 among these enzymes. In contrast, the endoribonuclease activity of the enzymes could be ranked as hAPE1 ≈ zAPE1 ≤ xAPE1 ≤ Rrp1. Taken together, the results revealed that the tested enzymes differed significantly in their capacity for substrate cleavage, even though the most important catalytic and substrate-binding amino acid residues were conserved. It can be concluded that substrate specificity and cleavage efficiency were controlled by factors external to the catalytic site, e.g., the N-terminal domain of these enzymes.
Collapse
|
7
|
Wu Z, Duan H, Cheng Y, Guo D, Peng L, Hu Y, Hu J, Luo T. A novel ligand swing-mediated active site coordination change of human apurinic/apyrimidinic endonuclease 1: A potential cytotoxic mechanism of nickel ion in the base excision repair. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Kuznetsova AA, Gavrilova AA, Novopashina DS, Fedorova OS, Kuznetsov NA. Mutational and Kinetic Analysis of APE1 Endoribonuclease Activity. Mol Biol 2021; 55:211-224. [PMID: 33948042 PMCID: PMC8083922 DOI: 10.1134/s0026893321020102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
Human apurinic/apyrimidinic endonuclease 1 (APE1) participates in the DNA repair system. It is believed that the main biological function of APE1 is Mg2+-dependent hydrolysis of AP-sites in DNA. On the base of structural data, kinetic studies, and mutation analysis, the key stages of APE1 interaction with damaged DNA were established. It has been shown recently that APE1 can act as an endoribonuclease that catalyzes mRNA hydrolysis at certain pyrimidine–purine sites and thus controls the level of certain transcripts. In addition, the presence of Mg2+ ions was shown to be not required for the endoribonuclease activity of APE1, in contrast to the AP-endonuclease activity. This indicates differences in mechanisms of APE1 catalysis on RNA and DNA substrates, but the reasons for these differences remain unclear. Here, the analysis of endoribonuclease hydrolysis of model RNA substrates with wild type APE1 enzyme and its mutant forms Y171F, R177F, R181A, D210N, N212A, T268D, M270A, and D308A, was performed. It was shown that mutation of Asn212, Asp210, and Tyr171 residues leads to the decrease of AP-endonuclease activity while endoribonuclease activity is retained. Also, T268D and M270A APE1 mutants lose specificity to pyrimidine–purine sequences. R177F and R181A did not show a significant decrease in enzyme activity, whereas D308A demonstrated a decrease of endoribonuclease activity.
Collapse
Affiliation(s)
- A A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - A A Gavrilova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia.,Novosibirsk National Research State University, 630090 Novosibirsk, Russia
| | - D S Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - O S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - N A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
9
|
Davletgildeeva AT, Ishchenko AA, Saparbaev M, Fedorova OS, Kuznetsov NA. The Enigma of Substrate Recognition and Catalytic Efficiency of APE1-Like Enzymes. Front Cell Dev Biol 2021; 9:617161. [PMID: 33842455 PMCID: PMC8033172 DOI: 10.3389/fcell.2021.617161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Despite significant achievements in the elucidation of the nature of protein-DNA contacts that control the specificity of nucleotide incision repair (NIR) by apurinic/apyrimidinic (AP) endonucleases, the question on how a given nucleotide is accommodated by the active site of the enzyme remains unanswered. Therefore, the main purpose of our study was to compare kinetics of conformational changes of three homologous APE1-like endonucleases (insect Drosophila melanogaster Rrp1, amphibian Xenopus laevis xAPE1, and fish Danio rerio zAPE1) during their interaction with various damaged DNA substrates, i.e., DNA containing an F-site (an uncleavable by DNA-glycosylases analog of an AP-site), 1,N6-ethenoadenosine (εA), 5,6-dihydrouridine (DHU), uridine (U), or the α-anomer of adenosine (αA). Pre-steady-state analysis of fluorescence time courses obtained for the interaction of the APE1-like enzymes with DNA substrates containing various lesions allowed us to outline a model of substrate recognition by this class of enzymes. It was found that the differences in rates of DNA substrates’ binding do not lead to significant differences in the cleavage efficiency of DNA containing a damaged base. The results suggest that the formation of enzyme–substrate complexes is not the key factor that limits enzyme turnover; the mechanisms of damage recognition and cleavage efficacy are related to fine conformational tuning inside the active site.
Collapse
Affiliation(s)
- Anastasiia T Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Alexander A Ishchenko
- Group "Mechanisms of DNA Repair and Carcinogenesis", Equipe Labellisée LIGUE 2016, CNRS UMR 9019, Université Paris-Saclay, Villejuif, France
| | - Murat Saparbaev
- Group "Mechanisms of DNA Repair and Carcinogenesis", Equipe Labellisée LIGUE 2016, CNRS UMR 9019, Université Paris-Saclay, Villejuif, France
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
10
|
Davletgildeeva AT, Kuznetsova AA, Fedorova OS, Kuznetsov NA. Activity of Human Apurinic/Apyrimidinic Endonuclease APE1 Toward Damaged DNA and Native RNA With Non-canonical Structures. Front Cell Dev Biol 2020; 8:590848. [PMID: 33195255 PMCID: PMC7662432 DOI: 10.3389/fcell.2020.590848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/30/2020] [Indexed: 01/02/2023] Open
Abstract
The primary role of apurinic/apyrimidinic (AP) endonuclease APE1 in human cells is the cleavage of the sugar phosphate backbone 5' to an AP site in DNA to produce a single-strand break with a 5'-deoxyribose phosphate and 3'-hydroxyl end groups. APE1 can also recognize and incise some damaged or modified nucleotides and possesses some minor activities: 3'-5' exonuclease, 3'-phosphodiesterase, 3'-phosphatase, and RNase H. A molecular explanation for the discrimination of structurally different substrates by the single active site of the enzyme remains elusive. Here, we report a mechanism of target nucleotide recognition by APE1 as revealed by the results of an analysis of the APE1 process involving damaged DNA and native RNA substrates with non-canonical structures. The mechanism responsible for substrate specificity proved to be directly related to the ability of a target nucleotide to get into the active site of APE1 in response to an enzyme-induced DNA distortion.
Collapse
Affiliation(s)
- Anastasia T Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine of the SB RAS, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Alexandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine of the SB RAS, Novosibirsk, Russia
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine of the SB RAS, Novosibirsk, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine of the SB RAS, Novosibirsk, Russia
| |
Collapse
|
11
|
Bulygin AA, Kuznetsova AA, Vorobjev YN, Fedorova OS, A. Kuznetsov N. The Role of Active-Site Plasticity in Damaged-Nucleotide Recognition by Human Apurinic/Apyrimidinic Endonuclease APE1. Molecules 2020; 25:molecules25173940. [PMID: 32872297 PMCID: PMC7504742 DOI: 10.3390/molecules25173940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
Human apurinic/apyrimidinic (AP) endonuclease APE1 hydrolyzes phosphodiester bonds on the 5′ side of an AP-site, and some damaged nucleotides such as 1,N6-ethenoadenosine (εA), α-adenosine (αA), and 5,6-dihydrouridine (DHU). To investigate the mechanism behind the broad substrate specificity of APE1, we analyzed pre-steady-state kinetics of conformational changes in DNA and the enzyme during DNA binding and damage recognition. Molecular dynamics simulations of APE1 complexes with one of damaged DNA duplexes containing εA, αA, DHU, or an F-site (a stable analog of an AP-site) revealed the involvement of residues Asn229, Thr233, and Glu236 in the mechanism of DNA lesion recognition. The results suggested that processing of an AP-site proceeds faster in comparison with nucleotide incision repair substrates because eversion of a small abasic site and its insertion into the active site do not include any unfavorable interactions, whereas the insertion of any target nucleotide containing a damaged base into the APE1 active site is sterically hindered. Destabilization of the α-helix containing Thr233 and Glu236 via a loss of the interaction between these residues increased the plasticity of the damaged-nucleotide binding pocket and the ability to accommodate structurally different damaged nucleotides. Nonetheless, the optimal location of εA or αA in the binding pocket does not correspond to the optimal conformation of catalytic amino acid residues, thereby significantly decreasing the cleavage efficacy for these substrates.
Collapse
Affiliation(s)
- Anatoly A. Bulygin
- Institute of Chemical Biology and Fundamental Medicine, Lavrentyev Ave. 8, 630090 Novosibirsk, Russia; (A.A.B.); (A.A.K.); (Y.N.V.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia
| | - Alexandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentyev Ave. 8, 630090 Novosibirsk, Russia; (A.A.B.); (A.A.K.); (Y.N.V.)
| | - Yuri N. Vorobjev
- Institute of Chemical Biology and Fundamental Medicine, Lavrentyev Ave. 8, 630090 Novosibirsk, Russia; (A.A.B.); (A.A.K.); (Y.N.V.)
| | - Olga S. Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentyev Ave. 8, 630090 Novosibirsk, Russia; (A.A.B.); (A.A.K.); (Y.N.V.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia
- Correspondence: (O.S.F.); (N.A.K.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Lavrentyev Ave. 8, 630090 Novosibirsk, Russia; (A.A.B.); (A.A.K.); (Y.N.V.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia
- Correspondence: (O.S.F.); (N.A.K.)
| |
Collapse
|
12
|
The role of active-site amino acid residues in the cleavage of DNA and RNA substrates by human apurinic/apyrimidinic endonuclease APE1. Biochim Biophys Acta Gen Subj 2020; 1864:129718. [PMID: 32858086 DOI: 10.1016/j.bbagen.2020.129718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Human apurinic/apyrimidinic endonuclease APE1 is one of participants of the DNA base excision repair pathway. APE1 processes AP-sites and many other types of DNA damage via hydrolysis of the phosphodiester bond on the 5' side of the lesion. APE1 also acts as an endoribonuclease, i.e., can cleave undamaged RNA. METHODS Using pre-steady-state kinetic analysis we examined the role of certain catalytically important amino acids in APE1 enzymatic pathway and described their involvement in the mechanism of the target nucleotide recognition. RESULTS Comparative analysis of the cleavage efficiency of damaged DNAs containing an abasic site, 5,6-dihydrouridine, or α-anomer of adenosine as well as 3'-5'-exonuclease degradation of undamaged DNA and endonuclease hydrolysis of RNA substrates by mutant APE1 enzymes containing a substitution of an active-site amino acid residue (D210N, N212A, T268D, M270A, or D308A) was performed. Detailed pre-steady-state kinetics of conformational changes of the enzyme and of DNA substrate molecules during recognition and cleavage of the abasic site were studied. CONCLUSIONS It was revealed that substitution T268D significantly disturbed initial DNA binding, whereas Asn212 is critical for the DNA-bending stage and catalysis. Substitution D210N increased the binding efficacy and blocked the catalytic reaction, but D308A decreased the binding efficacy owing to disruption of Mg2+ coordination. Finally, the substitution of Met270 also destabilized the enzyme-substrate complex but did not affect the catalytic reaction. SIGNIFICANCE It was found that the tested substitutions of the active-site amino acid residues affected different stages of the complex formation process as well as the catalytic reaction.
Collapse
|
13
|
Kuznetsova AA, Novopashina DS, Fedorova OS, Kuznetsov NA. Effect of the Substrate Structure and Metal Ions on the Hydrolysis of Undamaged RNA by Human AP Endonuclease APE1. Acta Naturae 2020; 12:74-85. [PMID: 32742730 PMCID: PMC7385091 DOI: 10.32607/actanaturae.10864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/20/2020] [Indexed: 11/20/2022] Open
Abstract
Human apurinic/apyrimidinic (AP) endonuclease APE1 is one of the participants in the DNA base excision repair. The main biological function of APE1 is to hydrolyze the phosphodiester bond on the 5'-side of the AP sites. It has been shown recently that APE1 acts as an endoribonuclease and can cleave mRNA, thereby controlling the level of some transcripts. The sequences of CA, UA, and UG dinucleotides are the cleavage sites in RNA. In the present work, we performed a comparative analysis of the cleavage efficiency of model RNA substrates with short hairpin structures in which the loop size and the location of the pyrimidine-purine dinucleotide sequence were varied. The effect of various divalent metal ions and pH on the efficiency of the endoribonuclease reaction was analyzed. It was shown that site-specific hydrolysis of model RNA substrates depends on the spatial structure of the substrate. In addition, RNA cleavage occured in the absence of divalent metal ions, which proves that hydrolysis of DNA- and RNA substrates occurs via different catalytic mechanisms.
Collapse
Affiliation(s)
- A. A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - D. S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - O. S. Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - N. A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
| |
Collapse
|
14
|
Reading Targeted DNA Damage in the Active Demethylation Pathway: Role of Accessory Domains of Eukaryotic AP Endonucleases and Thymine-DNA Glycosylases. J Mol Biol 2020:S0022-2836(19)30720-X. [DOI: 10.1016/j.jmb.2019.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/24/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023]
|
15
|
Krumkacheva OA, Shevelev GY, Lomzov AA, Dyrkheeva NS, Kuzhelev AA, Koval VV, Tormyshev VM, Polienko YF, Fedin MV, Pyshnyi DV, Lavrik OI, Bagryanskaya EG. DNA complexes with human apurinic/apyrimidinic endonuclease 1: structural insights revealed by pulsed dipolar EPR with orthogonal spin labeling. Nucleic Acids Res 2019; 47:7767-7780. [PMID: 31329919 PMCID: PMC6735896 DOI: 10.1093/nar/gkz620] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022] Open
Abstract
A DNA molecule is under continuous influence of endogenous and exogenous damaging factors, which produce a variety of DNA lesions. Apurinic/apyrimidinic sites (abasic or AP sites) are among the most common DNA lesions. In this work, we applied pulse dipolar electron paramagnetic resonance (EPR) spectroscopy in combination with molecular dynamics (MD) simulations to investigate in-depth conformational changes in DNA containing an AP site and in a complex of this DNA with AP endonuclease 1 (APE1). For this purpose, triarylmethyl (TAM)-based spin labels were attached to the 5' ends of an oligonucleotide duplex, and nitroxide spin labels were introduced into APE1. In this way, we created a system that enabled monitoring the conformational changes of the main APE1 substrate by EPR. In addition, we were able to trace substrate-to-product transformation in this system. The use of different (orthogonal) spin labels in the enzyme and in the DNA substrate has a crucial advantage allowing for detailed investigation of local damage and conformational changes in AP-DNA alone and in its complex with APE1.
Collapse
Affiliation(s)
- Olesya A Krumkacheva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev ave, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.,International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Georgiy Yu Shevelev
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.,Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev ave, Novosibirsk 630090, Russia
| | - Alexander A Lomzov
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.,Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev ave, Novosibirsk 630090, Russia
| | - Nadezhda S Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev ave, Novosibirsk 630090, Russia
| | - Andrey A Kuzhelev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev ave, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.,International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Vladimir V Koval
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.,Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev ave, Novosibirsk 630090, Russia
| | - Victor M Tormyshev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev ave, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Yuliya F Polienko
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev ave, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Matvey V Fedin
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.,International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Dmitrii V Pyshnyi
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.,Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev ave, Novosibirsk 630090, Russia
| | - Olga I Lavrik
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.,Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev ave, Novosibirsk 630090, Russia
| | - Elena G Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev ave, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| |
Collapse
|
16
|
Alekseeva IV, Bakman AS, Vorobjev YN, Fedorova OS, Kuznetsov NA. Role of Ionizing Amino Acid Residues in the Process of DNA Binding by Human AP Endonuclease 1 and in Its Catalysis. J Phys Chem B 2019; 123:9546-9556. [PMID: 31633353 DOI: 10.1021/acs.jpcb.9b07150] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the repair of the damage to bases, human apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is a key participant via the DNA base excision repair pathway. APE1 cleaves AP sites in DNA, which are potentially cytotoxic and highly mutagenic if left unrepaired. According to existing structural data, this enzyme's active site contains many polar amino acid residues, which form extensive contacts with a DNA substrate. A few alternative catalytic mechanisms of the phosphodiester bond hydrolysis by APE1 have been reported. Here, the kinetics of conformational changes of the enzyme and of DNA substrate molecules were studied during the recognition and cleavage of the abasic site in the pH range from 5.5 to 9.0 using stopped-flow fluorescence techniques. The activity of APE1 increased with an increase in pH because of acceleration of the rates of catalytic complex formation and of the catalytic reaction. Molecular dynamics simulation uncovered a significant increase in the pKa of His-309 located in the active site of the enzyme. This finding revealed that the observed enhancement of enzymatic activity with pH could be associated with deprotonation of not only Tyr-171 but also His-309. The obtained data allowed us to hypothesize that the ionized state of these residues could be a molecular switch between the alternative catalytic mechanisms, which involve different functionalities of these residues throughout the reaction.
Collapse
Affiliation(s)
- Irina V Alekseeva
- Institute of Chemical Biology and Fundamental Medicine , Novosibirsk 630090 , Russia
| | - Artemiy S Bakman
- Institute of Chemical Biology and Fundamental Medicine , Novosibirsk 630090 , Russia
| | - Yury N Vorobjev
- Institute of Chemical Biology and Fundamental Medicine , Novosibirsk 630090 , Russia
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine , Novosibirsk 630090 , Russia.,Department of Natural Sciences , Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine , Novosibirsk 630090 , Russia.,Department of Natural Sciences , Novosibirsk State University , Novosibirsk 630090 , Russia
| |
Collapse
|
17
|
Bazlekowa-Karaban M, Prorok P, Baconnais S, Taipakova S, Akishev Z, Zembrzuska D, Popov AV, Endutkin AV, Groisman R, Ishchenko AA, Matkarimov BT, Bissenbaev A, Le Cam E, Zharkov DO, Tudek B, Saparbaev M. Mechanism of stimulation of DNA binding of the transcription factors by human apurinic/apyrimidinic endonuclease 1, APE1. DNA Repair (Amst) 2019; 82:102698. [PMID: 31518879 DOI: 10.1016/j.dnarep.2019.102698] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/11/2019] [Accepted: 08/31/2019] [Indexed: 12/22/2022]
Abstract
Aerobic respiration generates reactive oxygen species (ROS), which can damage nucleic acids, proteins and lipids. A number of transcription factors (TFs) contain redox-sensitive cysteine residues at their DNA-binding sites, hence ROS-induced thiol oxidation strongly inhibits their recognition of the cognate DNA sequences. Major human apurinic/apyrimidinic (AP) endonuclease 1 (APE1/APEX1/HAP-1), referred also as a redox factor 1 (Ref-1), stimulates the DNA binding activities of the oxidized TFs such as AP-1 and NF-κB. Also, APE1 participates in the base excision repair (BER) and nucleotide incision repair (NIR) pathways to remove oxidative DNA base damage. At present, the molecular mechanism underlying the TF-stimulating/redox function of APE1 and its biological role remains disputed. Here, we provide evidence that, instead of direct cysteine reduction in TFs by APE1, APE1-catalyzed NIR and TF-stimulating activities may be based on transient cooperative binding of APE1 to DNA and induction of conformational changes in the helix. The structure of DNA duplex strongly influences NIR and TF-stimulating activities. Homologous plant AP endonucleases lacking conserved cysteine residues stimulate DNA binding of the p50 subunit of NF-κB. APE1 acts synergistically with low-molecular-weight reducing agents on TFs. Finally, APE1 stimulates DNA binding of the redox-insensitive p50-C62S mutant protein. Electron microscopy imaging of APE1 complexes with DNA revealed preferential polymerization of APE1 on the gapped and intrinsically curved DNA duplexes. Molecular modeling offers a structural explanation how full-length APE1 can oligomerize on DNA. In conclusion, we propose that DNA-directed APE1 oligomerization can be regarded as a substitute for diffusion of APE1 along the DNA contour to probe for anisotropic flexibility. APE1 oligomers exacerbate pre-existing distortions in DNA and enable both NIR activity and DNA binding by TFs regardless of their oxidation state.
Collapse
Affiliation(s)
- Milena Bazlekowa-Karaban
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Paulina Prorok
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Institute of Human Genetics, UMR 9002, CNRS - University of Montpellier, Replication and Genome Dynamics, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Sonia Baconnais
- CNRS UMR8126, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Sabira Taipakova
- Department of Molecular Biology and Genetics, Faculty of Biology, al-Farabi Kazakh National University, 0530040, Almaty, Kazakhstan
| | - Zhiger Akishev
- Department of Molecular Biology and Genetics, Faculty of Biology, al-Farabi Kazakh National University, 0530040, Almaty, Kazakhstan
| | - Dominika Zembrzuska
- Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Alexander V Popov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anton V Endutkin
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Regina Groisman
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Alexander A Ishchenko
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Bakhyt T Matkarimov
- National laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Amangeldy Bissenbaev
- Department of Molecular Biology and Genetics, Faculty of Biology, al-Farabi Kazakh National University, 0530040, Almaty, Kazakhstan
| | - Eric Le Cam
- CNRS UMR8126, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Dmitry O Zharkov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Murat Saparbaev
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France.
| |
Collapse
|
18
|
Kuznetsova AA, Matveeva AG, Milov AD, Vorobjev YN, Dzuba SA, Fedorova OS, Kuznetsov NA. Substrate specificity of human apurinic/apyrimidinic endonuclease APE1 in the nucleotide incision repair pathway. Nucleic Acids Res 2019; 46:11454-11465. [PMID: 30329131 PMCID: PMC6265485 DOI: 10.1093/nar/gky912] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
Human apurinic/apyrimidinic (AP) endonuclease APE1 catalyses the hydrolysis of phosphodiester bonds on the 5′ side of an AP-site (in the base excision repair pathway) and of some damaged nucleotides (in the nucleotide incision repair pathway). The range of substrate specificity includes structurally unrelated damaged nucleotides. Here, to examine the mechanism of broad substrate specificity of APE1, we performed pulsed electron–electron double resonance (PELDOR) spectroscopy and pre-steady-state kinetic analysis with Förster resonance energy transfer (FRET) detection of DNA conformational changes during DNA binding and lesion recognition. Equilibrium PELDOR and kinetic FRET data revealed that DNA binding by APE1 leads to noticeable damage-dependent bending of a DNA duplex. Molecular dynamics simulations showed that the damaged nucleotide is everted from the DNA helix and placed into the enzyme’s binding pocket, which is formed by Asn-174, Asn-212, Asn-229, Ala-230, Phe-266 and Trp-280. Nevertheless, no damage-specific contacts were detected between these amino acid residues in the active site of the enzyme and model damaged substrates containing 1,N6-ethenoadenosine, α-adenosine, 5,6-dihydrouridine or F-site. These data suggest that the substrate specificity of APE1 is controlled by the ability of a damaged nucleotide to flip out from the DNA duplex in response to an enzyme-induced DNA distortion.
Collapse
Affiliation(s)
- Alexandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anna G Matveeva
- Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.,Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexander D Milov
- Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yuri N Vorobjev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.,Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
19
|
Alekseeva IV, Davletgildeeva AT, Arkova OV, Kuznetsov NA, Fedorova OS. The impact of single-nucleotide polymorphisms of human apurinic/apyrimidinic endonuclease 1 on specific DNA binding and catalysis. Biochimie 2019; 163:73-83. [PMID: 31150756 DOI: 10.1016/j.biochi.2019.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
Abstract
Human apurinic/apyrimidinic (AP) endonuclease APE1 is a crucial enzyme of the base excision repair (BER) pathway, which is in charge of recognition and initiation of removal of AP-sites in DNA. It is known that some single-nucleotide polymorphism (SNP) variants of APE1 have a reduced activity as compared to wild-type APE1. It has been hypothesized that genetic variation in APE1 might be responsible for an increased risk of some types of cancer. In the present work, analysis of SNPs of the APE1 gene was performed to select the set of variants having substitutions of amino acid residues on the surface of the enzyme globule and in the DNA-binding site, thereby affecting protein-protein interactions or the catalytic reaction, respectively. For seven APE1 variants (R221C, N222H, R237A, G241R, M270T, R274Q, and P311S), conformational dynamics and catalytic activities were examined. The conformational changes in the molecules of APE1 variants and in a DNA substrate were recorded as fluorescence changes of Trp and 2-aminopurine residues, respectively, using the stopped-flow technique. The results made it possible to determine the kinetic mechanism underlying the interactions of the APE1 variants with DNA substrates, to calculate the rate constants of the elementary stages, and to identify the stages of the process affected by mutation.
Collapse
Affiliation(s)
- Irina V Alekseeva
- Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk, 630090, Russia
| | - Anastasiia T Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk, 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Olga V Arkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave., Novosibirsk, 630090, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk, 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia.
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk, 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia.
| |
Collapse
|
20
|
Aruoma OI, Hausman-Cohen S, Pizano J, Schmidt MA, Minich DM, Joffe Y, Brandhorst S, Evans SJ, Brady DM. Personalized Nutrition: Translating the Science of NutriGenomics Into Practice: Proceedings From the 2018 American College of Nutrition Meeting. J Am Coll Nutr 2019; 38:287-301. [DOI: 10.1080/07315724.2019.1582980] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Okezie I Aruoma
- California State University Los Angeles, Los Angeles, California, USA
- Southern California University of Health Sciences, Whittier, California, USA
| | | | - Jessica Pizano
- Nutritional Genomics Institute, SNPed, and OmicsDX, Chasterfield, Virginia, USA
| | - Michael A. Schmidt
- Advanced Pattern Analysis & Countermeasures Group, Boulder, Colorado, USA
- Sovaris Aerospace, Boulder, Colorado, USA
| | - Deanna M. Minich
- University of Western States, Portland, Oregon, USA
- Institute for Functional Medicine, Federal Way, Washington, USA
| | - Yael Joffe
- 3X4 Genetics and Manuka Science, Cape Town, South Africa
| | | | | | - David M. Brady
- University of Bridgeport, Bridgeport, Connecticut, USA
- Whole Body Medicine, Fairfield, Connecticut, USA
| |
Collapse
|
21
|
Cabral Medeiros NM, Córdoba-Cañero D, García-Gil CB, Ariza RR, Roldán-Arjona T, Scortecci KC. Characterization of an AP endonuclease from sugarcane - ScARP1. Biochem Biophys Res Commun 2019; 514:926-932. [PMID: 31084932 DOI: 10.1016/j.bbrc.2019.04.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 01/05/2023]
Abstract
Plants are sessile organisms that need to cope with different conditions. The Base Excision Repair (BER) pathway is an important mechanism protecting the genome from DNA lesions. Apurinic/apyrimidinic (AP) endonucleases are key BER enzymes that process AP sites arising either spontaneously or as BER intermediates. In Arabidopsis there are three AP endonucleases: AtARP1, AtAPE1L, and AtAPE2, and in sugarcane two AtARP1 homologues have been identified: ScARP1 and ScARP3. ScARP1 shares 59% sequence identity with Arabidopsis AtARP. Protein modeling of ScARP1 and AtARP1 revealed conserved active sites and metal binding sites. For biochemical characterisation, recombinant ScARP1 protein displayed AP endonuclease activity both in the presence of MnCl2 or MgCl2 and the optimal temperature for its activity was 37 °C. Under these conditions, 3'-exonuclease, 3'-phosphatase, and 3'-phosphodiesteterase activities were not detectable. We also show that ScARP1 protein is able to complement mutant atarp-/- cell extracts deficient in AP endonuclease activity. These results suggest that AP endonucleases from different plant species preserve AP endonuclease activity. The biochemical characterisation of ScARP1 extends our knowledge of the BER pathway to a monocot crop plant group.
Collapse
Affiliation(s)
- Nathalia Maira Cabral Medeiros
- Laboratório de Transformação de Plantas e Microscopia (LTPM), Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Brazil; Programa de Pós-Graduação em Bioquímica da Universidade Federal do Rio Grande do Norte, Spain
| | - Dolores Córdoba-Cañero
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Spain; Universidad de Córdoba, Spain; Hospital Universitario Reina Sofía, Spain
| | - Casimiro Barbado García-Gil
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Spain; Universidad de Córdoba, Spain; Hospital Universitario Reina Sofía, Spain
| | - Rafael R Ariza
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Spain; Universidad de Córdoba, Spain; Hospital Universitario Reina Sofía, Spain
| | - Teresa Roldán-Arjona
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Spain; Universidad de Córdoba, Spain; Hospital Universitario Reina Sofía, Spain
| | - Katia Castanho Scortecci
- Laboratório de Transformação de Plantas e Microscopia (LTPM), Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Brazil; Programa de Pós-Graduação em Bioquímica da Universidade Federal do Rio Grande do Norte, Spain.
| |
Collapse
|
22
|
Aboelnga MM, Wetmore SD. Unveiling a Single-Metal-Mediated Phosphodiester Bond Cleavage Mechanism for Nucleic Acids: A Multiscale Computational Investigation of a Human DNA Repair Enzyme. J Am Chem Soc 2019; 141:8646-8656. [PMID: 31046259 DOI: 10.1021/jacs.9b03986] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mohamed M. Aboelnga
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
23
|
Kuznetsova AA, Fedorova OS, Kuznetsov NA. Kinetic Features of 3'-5' Exonuclease Activity of Human AP-Endonuclease APE1. Molecules 2018; 23:molecules23092101. [PMID: 30134601 PMCID: PMC6225374 DOI: 10.3390/molecules23092101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/02/2018] [Accepted: 08/16/2018] [Indexed: 11/16/2022] Open
Abstract
Human apurinic/apyrimidinic (AP)-endonuclease APE1 is one of the key enzymes taking part in the repair of damage to DNA. The primary role of APE1 is the initiation of the repair of AP-sites by catalyzing the hydrolytic incision of the phosphodiester bond immediately 5' to the damage. In addition to the AP-endonuclease activity, APE1 possesses 3'-5' exonuclease activity, which presumably is responsible for cleaning up nonconventional 3' ends that were generated as a result of DNA damage or as transition intermediates in DNA repair pathways. In this study, the kinetic mechanism of 3'-end nucleotide removal in the 3'-5' exonuclease process catalyzed by APE1 was investigated under pre-steady-state conditions. DNA substrates were duplexes of deoxyribonucleotides with one 5' dangling end and it contained a fluorescent 2-aminopurine residue at the 1st, 2nd, 4th, or 6th position from the 3' end of the short oligonucleotide. The impact of the 3'-end nucleotide, which contained mismatched, undamaged bases or modified bases as well as an abasic site or phosphate group, on the efficiency of 3'-5' exonuclease activity was determined. Kinetic data revealed that the rate-limiting step of 3' nucleotide removal by APE1 in the 3'-5' exonuclease process is the release of the detached nucleotide from the enzyme's active site.
Collapse
Affiliation(s)
- Alexandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia.
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia.
| |
Collapse
|
24
|
Vasilyeva SV, Kuznetsov NA, Kuznetsova AS, Khalyavina JG, Tropina DA, Lavrikova TI, Kargina OI, Gornostaev LM. DNA fluorescent labeling with naphtho[1,2,3-cd]indol-6(2H)-one for investigation of protein-DNA interactions. Bioorg Chem 2017; 72:268-272. [DOI: 10.1016/j.bioorg.2017.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/06/2017] [Accepted: 05/01/2017] [Indexed: 11/26/2022]
|
25
|
Kuznetsov NA, Fedorova OS. Thermodynamic analysis of fast stages of specific lesion recognition by DNA repair enzymes. BIOCHEMISTRY (MOSCOW) 2016; 81:1136-1152. [DOI: 10.1134/s0006297916100114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Guerreiro PS, Estácio SG, Antunes F, Fernandes AS, Pinheiro PF, Costa JG, Castro M, Miranda JP, Guedes RC, Oliveira NG. Structure-based virtual screening toward the discovery of novel inhibitors of the DNA repair activity of the human apurinic/apyrimidinic endonuclease 1. Chem Biol Drug Des 2016; 88:915-925. [DOI: 10.1111/cbdd.12826] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/10/2016] [Accepted: 07/11/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Patrícia S. Guerreiro
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Sílvia G. Estácio
- BioISI - Biosystems and Integrative Sciences Institute; Faculdade de Ciências; Universidade de Lisboa; Lisbon Portugal
| | - Fernando Antunes
- Departamento de Química e Bioquímica and Centro de Química e Bioquímica; Faculdade de Ciências; Universidade de Lisboa; Lisbon Portugal
| | - Ana S. Fernandes
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- CBIOS; Universidade Lusófona Research Center for Biosciences and Health Technologies; Lisbon Portugal
| | - Pedro F. Pinheiro
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- Centro de Química Estrutural (CQE); Instituto Superior Técnico; Universidade de Lisboa; Lisbon Portugal
| | - João G. Costa
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- CBIOS; Universidade Lusófona Research Center for Biosciences and Health Technologies; Lisbon Portugal
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| |
Collapse
|
27
|
Kuznetsov NA, Kupryushkin MS, Abramova TV, Kuznetsova AA, Miroshnikova AD, Stetsenko DA, Pyshnyi DV, Fedorova OS. New oligonucleotide derivatives as unreactive substrate analogues and potential inhibitors of human apurinic/apyrimidinic endonuclease APE1. MOLECULAR BIOSYSTEMS 2016; 12:67-75. [PMID: 26548492 DOI: 10.1039/c5mb00692a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human apurinic/apyrimidinic endonuclease APE1 is one of the key enzymes of the base excision DNA repair system. The main biological function of APE1 is the hydrolysis of the phosphodiester bond on the 5'-side of an apurinic/apyrimidinic site (AP-site) to give the 5'-phosphate and 3'-hydroxyl group. It has long been known that AP-sites have mutagenic and cytotoxic effects and their accumulation in DNA is a potential hazard to the cell lifecycle. The structural and biochemical studies of APE1 are complicated by its high catalytic activity towards the AP-site and its cyclic or acyclic analogues. This work has focussed on the design, synthesis and analysis of oligonucleotide derivatives as potentially unreactive APE1 substrates. We have shown that the replacement of oxygen atoms in the phosphate group on the 5'-side from the AP-site analogue tetrahydrofuran (F) considerably decreases the rate of enzymatic hydrolysis of modified oligonucleotides. We have calculated that a N3'-P5' phosphoramidate linkage is hydrolysed about 30 times slower than the native phosphodiester bond while phosphorothioate or primary phosphoramidate linkages are cleaved more than three orders of magnitude slower. The value of IC50 of the oligonucleotide duplex containing a primary phosphoramidate linkage is 2.5 × 10(-7) M, which is in accordance with the APE1 association constant of DNA duplexes containing AP-sites. Thus, it is demonstrated that oligonucleotide duplexes with chemical modifications could be used as unreactive substrates and potential competitive inhibitors of APE1.
Collapse
Affiliation(s)
- Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia. and Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Maxim S Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Tatyana V Abramova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Alexandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Anastasia D Miroshnikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Dmitry A Stetsenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia. and Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia. and Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia. and Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
28
|
Structural comparison of AP endonucleases from the exonuclease III family reveals new amino acid residues in human AP endonuclease 1 that are involved in incision of damaged DNA. Biochimie 2016; 128-129:20-33. [PMID: 27343627 DOI: 10.1016/j.biochi.2016.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/20/2016] [Indexed: 12/21/2022]
Abstract
Oxidatively damaged DNA bases are substrates for two overlapping repair pathways: DNA glycosylase-initiated base excision repair (BER) and apurinic/apyrimidinic (AP) endonuclease-initiated nucleotide incision repair (NIR). In the BER pathway, an AP endonuclease cleaves DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases, whereas in the NIR pathway, the same AP endonuclease incises DNA 5' to an oxidized base. The majority of characterized AP endonucleases possess classic BER activities, and approximately a half of them can also have a NIR activity. At present, the molecular mechanism underlying DNA substrate specificity of AP endonucleases remains unclear mainly due to the absence of a published structure of the enzyme in complex with a damaged base. To identify critical residues involved in the NIR function, we performed biochemical and structural characterization of Bacillus subtilis AP endonuclease ExoA and compared its crystal structure with the structures of other AP endonucleases: Escherichia coli exonuclease III (Xth), human APE1, and archaeal Mth212. We found conserved amino acid residues in the NIR-specific enzymes APE1, Mth212, and ExoA. Four of these positions were studied by means of point mutations in APE1: we applied substitution with the corresponding residue found in NIR-deficient E. coli Xth (Y128H, N174Q, G231S, and T268D). The APE1-T268D mutant showed a drastically decreased NIR activity and an inverted Mg(2+) dependence of the AP site cleavage activity, which is in line with the presence of an aspartic residue at the equivalent position among other known NIR-deficient AP endonucleases. Taken together, these data show that NIR is an evolutionarily conserved function in the Xth family of AP endonucleases.
Collapse
|
29
|
Miroshnikova AD, Kuznetsova AA, Vorobjev YN, Kuznetsov NA, Fedorova OS. Effects of mono- and divalent metal ions on DNA binding and catalysis of human apurinic/apyrimidinic endonuclease 1. MOLECULAR BIOSYSTEMS 2016; 12:1527-39. [PMID: 27063150 DOI: 10.1039/c6mb00128a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here, we used stopped-flow fluorescence techniques to conduct a comparative kinetic analysis of the conformational transitions in human apurinic/apyrimidinic endonuclease 1 (APE1) and in DNA containing an abasic site in the course of their interaction. Effects of monovalent (K(+)) and divalent (Mg(2+), Mn(2+), Ca(2+), Zn(2+), Cu(2+), and Ni(2+)) metal ions on DNA binding and catalytic stages were studied. It was shown that the first step of substrate binding (corresponding to formation of a primary enzyme-substrate complex) does not depend on the concentration (0.05-5.0 mM) or the nature of divalent metal ions. In contrast, the initial DNA binding efficiency significantly decreased at a high concentration (5-250 mM) of monovalent K(+) ions, indicating the involvement of electrostatic interactions in this stage. It was also shown that Cu(2+) ions abrogated the DNA binding ability of APE1, possibly, due to a strong interaction with DNA bases and the sugar-phosphate backbone. In the case of Ca(2+) ions, the catalytic activity of APE1 was lost completely with retention of binding potential. Thus, the enzymatic activity of APE1 is increased in the order Zn(2+) < Ni(2+) < Mn(2+) < Mg(2+). Circular dichroism spectra and calculation of the contact area between APE1 and DNA reveal that Mg(2+) ions stabilize the protein structure and the enzyme-substrate complex.
Collapse
Affiliation(s)
- Anastasia D Miroshnikova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences, 8 Lavrentyev Ave., Novosibirsk 630090, Russia.
| | | | | | | | | |
Collapse
|
30
|
Schmidt MA, Goodwin TJ, Pelligra R. Incorporation of omics analyses into artificial gravity research for space exploration countermeasure development. Metabolomics 2016; 12:36. [PMID: 26834514 PMCID: PMC4718941 DOI: 10.1007/s11306-015-0942-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022]
Abstract
The next major steps in human spaceflight include flyby, orbital, and landing missions to the Moon, Mars, and near earth asteroids. The first crewed deep space mission is expected to launch in 2022, which affords less than 7 years to address the complex question of whether and how to apply artificial gravity to counter the effects of prolonged weightlessness. Various phenotypic changes are demonstrated during artificial gravity experiments. However, the molecular dynamics (genotype and molecular phenotypes) that underlie these morphological, physiological, and behavioral phenotypes are far more complex than previously understood. Thus, targeted molecular assessment of subjects under various G conditions can be expected to miss important patterns of molecular variance that inform the more general phenotypes typically being measured. Use of omics methods can help detect changes across broad molecular networks, as various G-loading paradigms are applied. This will be useful in detecting off-target, or unanticipated effects of the different gravity paradigms applied to humans or animals. Insights gained from these approaches may eventually be used to inform countermeasure development or refine the deployment of existing countermeasures. This convergence of the omics and artificial gravity research communities may be critical if we are to develop the proper artificial gravity solutions under the severely compressed timelines currently established. Thus, the omics community may offer a unique ability to accelerate discovery, provide new insights, and benefit deep space missions in ways that have not been previously considered.
Collapse
Affiliation(s)
- Michael A. Schmidt
- />Sovaris Aerospace, LLC, Advanced Pattern Analysis & Countermeasures Group, Research Innovation Center, Colorado State University, 3185 Rampart Road, Fort Collins, CO 80521 USA
| | - Thomas J. Goodwin
- />Disease Modeling and Tissue Analogues Laboratory, Biomedical Research and Environmental Sciences Division, NASA Lyndon B. Johnson Space Center, Houston, TX 77058 USA
| | - Ralph Pelligra
- />Chief Medical Officer, NASA Ames Research Center, Moffett Field, CA USA
| |
Collapse
|
31
|
Miroshnikova AD, Kuznetsova AA, Kuznetsov NA, Fedorova OS. Thermodynamics of Damaged DNA Binding and Catalysis by Human AP Endonuclease 1. Acta Naturae 2016; 8:103-10. [PMID: 27099790 PMCID: PMC4837577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Apurinic/apyrimidinic (AP) endonucleases play an important role in DNA repair and initiation of AP site elimination. One of the most topical problems in the field of DNA repair is to understand the mechanism of the enzymatic process involving the human enzyme APE1 that provides recognition of AP sites and efficient cleavage of the 5'-phosphodiester bond. In this study, a thermodynamic analysis of the interaction between APE1 and a DNA substrate containing a stable AP site analog lacking the C1' hydroxyl group (F site) was performed. Based on stopped-flow kinetic data at different temperatures, the steps of DNA binding, catalysis, and DNA product release were characterized. The changes in the standard Gibbs energy, enthalpy, and entropy of sequential specific steps of the repair process were determined. The thermodynamic analysis of the data suggests that the initial step of the DNA substrate binding includes formation of non-specific contacts between the enzyme binding surface and DNA, as well as insertion of the amino acid residues Arg177 and Met270 into the duplex, which results in the removal of "crystalline" water molecules from DNA grooves. The second binding step involves the F site flipping-out process and formation of specific contacts between the enzyme active site and the everted 5'-phosphate-2'-deoxyribose residue. It was shown that non-specific interactions between the binding surfaces of the enzyme and DNA provide the main contribution into the thermodynamic parameters of the DNA product release step.
Collapse
Affiliation(s)
- A. D. Miroshnikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences. Prosp. Acad. Lavrent’eva, 8, Novosibirsk, 630090, Russia;
| | - A. A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences. Prosp. Acad. Lavrent’eva, 8, Novosibirsk, 630090, Russia;
| | - N. A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences. Prosp. Acad. Lavrent’eva, 8, Novosibirsk, 630090, Russia; ,Department of Natural Sciences, Novosibirsk State University, Pirogova St., 2, Novosibirsk, 630090 , Russia
| | - O. S. Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences. Prosp. Acad. Lavrent’eva, 8, Novosibirsk, 630090, Russia; ,Department of Natural Sciences, Novosibirsk State University, Pirogova St., 2, Novosibirsk, 630090 , Russia
| |
Collapse
|
32
|
Capturing snapshots of APE1 processing DNA damage. Nat Struct Mol Biol 2015; 22:924-31. [PMID: 26458045 PMCID: PMC4654669 DOI: 10.1038/nsmb.3105] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/06/2015] [Indexed: 12/22/2022]
Abstract
DNA apurinic-apyrimidinic (AP) sites are prevalent noncoding threats to genomic stability and are processed by AP endonuclease 1 (APE1). APE1 incises the AP-site phosphodiester backbone, generating a DNA-repair intermediate that is potentially cytotoxic. The molecular events of the incision reaction remain elusive, owing in part to limited structural information. We report multiple high-resolution human APE1-DNA structures that divulge new features of the APE1 reaction, including the metal-binding site, the nucleophile and the arginine clamps that mediate product release. We also report APE1-DNA structures with a T-G mismatch 5' to the AP site, representing a clustered lesion occurring in methylated CpG dinucleotides. These structures reveal that APE1 molds the T-G mismatch into a unique Watson-Crick-like geometry that distorts the active site, thus reducing incision. These snapshots provide mechanistic clarity for APE1 while affording a rational framework to manipulate biological responses to DNA damage.
Collapse
|
33
|
The role of Asn-212 in the catalytic mechanism of human endonuclease APE1: stopped-flow kinetic study of incision activity on a natural AP site and a tetrahydrofuran analogue. DNA Repair (Amst) 2015; 21:43-54. [PMID: 25038572 DOI: 10.1016/j.dnarep.2014.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 11/21/2022]
Abstract
Mammalian AP endonuclease 1 is a pivotal enzyme of the base excision repair pathway acting on apurinic/apyrimidinic sites. Previous structural and biochemical studies showed that the conserved Asn-212 residue is important for the enzymatic activity of APE1. Here, we report a comprehensive pre-steady-state kinetic analysis of two APE1 mutants, each containing amino acid substitutions at position 212, to ascertain the role of Asn-212 in individual steps of the APE1 catalytic mechanism. We applied the stopped-flow technique for detection of conformational transitions in the mutant proteins and DNA substrates during the catalytic cycle, using fluorophores that are sensitive to the micro-environment. Our data indicate that Asn-212 substitution by Asp reduces the rate of the incision step by ∼550-fold, while Ala substitution results in ∼70,000-fold decrease. Analysis of the binding steps revealed that both mutants continued to rapidly and efficiently bind to abasic DNA containing the natural AP site or its tetrahydrofuran analogue (F). Moreover, transient kinetic analysis showed that N212A APE1 possessed a higher binding rate and a higher affinity for specific substrates compared to N212D APE1. Molecular dynamics (MD) simulation revealed a significant dislocation of the key catalytic residues of both mutant proteins relative to wild-type APE1. The analysis of the model structure of N212D APE1 provides evidence for alternate hydrogen bonding between Asn-212 and Asp-210 residues, whereas N212A possesses an extended active site pocket due to Asn removal. Taken together, these biochemical and MD simulation results indicate that Asn-212 is essential for abasic DNA incision, but is not crucial for effective recognition/binding.
Collapse
|
34
|
He H, Chen Q, Georgiadis MM. High-resolution crystal structures reveal plasticity in the metal binding site of apurinic/apyrimidinic endonuclease I. Biochemistry 2014; 53:6520-9. [PMID: 25251148 PMCID: PMC4204877 DOI: 10.1021/bi500676p] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Apurinic/apyrimidinic
endonuclease I (APE1) is an essential base
excision repair enzyme that catalyzes a Mg2+-dependent
reaction in which the phosphodiester backbone is cleaved 5′
of an abasic site in duplex DNA. This reaction has been proposed to
involve either one or two metal ions bound to the active site. In
the present study, we report crystal structures of Mg2+, Mn2+, and apo-APE1 determined at 1.4, 2.2, and 1.65
Å, respectively, representing two of the highest resolution structures
yet reported for APE1. In our structures, a single well-ordered Mn2+ ion was observed coordinated by D70 and E96; the Mg2+ site exhibited disorder modeled as two closely positioned
sites coordinated by D70 and E96 or E96 alone. Direct metal binding
analysis of wild-type, D70A, and E96A APE1, as assessed by differential
scanning fluorimetry, indicated a role for D70 and E96 in binding
of Mg2+ or Mn2+ to APE1. Consistent with the
disorder exhibited by Mg2+ bound to the active site, two
different conformations of E96 were observed coordinated to Mg2+. A third conformation for E96 in the apo structure is similar
to that observed in the APE1–DNA–Mg2+ complex
structure. Thus, binding of Mg2+ in three different positions
within the active site of APE1 in these crystal structures corresponds
directly with three different conformations of E96. Taken together,
our results are consistent with the initial capture of metal by D70
and E96 and repositioning of Mg2+ facilitated by the structural
plasticity of E96 in the active site.
Collapse
Affiliation(s)
- Hongzhen He
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| | | | | |
Collapse
|
35
|
Joldybayeva B, Prorok P, Grin IR, Zharkov DO, Ishenko AA, Tudek B, Bissenbaev AK, Saparbaev M. Cloning and characterization of a wheat homologue of apurinic/apyrimidinic endonuclease Ape1L. PLoS One 2014; 9:e92963. [PMID: 24667595 PMCID: PMC3965494 DOI: 10.1371/journal.pone.0092963] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/27/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Apurinic/apyrimidinic (AP) endonucleases are key DNA repair enzymes involved in the base excision repair (BER) pathway. In BER, an AP endonuclease cleaves DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases and/or oxidative damage. A Triticum aestivum cDNA encoding for a putative homologue of ExoIII family AP endonucleases which includes E. coli Xth, human APE1 and Arabidopsis thaliana AtApe1L has been isolated and its protein product purified and characterized. METHODOLOGY/PRINCIPAL FINDINGS We report that the putative wheat AP endonuclease, referred here as TaApe1L, contains AP endonuclease, 3'-repair phosphodiesterase, 3'-phosphatase and 3' → 5' exonuclease activities. Surprisingly, in contrast to bacterial and human AP endonucleases, addition of Mg(2+) and Ca(2+) (5-10 mM) to the reaction mixture inhibited TaApe1L whereas the presence of Mn(2+), Co(2+) and Fe(2+) cations (0.1-1.0 mM) strongly stimulated all its DNA repair activities. Optimization of the reaction conditions revealed that the wheat enzyme requires low divalent cation concentration (0.1 mM), mildly acidic pH (6-7), low ionic strength (20 mM KCl) and has a temperature optimum at around 20 °C. The steady-state kinetic parameters of enzymatic reactions indicate that TaApe1L removes 3'-blocking sugar-phosphate and 3'-phosphate groups with good efficiency (kcat/KM = 630 and 485 μM(-1) · min(-1), respectively) but possesses a very weak AP endonuclease activity as compared to the human homologue, APE1. CONCLUSIONS/SIGNIFICANCE Taken together, these data establish the DNA substrate specificity of the wheat AP endonuclease and suggest its possible role in the repair of DNA damage generated by endogenous and environmental factors.
Collapse
Affiliation(s)
- Botagoz Joldybayeva
- Department of Molecular Biology and Genetics, Faculty of Biology, al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Paulina Prorok
- Groupe «Réparation de l'ADN», CNRS UMR8200, Université Paris-Sud, Institut Gustave Roussy, Villejuif, France
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Inga R. Grin
- Groupe «Réparation de l'ADN», CNRS UMR8200, Université Paris-Sud, Institut Gustave Roussy, Villejuif, France
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Alexander A. Ishenko
- Groupe «Réparation de l'ADN», CNRS UMR8200, Université Paris-Sud, Institut Gustave Roussy, Villejuif, France
| | - Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Amangeldy K. Bissenbaev
- Department of Molecular Biology and Genetics, Faculty of Biology, al-Farabi Kazakh National University, Almaty, Kazakhstan
- * E-mail: (MS); (AKB)
| | - Murat Saparbaev
- Groupe «Réparation de l'ADN», CNRS UMR8200, Université Paris-Sud, Institut Gustave Roussy, Villejuif, France
- * E-mail: (MS); (AKB)
| |
Collapse
|