1
|
Du S, Wankowicz SA, Yabukarski F, Doukov T, Herschlag D, Fraser JS. Refinement of multiconformer ensemble models from multi-temperature X-ray diffraction data. Methods Enzymol 2023; 688:223-254. [PMID: 37748828 PMCID: PMC10637719 DOI: 10.1016/bs.mie.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Conformational ensembles underlie all protein functions. Thus, acquiring atomic-level ensemble models that accurately represent conformational heterogeneity is vital to deepen our understanding of how proteins work. Modeling ensemble information from X-ray diffraction data has been challenging, as traditional cryo-crystallography restricts conformational variability while minimizing radiation damage. Recent advances have enabled the collection of high quality diffraction data at ambient temperatures, revealing innate conformational heterogeneity and temperature-driven changes. Here, we used diffraction datasets for Proteinase K collected at temperatures ranging from 313 to 363 K to provide a tutorial for the refinement of multiconformer ensemble models. Integrating automated sampling and refinement tools with manual adjustments, we obtained multiconformer models that describe alternative backbone and sidechain conformations, their relative occupancies, and interconnections between conformers. Our models revealed extensive and diverse conformational changes across temperature, including increased bound peptide ligand occupancies, different Ca2+ binding site configurations and altered rotameric distributions. These insights emphasize the value and need for multiconformer model refinement to extract ensemble information from diffraction data and to understand ensemble-function relationships.
Collapse
Affiliation(s)
- Siyuan Du
- Department of Biochemistry, Stanford University, Stanford, CA, United States; Department of Chemistry, Stanford University, Stanford, CA, United States
| | - Stephanie A Wankowicz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
| | - Filip Yabukarski
- Department of Biochemistry, Stanford University, Stanford, CA, United States; Bristol-Myers Squibb, San Diego, CA, United States
| | - Tzanko Doukov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, United States
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA, United States; Department of Chemical Engineering, Stanford University, Stanford, CA, United States; Stanford ChEM-H, Stanford University, Stanford, CA, United States
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States; Quantitative Biosciences Institute, University of California, San Francisco, CA, United States.
| |
Collapse
|
2
|
Du S, Wankowicz SA, Yabukarski F, Doukov T, Herschlag D, Fraser JS. Refinement of Multiconformer Ensemble Models from Multi-temperature X-ray Diffraction Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539620. [PMID: 37205593 PMCID: PMC10187334 DOI: 10.1101/2023.05.05.539620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Conformational ensembles underlie all protein functions. Thus, acquiring atomic-level ensemble models that accurately represent conformational heterogeneity is vital to deepen our understanding of how proteins work. Modeling ensemble information from X-ray diffraction data has been challenging, as traditional cryo-crystallography restricts conformational variability while minimizing radiation damage. Recent advances have enabled the collection of high quality diffraction data at ambient temperatures, revealing innate conformational heterogeneity and temperature-driven changes. Here, we used diffraction datasets for Proteinase K collected at temperatures ranging from 313 to 363K to provide a tutorial for the refinement of multiconformer ensemble models. Integrating automated sampling and refinement tools with manual adjustments, we obtained multiconformer models that describe alternative backbone and sidechain conformations, their relative occupancies, and interconnections between conformers. Our models revealed extensive and diverse conformational changes across temperature, including increased bound peptide ligand occupancies, different Ca2+ binding site configurations and altered rotameric distributions. These insights emphasize the value and need for multiconformer model refinement to extract ensemble information from diffraction data and to understand ensemble-function relationships.
Collapse
Affiliation(s)
- Siyuan Du
- Department of Biochemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Stephanie A. Wankowicz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| | - Filip Yabukarski
- Department of Biochemistry, Stanford University, Stanford, California 94305, United States
- Bristol-Myers Squibb, San Diego, California 92121, United States
| | - Tzanko Doukov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Quantitative Biosciences Institute, University of California, San Francisco, California 94143, United States
| |
Collapse
|
3
|
Moreau DW, Atakisi H, Thorne RE. Ice formation and solvent nanoconfinement in protein crystals. IUCRJ 2019; 6:346-356. [PMID: 31098016 PMCID: PMC6503922 DOI: 10.1107/s2052252519001878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/31/2019] [Indexed: 05/06/2023]
Abstract
Ice formation within protein crystals is a major obstacle to the cryocrystallographic study of protein structure, and has limited studies of how the structural ensemble of a protein evolves with temperature in the biophysically interesting range from ∼260 K to the protein-solvent glass transition near 200 K. Using protein crystals with solvent cavities as large as ∼70 Å, time-resolved X-ray diffraction was used to study the response of protein and internal solvent during rapid cooling. Solvent nanoconfinement suppresses freezing temperatures and ice-nucleation rates so that ice-free, low-mosaicity diffraction data can be reliably collected down to 200 K without the use of cryoprotectants. Hexagonal ice (Ih) forms in external solvent, but internal crystal solvent forms stacking-disordered ice (Isd) with a near-random stacking of cubic and hexagonal planes. Analysis of powder diffraction from internal ice and single-crystal diffraction from the host protein structure shows that the maximum crystallizable solvent fraction decreases with decreasing crystal solvent-cavity size, and that an ∼6 Å thick layer of solvent adjacent to the protein surface cannot crystallize. These results establish protein crystals as excellent model systems for the study of nanoconfined solvent. By combining fast cooling, intense X-ray beams and fast X-ray detectors, complete structural data sets for high-value targets, including membrane proteins and large complexes, may be collected at ∼220-240 K that have much lower mosaicities and comparable B factors, and that may allow more confident identification of ligand binding than in current cryocrystallographic practice.
Collapse
Affiliation(s)
- David W. Moreau
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | - Hakan Atakisi
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
4
|
Juers DH, Farley CA, Saxby CP, Cotter RA, Cahn JKB, Holton-Burke RC, Harrison K, Wu Z. The impact of cryosolution thermal contraction on proteins and protein crystals: volumes, conformation and order. Acta Crystallogr D Struct Biol 2018; 74:922-938. [PMID: 30198901 PMCID: PMC6130464 DOI: 10.1107/s2059798318008793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/15/2018] [Indexed: 11/11/2022] Open
Abstract
Cryocooling of macromolecular crystals is commonly employed to limit radiation damage during X-ray diffraction data collection. However, cooling itself affects macromolecular conformation and often damages crystals via poorly understood processes. Here, the effects of cryosolution thermal contraction on macromolecular conformation and crystal order in crystals ranging from 32 to 67% solvent content are systematically investigated. It is found that the solution thermal contraction affects macromolecule configurations and volumes, unit-cell volumes, crystal packing and crystal order. The effects occur through not only thermal contraction, but also pressure caused by the mismatched contraction of cryosolvent and pores. Higher solvent-content crystals are more affected. In some cases the solvent contraction can be adjusted to reduce mosaicity and increase the strength of diffraction. Ice formation in some crystals is found to cause damage via a reduction in unit-cell volume, which is interpreted through solvent transport out of unit cells during cooling. The results point to more deductive approaches to cryoprotection optimization by adjusting the cryosolution composition to reduce thermal contraction-induced stresses in the crystal with cooling.
Collapse
Affiliation(s)
- Douglas H. Juers
- Department of Physics, Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362, USA
- Program in BBMB, Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362, USA
| | - Christopher A. Farley
- Department of Physics, Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362, USA
| | | | - Rosemary A. Cotter
- Program in BBMB, Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362, USA
| | - Jackson K. B. Cahn
- Program in BBMB, Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362, USA
| | | | - Kaitlin Harrison
- Program in BBMB, Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362, USA
| | - Zhenguo Wu
- Department of Physics, Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362, USA
| |
Collapse
|
5
|
Plazanet M, Sacchetti F, Petrillo C, Demé B, Bartolini P, Torre R. Water in a polymeric electrolyte membrane: Sorption/desorption and freezing phenomena. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2013.11.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Maïga A, Vera L, Marchetti C, Lorphelin A, Bellanger L, Mourier G, Servent D, Gilles N, Stura EA. Crystallization of recombinant green mamba ρ-Da1a toxin during a lyophilization procedure and its structure determination. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:704-9. [PMID: 23722859 PMCID: PMC3668600 DOI: 10.1107/s1744309113011470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/26/2013] [Indexed: 11/10/2022]
Abstract
ρ-Da1a toxin from eastern green mamba (Dendroaspis angusticeps) venom is a polypeptide of 65 amino acids with a strong affinity for the G-protein-coupled α(1A)-adrenoceptor. This neurotoxin has been crystallized from resolubilized lyophilized powder, but the best crystals grew spontaneously during lyophilization. The crystals belonged to the trigonal space group P3(1)21, with unit-cell parameters a = b = 37.37, c = 66.05 Å, and diffracted to 1.95 Å resolution. The structure solved by molecular replacement showed strong similarities to green mamba muscarinic toxins.
Collapse
Affiliation(s)
- Arhamatoulaye Maïga
- CEA, DSV, iBiTec-S, Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), 91191 Gif-sur-Yvette, France
| | - Laura Vera
- CEA, DSV, iBiTec-S, Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), 91191 Gif-sur-Yvette, France
| | - Charles Marchetti
- CEA, DSV, iBEB, Service de Biochimie et Toxicologie Nucléaire, Centre de Marcoule, BP 17171, 30207 Bagnols-sur-Cèze CEDEX, France
| | - Alain Lorphelin
- CEA, DSV, iBEB, Service de Biochimie et Toxicologie Nucléaire, Centre de Marcoule, BP 17171, 30207 Bagnols-sur-Cèze CEDEX, France
| | - Laurent Bellanger
- CEA, DSV, iBEB, Service de Biochimie et Toxicologie Nucléaire, Centre de Marcoule, BP 17171, 30207 Bagnols-sur-Cèze CEDEX, France
| | - Gilles Mourier
- CEA, DSV, iBiTec-S, Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), 91191 Gif-sur-Yvette, France
| | - Denis Servent
- CEA, DSV, iBiTec-S, Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), 91191 Gif-sur-Yvette, France
| | - Nicolas Gilles
- CEA, DSV, iBiTec-S, Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), 91191 Gif-sur-Yvette, France
| | - Enrico Adriano Stura
- CEA, DSV, iBiTec-S, Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), 91191 Gif-sur-Yvette, France
| |
Collapse
|
7
|
Warkentin M, Hopkins JB, Badeau R, Mulichak AM, Keefe LJ, Thorne RE. Global radiation damage: temperature dependence, time dependence and how to outrun it. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:7-13. [PMID: 23254651 PMCID: PMC3526918 DOI: 10.1107/s0909049512048303] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 11/25/2012] [Indexed: 05/22/2023]
Abstract
A series of studies that provide a consistent and illuminating picture of global radiation damage to protein crystals, especially at temperatures above ∼200 K, are described. The radiation sensitivity shows a transition near 200 K, above which it appears to be limited by solvent-coupled diffusive processes. Consistent with this interpretation, a component of global damage proceeds on timescales of several minutes at 180 K, decreasing to seconds near room temperature. As a result, data collection times of order 1 s allow up to half of global damage to be outrun at 260 K. Much larger damage reductions near room temperature should be feasible using larger dose rates delivered using microfocused beams, enabling a significant expansion of structural studies of proteins under more nearly native conditions.
Collapse
Affiliation(s)
| | | | - Ryan Badeau
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | | - Lisa J. Keefe
- IMCA-CAT, Argonne National Laboratory, Argonne, IL 60439, USA
| | | |
Collapse
|
8
|
Warkentin M, Badeau R, Hopkins JB, Thorne RE. Spatial distribution of radiation damage to crystalline proteins at 25-300 K. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1108-17. [PMID: 22948911 PMCID: PMC3489100 DOI: 10.1107/s0907444912021361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/10/2012] [Indexed: 11/11/2022]
Abstract
The spatial distribution of radiation damage (assayed by increases in atomic B factors) to thaumatin and urease crystals at temperatures ranging from 25 to 300 K is reported. The nature of the damage changes dramatically at approximately 180 K. Above this temperature the role of solvent diffusion is apparent in thaumatin crystals, as solvent-exposed turns and loops are especially sensitive. In urease, a flap covering the active site is the most sensitive part of the molecule and nearby loops show enhanced sensitivity. Below 180 K sensitivity is correlated with poor local packing, especially in thaumatin. At all temperatures, the component of the damage that is spatially uniform within the unit cell accounts for more than half of the total increase in the atomic B factors and correlates with changes in mosaicity. This component may arise from lattice-level, rather than local, disorder. The effects of primary structure on radiation sensitivity are small compared with those of tertiary structure, local packing, solvent accessibility and crystal contacts.
Collapse
Affiliation(s)
| | - Ryan Badeau
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
9
|
Warkentin M, Badeau R, Hopkins J, Thorne RE. Dark progression reveals slow timescales for radiation damage between T = 180 and 240 K. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:792-803. [PMID: 21904032 PMCID: PMC3169314 DOI: 10.1107/s0907444911027600] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 07/09/2011] [Indexed: 11/11/2022]
Abstract
Can radiation damage to protein crystals be `outrun' by collecting a structural data set before damage is manifested? Recent experiments using ultra-intense pulses from a free-electron laser show that the answer is yes. Here, evidence is presented that significant reductions in global damage at temperatures above 200 K may be possible using conventional X-ray sources and current or soon-to-be available detectors. Specifically, `dark progression' (an increase in damage with time after the X-rays have been turned off) was observed at temperatures between 180 and 240 K and on timescales from 200 to 1200 s. This allowed estimation of the temperature-dependent timescale for damage. The rate of dark progression is consistent with an Arrhenius law with an activation energy of 14 kJ mol(-1). This is comparable to the activation energy for the solvent-coupled diffusive damage processes responsible for the rapid increase in radiation sensitivity as crystals are warmed above the glass transition near 200 K. Analysis suggests that at T = 300 K data-collection times of the order of 1 s (and longer at lower temperatures) may allow significant reductions in global radiation damage, facilitating structure solution on crystals with liquid solvent. No dark progression was observed below T = 180 K, indicating that no important damage process is slowed through this timescale window in this temperature range.
Collapse
Affiliation(s)
| | - Ryan Badeau
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | - Jesse Hopkins
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
10
|
Warkentin M, Thorne RE. Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:1092-100. [PMID: 20944242 PMCID: PMC2954455 DOI: 10.1107/s0907444910035523] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 09/03/2010] [Indexed: 11/10/2022]
Abstract
The temperature-dependence of radiation damage to thaumatin crystals between T = 300 and 100 K is reported. The amount of damage for a given dose decreases sharply as the temperature decreases from 300 to 220 K and then decreases more gradually on further cooling below the protein-solvent glass transition. Two regimes of temperature-activated behavior were observed. At temperatures above ∼200 K the activation energy of 18.0 kJ mol(-1) indicates that radiation damage is dominated by diffusive motions in the protein and solvent. At temperatures below ∼200 K the activation energy is only 1.00 kJ mol(-1), which is of the order of the thermal energy. Similar activation energies describe the temperature-dependence of radiation damage to a variety of solvent-free small-molecule organic crystals over the temperature range T = 300-80 K. It is suggested that radiation damage in this regime is vibrationally assisted and that the freezing-out of amino-acid scale vibrations contributes to the very weak temperature-dependence of radiation damage below ∼80 K. Analysis using the radiation-damage model of Blake and Phillips [Blake & Phillips (1962), Biological Effects of Ionizing Radiation at the Molecular Level, pp. 183-191] indicates that large-scale conformational and molecular motions are frozen out below T = 200 K but become increasingly prevalent and make an increasing contribution to damage at higher temperatures. Possible alternative mechanisms for radiation damage involving the formation of hydrogen-gas bubbles are discussed and discounted. These results have implications for mechanistic studies of proteins and for studies of the protein glass transition. They also suggest that data collection at T ≃ 220 K may provide a viable alternative for structure determination when cooling-induced disorder at T = 100 is excessive.
Collapse
|
11
|
Garman EF. Radiation damage in macromolecular crystallography: what is it and why should we care? ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:339-51. [PMID: 20382986 PMCID: PMC2852297 DOI: 10.1107/s0907444910008656] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 03/06/2010] [Indexed: 11/10/2022]
Abstract
Radiation damage inflicted during diffraction data collection in macromolecular crystallography has re-emerged in the last decade as a major experimental and computational challenge, as even for crystals held at 100 K it can result in severe data-quality degradation and the appearance in solved structures of artefacts which affect biological interpretations. Here, the observable symptoms and basic physical processes involved in radiation damage are described and the concept of absorbed dose as the basic metric against which to monitor the experimentally observed changes is outlined. Investigations into radiation damage in macromolecular crystallography are ongoing and the number of studies is rapidly increasing. The current literature on the subject is compiled as a resource for the interested researcher.
Collapse
Affiliation(s)
- Elspeth F Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England.
| |
Collapse
|
12
|
Alcorn T, Juers DH. Progress in rational methods of cryoprotection in macromolecular crystallography. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:366-73. [PMID: 20382989 PMCID: PMC2852300 DOI: 10.1107/s090744490903995x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 10/01/2009] [Indexed: 11/11/2022]
Abstract
Cryogenic cooling of macromolecular crystals is commonly used for X-ray data collection both to reduce crystal damage from radiation and to gather functional information by cryogenically trapping intermediates. However, the cooling process can damage the crystals. Limiting cooling-induced crystal damage often requires cryoprotection strategies, which can involve substantial screening of solution conditions and cooling protocols. Here, recent developments directed towards rational methods for cryoprotection are described. Crystal damage is described in the context of the temperature response of the crystal as a thermodynamic system. As such, the internal and external parts of the crystal typically have different cryoprotection requirements. A key physical parameter, the thermal contraction, of 26 different cryoprotective solutions was measured between 294 and 72 K. The range of contractions was 2-13%, with the more polar cryosolutions contracting less. The potential uses of these results in the development of cryocooling conditions, as well as recent developments in determining minimum cryosolution soaking times, are discussed.
Collapse
Affiliation(s)
- Thomas Alcorn
- Program in Biochemistry, Biophysics and Molecular Biology, Whitman College, Walla Walla, WA 99362, USA
| | - Douglas H. Juers
- Program in Biochemistry, Biophysics and Molecular Biology, Whitman College, Walla Walla, WA 99362, USA
- Department of Physics, Whitman College, Walla Walla, WA 99362, USA
| |
Collapse
|
13
|
Weik M, Colletier JP. Temperature-dependent macromolecular X-ray crystallography. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:437-46. [PMID: 20382997 PMCID: PMC2852308 DOI: 10.1107/s0907444910002702] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 01/21/2010] [Indexed: 11/10/2022]
Abstract
X-ray crystallography provides structural details of biological macromolecules. Whereas routine data are collected close to 100 K in order to mitigate radiation damage, more exotic temperature-controlled experiments in a broader temperature range from 15 K to room temperature can provide both dynamical and structural insights. Here, the dynamical behaviour of crystalline macromolecules and their surrounding solvent as a function of cryo-temperature is reviewed. Experimental strategies of kinetic crystallography are discussed that have allowed the generation and trapping of macromolecular intermediate states by combining reaction initiation in the crystalline state with appropriate temperature profiles. A particular focus is on recruiting X-ray-induced changes for reaction initiation, thus unveiling useful aspects of radiation damage, which otherwise has to be minimized in macromolecular crystallography.
Collapse
Affiliation(s)
- Martin Weik
- CEA, IBS, Laboratoire de Biophysique Moléculaire, F-38054 Grenoble, France.
| | | |
Collapse
|
14
|
Warkentin M, Thorne RE. Slow cooling of protein crystals. J Appl Crystallogr 2009; 42:944-952. [PMID: 19798409 DOI: 10.1107/s0021889809023553] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 06/19/2009] [Indexed: 11/10/2022] Open
Abstract
Cryoprotectant-free thaumatin crystals have been cooled from 300 to 100 K at a rate of 0.1 K s(-1) - 10(3)-10(4) times slower than in conventional flash cooling - while continuously collecting X-ray diffraction data, so as to follow the evolution of protein lattice and solvent properties during cooling. Diffraction patterns show no evidence of crystalline ice at any temperature. This indicates that the lattice of protein molecules is itself an excellent cryoprotectant, and with sodium potassium tartrate incorporated from the 1.5 M mother liquor ice nucleation rates are at least as low as in a 70% glycerol solution. Crystal quality during slow cooling remains high, with an average mosaicity at 100 K of 0.2 degrees . Most of the mosaicity increase occurs above approximately 200 K, where the solvent is still liquid, and is concurrent with an anisotropic contraction of the unit cell. Near 180 K a crossover to solid-like solvent behavior occurs, and on further cooling there is no additional degradation of crystal order. The variation of B factor with temperature shows clear evidence of a protein dynamical transition near 210 K, and at lower temperatures the slope dB/dT is a factor of 3-6 smaller than has been reported for any other protein. These results establish the feasibility of fully temperature controlled studies of protein structure and dynamics between 300 and 100 K.
Collapse
|
15
|
Kim CU, Barstow B, Tate MW, Gruner SM. Evidence for liquid water during the high-density to low-density amorphous ice transition. Proc Natl Acad Sci U S A 2009; 106:4596-600. [PMID: 19258453 PMCID: PMC2660733 DOI: 10.1073/pnas.0812481106] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Indexed: 01/04/2023] Open
Abstract
Polymorphism of water has been extensively studied, but controversy still exists over the phase transition between high-density amorphous (HDA) and low-density amorphous (LDA) ice. We report the phase behavior of HDA ice inside high-pressure cryocooled protein crystals. Using X-ray diffraction, we demonstrate that the intermediate states in the temperature range from 80 to 170 K can be reconstructed as a linear combination of HDA and LDA ice, suggesting a first-order transition. We found evidence for a liquid state of water during the ice transition based on the protein crystallographic data. These observations open the possibility that the HDA ice induced by high-pressure cryocooling is a genuine glassy form of high-density liquid.
Collapse
Affiliation(s)
| | | | - Mark W. Tate
- Laboratory of Atomic and Solid-State Physics, and
- Department of Physics, Cornell University, Ithaca, NY 14853
| | - Sol M. Gruner
- Cornell High Energy Synchrotron Source
- Laboratory of Atomic and Solid-State Physics, and
- Department of Physics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
16
|
Shoot-and-Trap: use of specific x-ray damage to study structural protein dynamics by temperature-controlled cryo-crystallography. Proc Natl Acad Sci U S A 2008; 105:11742-7. [PMID: 18701720 DOI: 10.1073/pnas.0804828105] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although x-ray crystallography is the most widely used method for macromolecular structure determination, it does not provide dynamical information, and either experimental tricks or complementary experiments must be used to overcome the inherently static nature of crystallographic structures. Here we used specific x-ray damage during temperature-controlled crystallographic experiments at a third-generation synchrotron source to trigger and monitor (Shoot-and-Trap) structural changes putatively involved in an enzymatic reaction. In particular, a nonhydrolyzable substrate analogue of acetylcholinesterase, the "off-switch" at cholinergic synapses, was radiocleaved within the buried enzymatic active site. Subsequent product clearance, observed at 150 K but not at 100 K, indicated exit from the active site possibly via a "backdoor." The simple strategy described here is, in principle, applicable to any enzyme whose structure in complex with a substrate analogue is available and, therefore, could serve as a standard procedure in kinetic crystallography studies.
Collapse
|
17
|
Seyed-Yazdi J, Farman H, Dore JC, Webber JBW, Findenegg GH, Hansen T. Structural characterization of water and ice in mesoporous SBA-15 silicas: II. The 'almost-filled' case for 86 Å pore diameter. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2008; 20:205107. [PMID: 21694288 DOI: 10.1088/0953-8984/20/20/205107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neutron diffraction measurements for D(2)O in SBA-15 silica of pore diameter 86 Å have been made in a temperature range from 300 to 100 K. The pore-filling factor for the liquid phase is 0.95, resulting in an 'almost-filled' sample. The nucleation and transformation of the ice phase were determined for cooling and warming cycles at two different rates. The primary nucleation event at 258 K leads to a defective form of ice-I with predominantly cubic ice features. For temperatures below the main nucleation event, the data indicate the formation of an interfacial layer of disordered water/ice that varies with temperature and is reversible. The main diffraction peak for the water phase shows similar features to those observed in earlier studies, indicating enhanced hydrogen bonding and network correlations for the confined phase as the temperature is decreased. A detailed profile analysis of the triplet peak is presented in the accompanying paper (Seyed-Yazdi et al 2008 J. Phys.: Condens. Matter 20 205108).
Collapse
Affiliation(s)
- J Seyed-Yazdi
- Iran University of Science and Technology, Narmak, Tehran, Iran. School of Physical Sciences, University of Kent, Canterbury CT2 7NH, UK
| | | | | | | | | | | |
Collapse
|
18
|
Warkentin M, Berejnov V, Husseini NS, Thorne RE. Hyperquenching for protein cryocrystallography. J Appl Crystallogr 2006; 39:805-811. [PMID: 20461232 PMCID: PMC2866519 DOI: 10.1107/s0021889806037484] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 09/14/2006] [Indexed: 11/10/2022] Open
Abstract
When samples having volumes characteristic of protein crystals are plunge cooled in liquid nitrogen or propane, most cooling occurs in the cold gas layer above the liquid. By removing this cold gas layer, cooling rates for small samples and modest plunge velocities are increased to 1.5 × 10(4) K s(-1), with increases of a factor of 100 over current best practice possible with 10 μm samples. Glycerol concentrations required to eliminate water crystallization in protein-free aqueous mixtures drop from ∼28% w/v to as low as 6% w/v. These results will allow many crystals to go from crystallization tray to liquid cryogen to X-ray beam without cryoprotectants. By reducing or eliminating the need for cryoprotectants in growth solutions, they may also simplify the search for crystallization conditions and for optimal screens. The results presented here resolve many puzzles, such as why plunge cooling in liquid nitrogen or propane has, until now, not yielded significantly better diffraction quality than gas-stream cooling.
Collapse
Affiliation(s)
| | | | - Naji S. Husseini
- Applied and Engineering Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
19
|
Weik M, Lehnert U, Zaccai G. Liquid-like water confined in stacks of biological membranes at 200 k and its relation to protein dynamics. Biophys J 2005; 89:3639-46. [PMID: 16055529 PMCID: PMC1366856 DOI: 10.1529/biophysj.104.055749] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Confined water is of considerable current interest owing to its biophysical importance and relevance to cryopreservation. It can be studied in its amorphous or supercooled state in the "no-man's land", i.e., in the temperature range between 150 and 235 K, in which bulk water is always crystalline. Amorphous deuterium oxide (D(2)O) was obtained in the intermembrane spaces of a stack of purple membranes from Halobacterium salinarum by flash cooling to 77 K. Neutron diffraction showed that upon heating to 200 K the intermembrane water space decreased sharply with an associated strengthening of ice diffraction, indicating that water beyond the first membrane hydration layer flowed out of the intermembrane space to form crystalline ice. It was concluded that the confined water undergoes a glass transition at or below 200 K to adopt an ultraviscous liquid state from which it crystallizes to form ice as soon as it finds itself in an unconfined, bulk-water environment. Our results provide model-free evidence for translational diffusion of confined water in the no-man's land. Potential effects of the confined-water glass transition on nanosecond membrane dynamics were investigated by incoherent elastic neutron scattering experiments. These revealed no differences between flash-cooled and slow-cooled samples (in the latter, the intermembrane space at temperatures <250 K is occupied only by the first membrane hydration layers), with dynamical transitions at 150 and 260 K, but not at 200 K, suggesting that nanosecond membrane dynamics are not sensitive to the state of the water beyond the first hydration shell at cryotemperatures.
Collapse
Affiliation(s)
- M Weik
- Laboratoire de Biophysique Moléculaire, Institut de Biologie Structurale CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France.
| | | | | |
Collapse
|