1
|
Christie MS, Laitaoja M, Aarsand AK, Kallio JP, Bustad HJ. Characterisation of a common hotspot variant in acute intermittent porphyria sheds light on the mechanism of hydroxymethylbilane synthase function. FEBS Open Bio 2022; 12:2136-2146. [PMID: 36115019 PMCID: PMC9714363 DOI: 10.1002/2211-5463.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/10/2022] [Accepted: 09/16/2022] [Indexed: 01/25/2023] Open
Abstract
Hydroxymethylbilane synthase (HMBS) is the third enzyme involved in haem biosynthesis, in which it catalyses the formation of tetrapyrrole 1-hydroxymethylbilane (HMB). In this process, HMBS binds four consecutive substrate molecules, creating the enzyme-intermediate complexes ES, ES2 , ES3 and ES4 . Pathogenic variants in the HMBS gene are associated with the dominantly inherited disorder acute intermittent porphyria. In this study, we have characterised the p.R26H variant to shed light on the role of Arg26 in the elongation mechanism of HMBS and to provide insights into its effect on the enzyme. With selected biophysical methods, we have been able to show that p.R26H forms a single enzyme-intermediate complex in the ES2 -state. We were also able to demonstrate that the p.R26H variant results in an inactive enzyme, which is unable to produce the HMB product.
Collapse
Affiliation(s)
- Marthe S. Christie
- Department of BiomedicineUniversity of BergenNorway,Norwegian Porphyria Centre (NAPOS), Department for Medical Biochemistry and PharmacologyHaukeland University HospitalBergenNorway
| | - Mikko Laitaoja
- Department of ChemistryUniversity of Eastern FinlandJoensuuFinland
| | - Aasne K. Aarsand
- Norwegian Porphyria Centre (NAPOS), Department for Medical Biochemistry and PharmacologyHaukeland University HospitalBergenNorway,Norwegian Organization for Quality Improvement of Laboratory ExaminationsHaraldsplass Deaconess HospitalBergenNorway
| | | | - Helene J. Bustad
- Norwegian Porphyria Centre (NAPOS), Department for Medical Biochemistry and PharmacologyHaukeland University HospitalBergenNorway
| |
Collapse
|
2
|
Helliwell JR. The crystal structures of the enzyme hydroxymethylbilane synthase, also known as porphobilinogen deaminase. Acta Crystallogr F Struct Biol Commun 2021; 77:388-398. [PMID: 34726177 PMCID: PMC8561815 DOI: 10.1107/s2053230x2100964x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 12/03/2022] Open
Abstract
The enzyme hydroxymethylbilane synthase (HMBS; EC 4.3.1.8), also known as porphobilinogen deaminase, catalyses the stepwise addition of four molecules of porphobilinogen to form the linear tetrapyrrole 1-hydroxymethylbilane. Thirty years of crystal structures are surveyed in this topical review. These crystal structures aim at the elucidation of the structural basis of the complex reaction mechanism involving the formation of tetrapyrrole from individual porphobilinogen units. The consistency between the various structures is assessed. This includes an evaluation of the precision of each molecular model and what was not modelled. A survey is also made of the crystallization conditions used in the context of the operational pH of the enzyme. The combination of 3D structural techniques, seeking accuracy, has also been a feature of this research effort. Thus, SAXS, NMR and computational molecular dynamics have also been applied. The general framework is also a considerable chemistry research effort to understand the function of the enzyme and its medical pathologies in acute intermittent porphyria (AIP). Mutational studies and their impact on the catalytic reaction provide insight into the basis of AIP and are also invaluable for guiding the understanding of the crystal structure results. Future directions for research on HMBS are described, including the need to determine the protonation states of key amino-acid residues identified as being catalytically important. The question remains - what is the molecular engine for this complex reaction? Thermal fluctuations are the only suggestion thus far.
Collapse
Affiliation(s)
- John R. Helliwell
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
3
|
Helliwell JR. Combining X-rays, neutrons and electrons, and NMR, for precision and accuracy in structure-function studies. Acta Crystallogr A Found Adv 2021; 77:173-185. [PMID: 33944796 PMCID: PMC8127390 DOI: 10.1107/s205327332100317x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/25/2021] [Indexed: 02/02/2023] Open
Abstract
The distinctive features of the physics-based probes used in understanding the structure of matter focusing on biological sciences, but not exclusively, are described in the modern context. This is set in a wider scope of holistic biology and the scepticism about `reductionism', what is called the `molecular level', and how to respond constructively. These topics will be set alongside the principles of accuracy and precision, and their boundaries. The combination of probes and their application together is the usual way of realizing accuracy. The distinction between precision and accuracy can be blurred by the predictive force of a precise structure, thereby lending confidence in its potential accuracy. These descriptions will be applied to the comparison of cryo and room-temperature protein crystal structures as well as the solid state of a crystal and the same molecules studied by small-angle X-ray scattering in solution and by electron microscopy on a sample grid. Examples will include: time-resolved X-ray Laue crystallography of an enzyme Michaelis complex formed directly in a crystal equivalent to in vivo; a new iodoplatin for radiation therapy predicted from studies of platin crystal structures; and the field of colouration of carotenoids, as an effective assay of function, i.e. their colouration, when unbound and bound to a protein. The complementarity of probes, as well as their combinatory use, is then at the foundation of real (biologically relevant), probe-artefacts-free, structure-function studies. The foundations of our methodologies are being transformed by colossal improvements in technologies of X-ray and neutron sources and their beamline instruments, as well as improved electron microscopes and NMR spectrometers. The success of protein structure prediction from gene sequence recently reported by CASP14 also opens new doors to change and extend the foundations of the structural sciences.
Collapse
Affiliation(s)
- John R. Helliwell
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
4
|
Bustad HJ, Kallio JP, Laitaoja M, Toska K, Kursula I, Martinez A, Jänis J. Characterization of porphobilinogen deaminase mutants reveals that arginine-173 is crucial for polypyrrole elongation mechanism. iScience 2021; 24:102152. [PMID: 33665570 PMCID: PMC7907807 DOI: 10.1016/j.isci.2021.102152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/03/2020] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
Porphobilinogen deaminase (PBGD), the third enzyme in the heme biosynthesis, catalyzes the sequential coupling of four porphobilinogen (PBG) molecules into a heme precursor. Mutations in PBGD are associated with acute intermittent porphyria (AIP), a rare metabolic disorder. We used Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to demonstrate that wild-type PBGD and AIP-associated mutant R167W both existed as holoenzymes (Eholo) covalently attached to the dipyrromethane cofactor, and three intermediate complexes, ES, ES2, and ES3, where S represents PBG. In contrast, only ES2 was detected in AIP-associated mutant R173W, indicating that the formation of ES3 is inhibited. The R173W crystal structure in the ES2-state revealed major rearrangements of the loops around the active site, compared to wild-type PBGD in the Eholo-state. These results contribute to elucidating the structural pathogenesis of two common AIP-associated mutations and reveal the important structural role of Arg173 in the polypyrrole elongation mechanism.
Collapse
Affiliation(s)
- Helene J Bustad
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Juha P Kallio
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Mikko Laitaoja
- Department of Chemistry, University of Eastern Finland, 80130 Joensuu, Finland
| | - Karen Toska
- Norwegian Porphyria Centre (NAPOS), Department for Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90570 Oulu, Finland
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, 80130 Joensuu, Finland
| |
Collapse
|
5
|
Bustad HJ, Kallio JP, Vorland M, Fiorentino V, Sandberg S, Schmitt C, Aarsand AK, Martinez A. Acute Intermittent Porphyria: An Overview of Therapy Developments and Future Perspectives Focusing on Stabilisation of HMBS and Proteostasis Regulators. Int J Mol Sci 2021; 22:E675. [PMID: 33445488 PMCID: PMC7827610 DOI: 10.3390/ijms22020675] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Acute intermittent porphyria (AIP) is an autosomal dominant inherited disease with low clinical penetrance, caused by mutations in the hydroxymethylbilane synthase (HMBS) gene, which encodes the third enzyme in the haem biosynthesis pathway. In susceptible HMBS mutation carriers, triggering factors such as hormonal changes and commonly used drugs induce an overproduction and accumulation of toxic haem precursors in the liver. Clinically, this presents as acute attacks characterised by severe abdominal pain and a wide array of neurological and psychiatric symptoms, and, in the long-term setting, the development of primary liver cancer, hypertension and kidney failure. Treatment options are few, and therapies preventing the development of symptomatic disease and long-term complications are non-existent. Here, we provide an overview of the disorder and treatments already in use in clinical practice, in addition to other therapies under development or in the pipeline. We also introduce the pathomechanistic effects of HMBS mutations, and present and discuss emerging therapeutic options based on HMBS stabilisation and the regulation of proteostasis. These are novel mechanistic therapeutic approaches with the potential of prophylactic correction of the disease by totally or partially recovering the enzyme functionality. The present scenario appears promising for upcoming patient-tailored interventions in AIP.
Collapse
Affiliation(s)
- Helene J. Bustad
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; (H.J.B.); (J.P.K.)
| | - Juha P. Kallio
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; (H.J.B.); (J.P.K.)
| | - Marta Vorland
- Norwegian Porphyria Centre (NAPOS), Department for Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; (M.V.); (S.S.)
| | - Valeria Fiorentino
- INSERM U1149, Center for Research on Inflammation (CRI), Université de Paris, 75018 Paris, France; (V.F.); (C.S.)
| | - Sverre Sandberg
- Norwegian Porphyria Centre (NAPOS), Department for Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; (M.V.); (S.S.)
- Norwegian Organization for Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, 5009 Bergen, Norway
| | - Caroline Schmitt
- INSERM U1149, Center for Research on Inflammation (CRI), Université de Paris, 75018 Paris, France; (V.F.); (C.S.)
- Assistance Publique Hôpitaux de Paris (AP-HP), Centre Français des Porphyries, Hôpital Louis Mourier, 92700 Colombes, France
| | - Aasne K. Aarsand
- Norwegian Porphyria Centre (NAPOS), Department for Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; (M.V.); (S.S.)
- Norwegian Organization for Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, 5009 Bergen, Norway
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; (H.J.B.); (J.P.K.)
| |
Collapse
|
6
|
Bung N, Pradhan M, Srinivasan H, Bulusu G. Structural insights into E. coli porphobilinogen deaminase during synthesis and exit of 1-hydroxymethylbilane. PLoS Comput Biol 2014; 10:e1003484. [PMID: 24603363 PMCID: PMC3945110 DOI: 10.1371/journal.pcbi.1003484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022] Open
Abstract
Porphobilinogen deaminase (PBGD) catalyzes the formation of 1-hydroxymethylbilane (HMB), a crucial intermediate in tetrapyrrole biosynthesis, through a step-wise polymerization of four molecules of porphobilinogen (PBG), using a unique dipyrromethane (DPM) cofactor. Structural and biochemical studies have suggested residues with catalytic importance, but their specific role in the mechanism and the dynamic behavior of the protein with respect to the growing pyrrole chain remains unknown. Molecular dynamics simulations of the protein through the different stages of pyrrole chain elongation suggested that the compactness of the overall protein decreases progressively with addition of each pyrrole ring. Essential dynamics showed that domains move apart while the cofactor turn region moves towards the second domain, thus creating space for the pyrrole rings added at each stage. Residues of the flexible active site loop play a significant role in its modulation. Steered molecular dynamics was performed to predict the exit mechanism of HMB from PBGD at the end of the catalytic cycle. Based on the force profile and minimal structural changes the proposed path for the exit of HMB is through the space between the domains flanking the active site loop. Residues reported as catalytically important, also play an important role in the exit of HMB. Further, upon removal of HMB, the structure of PBGD gradually relaxes to resemble its initial stage structure, indicating its readiness to resume a new catalytic cycle. Heme is the prosthetic group at the core of the oxygen carrier metalloprotein hemoglobin. Heme consists of a tetrapyrrole called porphyrin bound to an iron ion. It is synthesized by the heme biosynthetic pathway, which is common to all eukaryotes and most prokaryotes. Porphobilinogen deaminase, an enzyme in the heme biosynthetic pathway, catalyzes the formation of a linear tetrapyrrole product, 1-hydroxymethylbilane, from four units of porphobilinogen. In this study we carried out molecular dynamics simulations to understand the structural changes that the enzyme undergoes while catalyzing this reaction. There are three segments to the study: 1) understanding the changes in the enzyme when the porphobilinogen units get attached to the dipyrromethane cofactor, thereby forming a polypyrrole chain; 2) exit of the product from the active site of the enzyme via steered molecular dynamics; and 3) the relaxation of the enzyme to the initial stage to resume its catalytic cycle. Molecular dynamics simulations of the protein through the different stages of pyrrole chain elongation gives insight into the motions of domains, active site loop and role of conserved active site residues in facilitating the accommodation of the polypyrrole chain. In addition to this, we propose a possible exit path for the product and demonstrate the relaxation of the enzyme after the exit of the product to resume the catalytic cycle.
Collapse
Affiliation(s)
- Navneet Bung
- TCS Innovation Labs-Hyderabad (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, India
| | - Meenakshi Pradhan
- TCS Innovation Labs-Hyderabad (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, India
| | - Harini Srinivasan
- TCS Innovation Labs-Hyderabad (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, India
| | - Gopalakrishnan Bulusu
- TCS Innovation Labs-Hyderabad (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, India
- * E-mail:
| |
Collapse
|
7
|
Azim N, Deery E, Warren MJ, Wolfenden BAA, Erskine P, Cooper JB, Coker A, Wood SP, Akhtar M. Structural evidence for the partially oxidized dipyrromethene and dipyrromethanone forms of the cofactor of porphobilinogen deaminase: structures of the Bacillus megaterium enzyme at near-atomic resolution. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:744-51. [PMID: 24598743 PMCID: PMC3949521 DOI: 10.1107/s139900471303294x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/04/2013] [Indexed: 11/10/2022]
Abstract
The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses an early step of the tetrapyrrole-biosynthesis pathway in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The enzyme possesses a dipyrromethane cofactor, which is covalently linked by a thioether bridge to an invariant cysteine residue (Cys241 in the Bacillus megaterium enzyme). The cofactor is extended during the reaction by the sequential addition of the four substrate molecules, which are released as a linear tetrapyrrole product. Expression in Escherichia coli of a His-tagged form of B. megaterium PBGD has permitted the X-ray analysis of the enzyme from this species at high resolution, showing that the cofactor becomes progressively oxidized to the dipyrromethene and dipyrromethanone forms. In previously solved PBGD structures, the oxidized cofactor is in the dipyromethenone form, in which both pyrrole rings are approximately coplanar. In contrast, the oxidized cofactor in the B. megaterium enzyme appears to be in the dipyrromethanone form, in which the C atom at the bridging α-position of the outer pyrrole ring is very clearly in a tetrahedral configuration. It is suggested that the pink colour of the freshly purified protein is owing to the presence of the dipyrromethene form of the cofactor which, in the structure reported here, adopts the same conformation as the fully reduced dipyrromethane form.
Collapse
Affiliation(s)
- N. Azim
- School of Biological Sciences, University of Punjab, New Campus, Lahore-54590, Pakistan
| | - E. Deery
- School of Biosciences, University of Kent, Stacey Building, Canterbury CT2 7NJ, England
| | - M. J. Warren
- School of Biosciences, University of Kent, Stacey Building, Canterbury CT2 7NJ, England
| | - B. A. A. Wolfenden
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - P. Erskine
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - J. B. Cooper
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - A. Coker
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - S. P. Wood
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - M. Akhtar
- School of Biological Sciences, University of Punjab, New Campus, Lahore-54590, Pakistan
| |
Collapse
|
8
|
Azim N, Deery E, Warren MJ, Erskine P, Cooper JB, Wood SP, Akhtar M. Crystallization and preliminary X-ray characterization of the tetrapyrrole-biosynthetic enzyme porphobilinogen deaminase from Bacillus megaterium. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:906-8. [PMID: 23908040 PMCID: PMC3729171 DOI: 10.1107/s1744309113018526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/04/2013] [Indexed: 11/24/2022]
Abstract
The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses an early step of the tetrapyrrole-biosynthesis pathway in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The enzyme possesses a dipyrromethane cofactor which is covalently linked by a thioether bridge to an invariant cysteine residue. Expression in Escherichia coli of a His-tagged form of Bacillus megaterium PBGD permitted the crystallization and preliminary X-ray analysis of the enzyme from this species at high resolution.
Collapse
Affiliation(s)
- N. Azim
- School of Biological Sciences, University of Punjab, New Campus, Lahore 54590, Pakistan
| | - E. Deery
- School of Biosciences, University of Kent, Stacey Building, Canterbury, Kent CT2 7NJ, England
| | - M. J. Warren
- School of Biosciences, University of Kent, Stacey Building, Canterbury, Kent CT2 7NJ, England
| | - P. Erskine
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - J. B. Cooper
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - S. P. Wood
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - M. Akhtar
- School of Biological Sciences, University of Punjab, New Campus, Lahore 54590, Pakistan
| |
Collapse
|
9
|
Roberts A, Gill R, Hussey RJ, Mikolajek H, Erskine PT, Cooper JB, Wood SP, Chrystal EJT, Shoolingin-Jordan PM. Insights into the mechanism of pyrrole polymerization catalysed by porphobilinogen deaminase: high-resolution X-ray studies of the Arabidopsis thaliana enzyme. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:471-85. [PMID: 23519422 DOI: 10.1107/s0907444912052134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 12/31/2012] [Indexed: 11/10/2022]
Abstract
The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses a key early step of the haem- and chlorophyll-biosynthesis pathways in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The active site possesses an unusual dipyrromethane cofactor which is extended during the reaction by the sequential addition of the four substrate molecules. The cofactor is linked covalently to the enzyme through a thioether bridge to the invariant Cys254. Until recently, structural data have only been available for the Escherichia coli and human forms of the enzyme. The expression of a codon-optimized gene for PBGD from Arabidopsis thaliana (thale cress) has permitted for the first time the X-ray analysis of the enzyme from a higher plant species at 1.45 Å resolution. The A. thaliana structure differs appreciably from the E. coli and human forms of the enzyme in that the active site is shielded by an extensive well defined loop region (residues 60-70) formed by highly conserved residues. This loop is completely disordered and uncharacterized in the E. coli and human PBGD structures. The new structure establishes that the dipyrromethane cofactor of the enzyme has become oxidized to the dipyrromethenone form, with both pyrrole groups approximately coplanar. Modelling of an intermediate of the elongation process into the active site suggests that the interactions observed between the two pyrrole rings of the cofactor and the active-site residues are highly specific and are most likely to represent the catalytically relevant binding mode. During the elongation cycle, it is thought that domain movements cause the bound cofactor and polypyrrole intermediates to move past the catalytic machinery in a stepwise manner, thus permitting the binding of additional substrate moieties and completion of the tetrapyrrole product. Such a model would allow the condensation reactions to be driven by the extensive interactions that are observed between the enzyme and the dipyrromethane cofactor, coupled with acid-base catalysis provided by the invariant aspartate residue Asp95.
Collapse
Affiliation(s)
- A Roberts
- School of Biological Sciences, University of Southampton, Southampton SO16 1BJ, England
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Roberts A, Gill R, Hussey RJ, Mikolajek H, Erskine PT, Cooper JB, Wood SP, Chrystal EJT, Shoolingin-Jordan PM. Crystallization and preliminary X-ray characterization of the tetrapyrrole-biosynthetic enzyme porphobilinogen deaminase from Arabidopsis thaliana. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1491-3. [PMID: 23192030 PMCID: PMC3509971 DOI: 10.1107/s1744309112042212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/08/2012] [Indexed: 11/10/2022]
Abstract
The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses a key early step of the haem-biosynthesis pathway in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The enzyme possesses a dipyrromethane cofactor which is covalently linked by a thioether bridge to an invariant cysteine residue. Since PBGD catalyses a reaction which is common to the biosynthesis of both haem and chlorophyll, structural studies of a plant PBGD enzyme offer great potential for the discovery of novel herbicides. Until recently, structural data have only been available for the Escherichia coli and human forms of the enzyme. Expression in E. coli of a codon-optimized gene for Arabidopsis thaliana PBGD has permitted for the first time the crystallization and preliminary X-ray analysis of the enzyme from a plant species at high resolution.
Collapse
Affiliation(s)
- A. Roberts
- School of Biological Sciences, University of Southampton, Southampton SO16 7PX, England
| | - R. Gill
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - R. J. Hussey
- School of Biological Sciences, University of Southampton, Southampton SO16 7PX, England
| | - H. Mikolajek
- School of Biological Sciences, University of Southampton, Southampton SO16 7PX, England
| | - P. T. Erskine
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - J. B. Cooper
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - S. P. Wood
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - E. J. T. Chrystal
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, England
| | | |
Collapse
|
11
|
Structure of human porphobilinogen deaminase at 2.8 A: the molecular basis of acute intermittent porphyria. Biochem J 2009; 420:17-25. [PMID: 19207107 DOI: 10.1042/bj20082077] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in the human PBGD (porphobilinogen deaminase) gene cause the inherited defect AIP (acute intermittent porphyria). In the present study we report the structure of the human uPBGD (ubiquitous PBGD) mutant, R167Q, that has been determined by X-ray crystallography and refined to 2.8 A (1 A=0.1 nm) resolution (Rfactor=0.26, Rfree=0.29). The protein crystallized in space group P2(1)2(1)2 with two molecules in the asymmetric unit (a=81.0 A, b=104.4 A and c=109.7 A). Phases were obtained by molecular replacement using the Escherichia coli PBGD structure as a search model. The human enzyme is composed of three domains each of approx. 110 amino acids and possesses a dipyrromethane cofactor at the active site, which is located between domains 1 and 2. An ordered sulfate ion is hydrogen-bonded to Arg26 and Ser28 at the proposed substrate-binding site in domain 1. An insert of 29 amino acid residues, present only in mammalian PBGD enzymes, has been modelled into domain 3 where it extends helix alpha2(3) and forms a beta-hairpin structure that contributes to a continuous hydrogen-bonding network spanning domains 1 and 3. The structural and functional implications of the R167Q mutation and other mutations that result in AIP are discussed.
Collapse
|
12
|
Li N, Chu X, Wu L, Liu X, Li D. Functional studies of rat hydroxymethylbilane synthase. Bioorg Chem 2008; 36:241-51. [PMID: 18760440 DOI: 10.1016/j.bioorg.2008.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/10/2008] [Accepted: 07/21/2008] [Indexed: 01/21/2023]
Abstract
The structurally related tetrapyrrolic pigments are a group of natural products that participate in many of the fundamental biosynthetic and catabolic processes of living organisms. Hydroxymethylbilane synthase catalyzes a rate-limiting step for the biosyntheses of tetrapyrrolic natural products. We carried out extensive studies of rat hydroxymethylbilane synthase in the present investigation. The enzymatic reaction rate of the holoenzyme was found to be lower than those of the enzyme-intermediate complexes, which corrected the previous theoretical analysis result. Several mutants were constructed, purified and characterized. D44 was found to play an important role in the disassembly of the enzyme-intermediate complexes. E63 and H78 were important for maintaining the activity of the enzyme at high temperature. Four substrate analogs with variation of porphobilinogen side-chain were synthesized and incubated with the enzyme. Three analogs were found to be weak substrates of the enzyme. All four analogs can be used for the preparation of uroporphyrin I analogs.
Collapse
Affiliation(s)
- Nan Li
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, PR China
| | | | | | | | | |
Collapse
|
13
|
Abstract
A modern approach to protein crystallography relies as much on molecular biology as on the 'core' crystallographic disciplines. Some recent, biologically significant structure determinations have demonstrated this and show the importance of new third generation synchrotron sources. Novel uses of well known phasing techniques have also been valuable in these structure determinations. For the majority of structures, advances in phasing techniques, data collection and processing and the associated computer programs have led to more effective structure determinations.
Collapse
Affiliation(s)
- J C Beauchamp
- Department of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | | |
Collapse
|