1
|
Hill NDD, Lilienthal E, Bender CO, Boeré RT. Accurate Crystal Structures of C 12H 9CN, C 12H 8(CN) 2, and C 16H 11CN Valence Isomers Using Nonspherical Atomic Scattering Factors. J Org Chem 2022; 87:16213-16229. [DOI: 10.1021/acs.joc.2c01706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Nathan D. D. Hill
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4
- The Canadian Centre for Research in Advanced Fluorine Technologies (C-CRAFT), University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4
| | - Elaura Lilienthal
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4
- The Canadian Centre for Research in Advanced Fluorine Technologies (C-CRAFT), University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4
| | - Christopher O. Bender
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4
| | - René T. Boeré
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4
- The Canadian Centre for Research in Advanced Fluorine Technologies (C-CRAFT), University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4
| |
Collapse
|
2
|
Azadmanesh J, Lutz WE, Coates L, Weiss KL, Borgstahl GEO. Cryotrapping peroxide in the active site of human mitochondrial manganese superoxide dismutase crystals for neutron diffraction. Acta Crystallogr F Struct Biol Commun 2022; 78:8-16. [PMID: 34981770 PMCID: PMC8725007 DOI: 10.1107/s2053230x21012413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
Structurally identifying the enzymatic intermediates of redox proteins has been elusive due to difficulty in resolving the H atoms involved in catalysis and the susceptibility of ligand complexes to photoreduction from X-rays. Cryotrapping ligands for neutron protein crystallography combines two powerful tools that offer the advantage of directly identifying hydrogen positions in redox-enzyme intermediates without radiolytic perturbation of metal-containing active sites. However, translating cryogenic techniques from X-ray to neutron crystallography is not straightforward due to the large crystal volumes and long data-collection times. Here, methods have been developed to visualize the evasive peroxo complex of manganese superoxide dismutase (MnSOD) so that all atoms, including H atoms, could be visualized. The subsequent cryocooling and ligand-trapping methods resulted in neutron data collection to 2.30 Å resolution. The P6122 crystal form of MnSOD is challenging because it has some of the largest unit-cell dimensions (a = b = 77.8, c = 236.8 Å) ever studied using high-resolution cryo-neutron crystallography. The resulting neutron diffraction data permitted the visualization of a dioxygen species bound to the MnSOD active-site metal that was indicative of successful cryotrapping.
Collapse
Affiliation(s)
- Jahaun Azadmanesh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - William E. Lutz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Leighton Coates
- Second Target Station, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Kevin L. Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Gloria E. O. Borgstahl
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| |
Collapse
|
3
|
Kneller DW, Phillips G, Kovalevsky A, Coates L. Room-temperature neutron and X-ray data collection of 3CL M pro from SARS-CoV-2. Acta Crystallogr F Struct Biol Commun 2020; 76:483-487. [PMID: 33006576 PMCID: PMC7531248 DOI: 10.1107/s2053230x20011814] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/27/2020] [Indexed: 01/16/2023] Open
Abstract
The replication of SARS-CoV-2 produces two large polyproteins, pp1a and pp1ab, that are inactive until cleavage by the viral chymotrypsin-like cysteine protease enzyme (3CL Mpro) into a series of smaller functional proteins. At the heart of 3CL Mpro is an unusual catalytic dyad formed by the side chains of His41 and Cys145 and a coordinated water molecule. The catalytic mechanism by which the enzyme operates is still unknown, as crucial information on the protonation states within the active site is unclear. To experimentally determine the protonation states of the catalytic site and of the other residues in the substrate-binding cavity, and to visualize the hydrogen-bonding networks throughout the enzyme, room-temperature neutron and X-ray data were collected from a large H/D-exchanged crystal of ligand-free (apo) 3CL Mpro.
Collapse
Affiliation(s)
- Daniel W. Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, USA
| | - Gwyndalyn Phillips
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, USA
| | - Leighton Coates
- National Virtual Biotechnology Laboratory, US Department of Energy, USA
- Second Target Station, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA
| |
Collapse
|
4
|
Abstract
This chapter aims to give an overview of the process of interactive model building in macromolecular neutron crystallography for the researcher transitioning from X-ray crystallography alone. The two most popular programs for refinement and model building, phenix.refine and Coot, respectively, are used as examples, and familiarity with the programs is assumed. Some work-arounds currently required for proper communication between the programs are described. We also discuss the appearance of nuclear density maps and how this differs from that of electron density maps. Advice is given to facilitate deposition of jointly refined neutron/X-ray structures in the Protein Data Bank.
Collapse
|
5
|
Langan PS, Sullivan B, Weiss KL, Coates L. Probing the role of the conserved residue Glu166 in a class A β-lactamase using neutron and X-ray protein crystallography. Acta Crystallogr D Struct Biol 2020; 76:118-123. [PMID: 32038042 PMCID: PMC7008513 DOI: 10.1107/s2059798319016334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/03/2019] [Indexed: 11/10/2022] Open
Abstract
The amino-acid sequence of the Toho-1 β-lactamase contains several conserved residues in the active site, including Ser70, Lys73, Ser130 and Glu166, some of which coordinate a catalytic water molecule. This catalytic water molecule is essential in the acylation and deacylation parts of the reaction mechanism through which Toho-1 inactivates specific antibiotics and provides resistance to its expressing bacterial strains. To investigate the function of Glu166 in the acylation part of the catalytic mechanism, neutron and X-ray crystallographic studies were performed on a Glu166Gln mutant. The structure of this class A β-lactamase mutant provides several insights into its previously reported reduced drug-binding kinetic rates. A joint refinement of both X-ray and neutron diffraction data was used to study the effects of the Glu166Gln mutation on the active site of Toho-1. This structure reveals that while the Glu166Gln mutation has a somewhat limited impact on the positions of the conserved amino acids within the active site, it displaces the catalytic water molecule from the active site. These subtle changes offer a structural explanation for the previously observed decreases in the binding of non-β-lactam inhibitors such as the recently developed diazobicyclooctane inhibitor avibactam.
Collapse
Affiliation(s)
- Patricia S. Langan
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Brendan Sullivan
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Kevin L. Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Leighton Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
6
|
|
7
|
Sullivan B, Archibald R, Azadmanesh J, Vandavasi VG, Langan PS, Coates L, Lynch V, Langan P. BraggNet: integrating Bragg peaks using neural networks. J Appl Crystallogr 2019; 52:854-863. [PMID: 31396028 PMCID: PMC6662992 DOI: 10.1107/s1600576719008665] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 06/17/2019] [Indexed: 10/14/2023] Open
Abstract
Neutron crystallography offers enormous potential to complement structures from X-ray crystallography by clarifying the positions of low-Z elements, namely hydrogen. Macromolecular neutron crystallography, however, remains limited, in part owing to the challenge of integrating peak shapes from pulsed-source experiments. To advance existing software, this article demonstrates the use of machine learning to refine peak locations, predict peak shapes and yield more accurate integrated intensities when applied to whole data sets from a protein crystal. The artificial neural network, based on the U-Net architecture commonly used for image segmentation, is trained using about 100 000 simulated training peaks derived from strong peaks. After 100 training epochs (a round of training over the whole data set broken into smaller batches), training converges and achieves a Dice coefficient of around 65%, in contrast to just 15% for negative control data sets. Integrating whole peak sets using the neural network yields improved intensity statistics compared with other integration methods, including k-nearest neighbours. These results demonstrate, for the first time, that neural networks can learn peak shapes and be used to integrate Bragg peaks. It is expected that integration using neural networks can be further developed to increase the quality of neutron, electron and X-ray crystallography data.
Collapse
Affiliation(s)
- Brendan Sullivan
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Rick Archibald
- Computer Science and Mathematics Division, Computing and Computational Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Jahaun Azadmanesh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Venu Gopal Vandavasi
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Patricia S. Langan
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Leighton Coates
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Vickie Lynch
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Paul Langan
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| |
Collapse
|
8
|
Langan PS, Vandavasi VG, Sullivan B, Harp J, Weiss K, Coates L. Crystallization of a potassium ion channel and X-ray and neutron data collection. Acta Crystallogr F Struct Biol Commun 2019; 75:435-438. [PMID: 31204690 PMCID: PMC6572099 DOI: 10.1107/s2053230x19006630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/08/2019] [Indexed: 11/10/2022] Open
Abstract
The mechanism by which potassium ions are transported through ion channels is currently being investigated by several groups using many different techniques. Clarification of the location of water molecules during transport is central to understanding how these integral membrane proteins function. Neutrons have a unique sensitivity to both hydrogen and potassium, rendering neutron crystallography capable of distinguishing waters from K+ ions. Here, the collection of a complete neutron data set from a potassium ion channel to a resolution of 3.55 Å using the Macromolecular Neutron Diffractometer (MaNDi) is reported. A room-temperature X-ray data set was also collected from the same crystal to a resolution of 2.50 Å. Upon further refinement, these results will help to further clarify the ion/water population within the selectivity filter of potassium ion channels.
Collapse
Affiliation(s)
- Patricia S. Langan
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Venu Gopal Vandavasi
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Brendan Sullivan
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Joel Harp
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232, USA
| | - Kevin Weiss
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Leighton Coates
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| |
Collapse
|
9
|
Azadmanesh J, Lutz WE, Weiss KL, Coates L, Borgstahl GEO. Redox manipulation of the manganese metal in human manganese superoxide dismutase for neutron diffraction. Acta Crystallogr F Struct Biol Commun 2018; 74:677-687. [PMID: 30279321 PMCID: PMC6168772 DOI: 10.1107/s2053230x18011299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/07/2018] [Indexed: 11/17/2022] Open
Abstract
Human manganese superoxide dismutase (MnSOD) is one of the most significant enzymes in preventing mitochondrial dysfunction and related diseases by combating reactive oxygen species (ROS) in the mitochondrial matrix. Mitochondria are the source of up to 90% of cellular ROS generation, and MnSOD performs its necessary bioprotective role by converting superoxide into oxygen and hydrogen peroxide. This vital catalytic function is conducted via cyclic redox reactions between the substrate and the active-site manganese using proton-coupled electron transfers. Owing to protons being difficult to detect experimentally, the series of proton transfers that compose the catalytic mechanism of MnSOD are unknown. Here, methods are described to discern the proton-based mechanism using chemical treatments to control the redox state of large perdeuterated MnSOD crystals and subsequent neutron diffraction. These methods could be applicable to other crystal systems in which proton information on the molecule in question in specific chemical states is desired.
Collapse
Affiliation(s)
- Jahaun Azadmanesh
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
- Department of Biochemistry and Molecular Biology, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - William E. Lutz
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Kevin L. Weiss
- Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Leighton Coates
- Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Gloria E. O. Borgstahl
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| |
Collapse
|
10
|
Coates L, Cao HB, Chakoumakos BC, Frontzek MD, Hoffmann C, Kovalevsky AY, Liu Y, Meilleur F, Dos Santos AM, Myles DAA, Wang XP, Ye F. A suite-level review of the neutron single-crystal diffraction instruments at Oak Ridge National Laboratory. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:092802. [PMID: 30278686 DOI: 10.1063/1.5030896] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
The nascent suite of single-crystal neutron diffractometers at the Oak Ridge National Laboratory has no equal at any other neutron scattering facility worldwide and offers the potential to re-assert single-crystal diffraction using neutrons as a significant tool to study nuclear and magnetic structures of small unit cell crystals, nuclear structures of macromolecules, and diffuse scattering. Signature applications and features of single-crystal neutron diffraction are high resolution nuclear structure analysis, magnetic structure and spin density determinations, contrast variation (particularly D2O/H2O) for nuclear structural studies, lack of radiation damage when using crystals of biological molecules such as proteins, and the fidelity to measure nuclear and magnetic diffuse scattering with elastic discrimination.
Collapse
Affiliation(s)
- L Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, USA
| | - H B Cao
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, USA
| | - B C Chakoumakos
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, USA
| | - M D Frontzek
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, USA
| | - C Hoffmann
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, USA
| | - A Y Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, USA
| | - Y Liu
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, USA
| | - F Meilleur
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, USA
| | - A M Dos Santos
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, USA
| | - D A A Myles
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, USA
| | - X P Wang
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, USA
| | - F Ye
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
11
|
Kwon H, Langan PS, Coates L, Raven EL, Moody PCE. The rise of neutron cryo-crystallography. Acta Crystallogr D Struct Biol 2018; 74:792-799. [PMID: 30082515 PMCID: PMC6079629 DOI: 10.1107/s205979831800640x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/25/2018] [Indexed: 11/10/2022] Open
Abstract
The use of boiled-off liquid nitrogen to maintain protein crystals at 100 K during X-ray data collection has become almost universal. Applying this to neutron protein crystallography offers the opportunity to significantly broaden the scope of biochemical problems that can be addressed, although care must be taken in assuming that direct extrapolation to room temperature is always valid. Here, the history to date of neutron protein cryo-crystallography and the particular problems and solutions associated with the mounting and cryocooling of the larger crystals needed for neutron crystallography are reviewed. Finally, the outlook for further cryogenic neutron studies using existing and future neutron instrumentation is discussed.
Collapse
Affiliation(s)
- Hanna Kwon
- Henry Wellcome Laboratories for Structural Biology, Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7RH, England
| | - Patricia S. Langan
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Leighton Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Emma L. Raven
- Leicester Institute of Structural and Chemical Biology, Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, England
| | - Peter C. E. Moody
- Henry Wellcome Laboratories for Structural Biology, Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7RH, England
| |
Collapse
|
12
|
Langan PS, Vandavasi VG, Cooper CJ, Weiss KL, Ginell SL, Parks JM, Coates L. Substrate Binding Induces Conformational Changes in a Class A β-lactamase That Prime It for Catalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Patricia S. Langan
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Venu Gopal Vandavasi
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Connor J. Cooper
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Kevin L. Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Stephan L. Ginell
- Structural Biology Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Jerry M. Parks
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States
| | - Leighton Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
13
|
Coates L, Robertson L. Ewald: an extended wide-angle Laue diffractometer for the second target station of the Spallation Neutron Source. J Appl Crystallogr 2017; 50:1174-1178. [PMID: 28808436 PMCID: PMC5541355 DOI: 10.1107/s1600576717010032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/06/2017] [Indexed: 11/11/2022] Open
Abstract
Visualizing hydrogen atoms in biological materials is one of the biggest remaining challenges in biophysical analysis. While X-ray techniques have unrivaled capacity for high-throughput structure determination, neutron diffraction is uniquely sensitive to hydrogen atom positions in crystals of biological materials and can provide a more complete picture of the atomic and electronic structures of biological macromolecules. This information can be essential in providing predictive understanding and engineering control of key biological processes, for example, in catalysis, ligand binding and light harvesting, and to guide bioengineering of enzymes and drug design. One very common and large capability gap for all neutron atomic resolution single-crystal diffractometers is the weak flux of available neutron beams, which results in limited signal-to-noise ratios giving a requirement for sample volumes of at least 0.1 mm3. The ability to operate on crystals an order of magnitude smaller (0.01 mm3) will open up new and more complex systems to studies with neutrons which will help in our understanding of enzyme mechanisms and enable us to improve drugs against multi resistant bacteria. With this is mind, an extended wide-angle Laue diffractometer, 'Ewald', has been designed, which can collect data using crystal volumes below 0.01 mm3.
Collapse
Affiliation(s)
- Leighton Coates
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Lee Robertson
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| |
Collapse
|
14
|
Azadmanesh J, Trickel SR, Weiss KL, Coates L, Borgstahl GEO. Preliminary neutron diffraction analysis of challenging human manganese superoxide dismutase crystals. Acta Crystallogr F Struct Biol Commun 2017; 73:235-240. [PMID: 28368283 PMCID: PMC5379174 DOI: 10.1107/s2053230x17003508] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/04/2017] [Indexed: 11/10/2022] Open
Abstract
Superoxide dismutases (SODs) are enzymes that protect against oxidative stress by dismutation of superoxide into oxygen and hydrogen peroxide through cyclic reduction and oxidation of the active-site metal. The complete enzymatic mechanisms of SODs are unknown since data on the positions of hydrogen are limited. Here, methods are presented for large crystal growth and neutron data collection of human manganese SOD (MnSOD) using perdeuteration and the MaNDi beamline at Oak Ridge National Laboratory. The crystal from which the human MnSOD data set was obtained is the crystal with the largest unit-cell edge (240 Å) from which data have been collected via neutron diffraction to sufficient resolution (2.30 Å) where hydrogen positions can be observed.
Collapse
Affiliation(s)
- Jahaun Azadmanesh
- Eppley Institute for Research in Cancer and Allied Diseases, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
- Department of Biochemistry and Molecular Biology, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Scott R. Trickel
- Eppley Institute for Research in Cancer and Allied Diseases, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Kevin L. Weiss
- Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Leighton Coates
- Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Gloria E. O. Borgstahl
- Eppley Institute for Research in Cancer and Allied Diseases, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
- Department of Biochemistry and Molecular Biology, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
15
|
Chen JCH, Unkefer CJ. Fifteen years of the Protein Crystallography Station: the coming of age of macromolecular neutron crystallography. IUCRJ 2017; 4:72-86. [PMID: 28250943 PMCID: PMC5331467 DOI: 10.1107/s205225251601664x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002-2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technical outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallo-graphy in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. This review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.
Collapse
Affiliation(s)
- Julian C.-H. Chen
- Bioscience Division, Protein Crystallography Station, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Clifford J. Unkefer
- Bioscience Division, Protein Crystallography Station, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
16
|
Dajnowicz S, Seaver S, Hanson BL, Fisher SZ, Langan P, Kovalevsky AY, Mueser TC. Visualizing the Bohr effect in hemoglobin: neutron structure of equine cyanomethemoglobin in the R state and comparison with human deoxyhemoglobin in the T state. Acta Crystallogr D Struct Biol 2016; 72:892-903. [PMID: 27377386 PMCID: PMC4932920 DOI: 10.1107/s2059798316009049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/03/2016] [Indexed: 11/17/2022] Open
Abstract
Neutron crystallography provides direct visual evidence of the atomic positions of deuterium-exchanged H atoms, enabling the accurate determination of the protonation/deuteration state of hydrated biomolecules. Comparison of two neutron structures of hemoglobins, human deoxyhemoglobin (T state) and equine cyanomethemoglobin (R state), offers a direct observation of histidine residues that are likely to contribute to the Bohr effect. Previous studies have shown that the T-state N-terminal and C-terminal salt bridges appear to have a partial instead of a primary overall contribution. Four conserved histidine residues [αHis72(EF1), αHis103(G10), αHis89(FG1), αHis112(G19) and βHis97(FG4)] can become protonated/deuterated from the R to the T state, while two histidine residues [αHis20(B1) and βHis117(G19)] can lose a proton/deuteron. αHis103(G10), located in the α1:β1 dimer interface, appears to be a Bohr group that undergoes structural changes: in the R state it is singly protonated/deuterated and hydrogen-bonded through a water network to βAsn108(G10) and in the T state it is doubly protonated/deuterated with the network uncoupled. The very long-term H/D exchange of the amide protons identifies regions that are accessible to exchange as well as regions that are impermeable to exchange. The liganded relaxed state (R state) has comparable levels of exchange (17.1% non-exchanged) compared with the deoxy tense state (T state; 11.8% non-exchanged). Interestingly, the regions of non-exchanged protons shift from the tetramer interfaces in the T-state interface (α1:β2 and α2:β1) to the cores of the individual monomers and to the dimer interfaces (α1:β1 and α2:β2) in the R state. The comparison of regions of stability in the two states allows a visualization of the conservation of fold energy necessary for ligand binding and release.
Collapse
Affiliation(s)
- Steven Dajnowicz
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| | - Sean Seaver
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| | - B. Leif Hanson
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| | - S. Zoë Fisher
- Scientific Activities Division, Science Directorate, European Spallation Source, PO Box 176, 221 00 Lund, Sweden
| | - Paul Langan
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Andrey Y. Kovalevsky
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Timothy C. Mueser
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
17
|
Dauter Z, Wlodawer A. Progress in protein crystallography. Protein Pept Lett 2016; 23:201-10. [PMID: 26732246 PMCID: PMC6287266 DOI: 10.2174/0929866523666160106153524] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/26/2015] [Accepted: 01/03/2016] [Indexed: 11/22/2022]
Abstract
Macromolecular crystallography evolved enormously from the pioneering days, when structures were solved by "wizards" performing all complicated procedures almost by hand. In the current situation crystal structures of large systems can be often solved very effectively by various powerful automatic programs in days or hours, or even minutes. Such progress is to a large extent coupled to the advances in many other fields, such as genetic engineering, computer technology, availability of synchrotron beam lines and many other techniques, creating the highly interdisciplinary science of macromolecular crystallography. Due to this unprecedented success crystallography is often treated as one of the analytical methods and practiced by researchers interested in structures of macromolecules, but not highly competent in the procedures involved in the process of structure determination. One should therefore take into account that the contemporary, highly automatic systems can produce results almost without human intervention, but the resulting structures must be carefully checked and validated before their release into the public domain.
Collapse
Affiliation(s)
- Zbigniew Dauter
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD and Argonne, IL, USA.
| | | |
Collapse
|
18
|
Burger EM, Andrade SLA, Einsle O. Active sites without restraints: high-resolution analysis of metal cofactors. Curr Opin Struct Biol 2015; 35:32-40. [DOI: 10.1016/j.sbi.2015.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 11/29/2022]
|
19
|
Capelli SC, Bürgi HB, Dittrich B, Grabowsky S, Jayatilaka D. Hirshfeld atom refinement. IUCRJ 2014; 1:361-79. [PMID: 25295177 PMCID: PMC4174878 DOI: 10.1107/s2052252514014845] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/24/2014] [Indexed: 05/20/2023]
Abstract
Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.
Collapse
Affiliation(s)
- Silvia C. Capelli
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Hans-Beat Bürgi
- Department of Chemistry and Biochemistry, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland
- Department of Chemistry, Universität Zürich, Winterthurstrasse 190, 8057 Zürich, Switzerland
| | - Birger Dittrich
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstr. 4, 37077 Göttingen, Germany
| | - Simon Grabowsky
- School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Dylan Jayatilaka
- School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| |
Collapse
|
20
|
Lazar LM, Fisher SZ, Moulin AG, Kovalevsky A, Novak WRP, Langan P, Petsko GA, Ringe D. Time-of-flight neutron diffraction study of bovine γ-chymotrypsin at the Protein Crystallography Station. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:587-90. [PMID: 21543868 PMCID: PMC3087647 DOI: 10.1107/s1744309111009341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/11/2011] [Indexed: 11/11/2022]
Abstract
The overarching goal of this research project is to determine, for a subset of proteins, exact hydrogen positions using neutron diffraction, thereby improving H-atom placement in proteins so that they may be better used in various computational methods that are critically dependent upon said placement. In order to be considered applicable for neutron diffraction studies, the protein of choice must be amenable to ultrahigh-resolution X-ray crystallography, be able to form large crystals (1 mm(3) or greater) and have a modestly sized unit cell (no dimension longer than 100 Å). As such, γ-chymotrypsin is a perfect candidate for neutron diffraction. To understand and probe the role of specific active-site residues and hydrogen-bonding patterns in γ-chymotrypsin, neutron diffraction studies were initiated at the Protein Crystallography Station (PCS) at Los Alamos Neutron Science Center (LANSCE). A large single crystal was subjected to H/D exchange prior to data collection. Time-of-flight neutron diffraction data were collected to 2.0 Å resolution at the PCS with ~85% completeness. Here, the first time-of-flight neutron data collection from γ-chymotrypsin is reported.
Collapse
Affiliation(s)
- Louis M. Lazar
- Department of Biochemistry and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - S. Zoe Fisher
- BioScience Division B-8, Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87544, USA
| | - Aaron G. Moulin
- Department of Biochemistry and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Andrey Kovalevsky
- BioScience Division B-8, Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87544, USA
| | - Walter R. P. Novak
- Department of Biochemistry and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Paul Langan
- BioScience Division B-8, Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87544, USA
| | - Gregory A. Petsko
- Department of Biochemistry and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Dagmar Ringe
- Department of Biochemistry and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
21
|
Fenn TD, Schnieders MJ, Mustyakimov M, Wu C, Langan P, Pande VS, Brunger AT. Reintroducing electrostatics into macromolecular crystallographic refinement: application to neutron crystallography and DNA hydration. Structure 2011; 19:523-33. [PMID: 21481775 PMCID: PMC3083928 DOI: 10.1016/j.str.2011.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 10/18/2022]
Abstract
Most current crystallographic structure refinements augment the diffraction data with a priori information consisting of bond, angle, dihedral, planarity restraints, and atomic repulsion based on the Pauli exclusion principle. Yet, electrostatics and van der Waals attraction are physical forces that provide additional a priori information. Here, we assess the inclusion of electrostatics for the force field used for all-atom (including hydrogen) joint neutron/X-ray refinement. Two DNA and a protein crystal structure were refined against joint neutron/X-ray diffraction data sets using force fields without electrostatics or with electrostatics. Hydrogen-bond orientation/geometry favors the inclusion of electrostatics. Refinement of Z-DNA with electrostatics leads to a hypothesis for the entropic stabilization of Z-DNA that may partly explain the thermodynamics of converting the B form of DNA to its Z form. Thus, inclusion of electrostatics assists joint neutron/X-ray refinements, especially for placing and orienting hydrogen atoms.
Collapse
Affiliation(s)
- Timothy D. Fenn
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University
| | | | - Marat Mustyakimov
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | | | - Paul Langan
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | | | - Axel T. Brunger
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University
- Departments of Neurology and Neurological Sciences, Structural Biology and Photon Science, Stanford University
| |
Collapse
|
22
|
Schuman B, Fisher SZ, Kovalevsky A, Borisova SN, Palcic MM, Coates L, Langan P, Evans SV. Preliminary joint neutron time-of-flight and X-ray crystallographic study of human ABO(H) blood group A glycosyltransferase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:258-62. [PMID: 21301100 PMCID: PMC3034622 DOI: 10.1107/s1744309110051298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/07/2010] [Indexed: 05/30/2023]
Abstract
The biosyntheses of oligosaccharides and glycoconjugates are conducted by glycosyltransferases. These extraordinarily diverse and widespread enzymes catalyze the formation of glycosidic bonds through the transfer of a monosaccharide from a donor molecule to an acceptor molecule, with the stereochemistry about the anomeric carbon being either inverted or retained. Human ABO(H) blood group A α-1,3-N-acetylgalactosaminyltransferase (GTA) generates the corresponding antigen by the transfer of N-acetylgalactosamine from UDP-GalNAc to the blood group H antigen. To understand better how specific active-site-residue protons and hydrogen-bonding patterns affect substrate recognition and catalysis, neutron diffraction studies were initiated at the Protein Crystallography Station (PCS) at Los Alamos Neutron Science Center (LANSCE). A large single crystal was subjected to H/D exchange prior to data collection and time-of-flight neutron diffraction data were collected to 2.5 Å resolution at the PCS to ∼85% overall completeness, with complementary X-ray diffraction data collected from a crystal from the same drop and extending to 1.85 Å resolution. Here, the first successful neutron data collection from a glycosyltransferase is reported.
Collapse
Affiliation(s)
- B. Schuman
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3800, STN CSC, Victoria, BC V8W 3P6, Canada
| | - S. Z. Fisher
- Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - A. Kovalevsky
- Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - S. N. Borisova
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3800, STN CSC, Victoria, BC V8W 3P6, Canada
| | - M. M. Palcic
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, 2500 Valby, Denmark
| | - L. Coates
- Neutron Scattering Science Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - P. Langan
- Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - S. V. Evans
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3800, STN CSC, Victoria, BC V8W 3P6, Canada
| |
Collapse
|
23
|
Chen JCH, Mustyakimov M, Schoenborn BP, Langan P, Blum MM. Neutron structure and mechanistic studies of diisopropyl fluorophosphatase (DFPase). ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:1131-8. [PMID: 21041927 PMCID: PMC2967418 DOI: 10.1107/s0907444910034013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 08/23/2010] [Indexed: 11/10/2022]
Abstract
Diisopropyl fluorophosphatase (DFPase) is a calcium-dependent phosphotriesterase that acts on a variety of highly toxic organophosphorus compounds that act as inhibitors of acetylcholinesterase. The mechanism of DFPase has been probed using a variety of methods, including isotopic labelling, which demonstrated the presence of a phosphoenzyme intermediate in the reaction mechanism. In order to further elucidate the mechanism of DFPase and to ascertain the protonation states of the residues and solvent molecules in the active site, the neutron structure of DFPase was solved at 2.2 Å resolution. The proposed nucleophile Asp229 is deprotonated, while the active-site solvent molecule W33 was identified as water and not hydroxide. These data support a mechanism involving direct nucleophilic attack by Asp229 on the substrate and rule out a mechanism involving metal-assisted water activation. These data also allowed for the re-engineering of DFPase through rational design to bind and productively orient the more toxic S(P) stereoisomers of the nerve agents sarin and cyclosarin, creating a modified enzyme with enhanced overall activity and significantly increased detoxification properties.
Collapse
Affiliation(s)
- Julian C H Chen
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany.
| | | | | | | | | |
Collapse
|
24
|
Kovalevsky A, Chatake T, Shibayama N, Park SY, Ishikawa T, Mustyakimov M, Fisher SZ, Langan P, Morimoto Y. Protonation states of histidine and other key residues in deoxy normal human adult hemoglobin by neutron protein crystallography. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:1144-52. [PMID: 21041929 PMCID: PMC2967419 DOI: 10.1107/s0907444910025448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 06/28/2010] [Indexed: 11/10/2022]
Abstract
The protonation states of the histidine residues key to the function of deoxy (T-state) human hemoglobin have been investigated using neutron protein crystallography. These residues can reversibly bind protons, thereby regulating the oxygen affinity of hemoglobin. By examining the OMIT F(o)-F(c) and 2F(o)-F(c) neutron scattering maps, the protonation states of 35 of the 38 His residues were directly determined. The remaining three residues were found to be disordered. Surprisingly, seven pairs of His residues from equivalent α or β chains, αHis20, αHis50, αHis58, αHis89, βHis63, βHis143 and βHis146, have different protonation states. The protonation of distal His residues in the α(1)β(1) heterodimer and the protonation of αHis103 in both subunits demonstrates that these residues may participate in buffering hydrogen ions and may influence the oxygen binding. The observed protonation states of His residues are compared with their ΔpK(a) between the deoxy and oxy states. Examination of inter-subunit interfaces provided evidence for interactions that are essential for the stability of the deoxy tertiary structure.
Collapse
Affiliation(s)
- Andrey Kovalevsky
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The unique advantage of neutrons as biological probes is the ability to visualize hydrogen atoms in macromolecules. In this issue, Kovalevsky et al. (2010) solved an ensemble of xylose isomerase structures by neutron crystallography, and the determination of hydrogen atom rearrangements during the catalytic cycle provides insight into the enzyme's mechanism.
Collapse
|
26
|
Blum MM, Tomanicek SJ, John H, Hanson BL, Rüterjans H, Schoenborn BP, Langan P, Chen JCH. X-ray structure of perdeuterated diisopropyl fluorophosphatase (DFPase): perdeuteration of proteins for neutron diffraction. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:379-85. [PMID: 20383004 PMCID: PMC2852326 DOI: 10.1107/s1744309110004318] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 02/03/2010] [Indexed: 11/10/2022]
Abstract
The signal-to-noise ratio is one of the limiting factors in neutron macromolecular crystallography. Protein perdeuteration, which replaces all H atoms with deuterium, is a method of improving the signal-to-noise ratio of neutron crystallography experiments by reducing the incoherent scattering of the hydrogen isotope. Detailed analyses of perdeuterated and hydrogenated structures are necessary in order to evaluate the utility of perdeuterated crystals for neutron diffraction studies. The room-temperature X-ray structure of perdeuterated diisopropyl fluorophosphatase (DFPase) is reported at 2.1 A resolution. Comparison with an independently refined hydrogenated room-temperature structure of DFPase revealed no major systematic differences, although the crystals of perdeuterated DFPase did not diffract neutrons. The lack of diffraction is examined with respect to data-collection and crystallographic parameters. The diffraction characteristics of successful neutron structure determinations are presented as a guideline for future neutron diffraction studies of macromolecules. X-ray diffraction to beyond 2.0 A resolution appears to be a strong predictor of successful neutron structures.
Collapse
Affiliation(s)
| | - Stephen J. Tomanicek
- Department of Chemistry, University of Toledo, Toledo, OH 53606, USA
- Spallation Neutron Source, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - B. Leif Hanson
- Department of Chemistry, University of Toledo, Toledo, OH 53606, USA
| | - Heinz Rüterjans
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Benno P. Schoenborn
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Paul Langan
- Department of Chemistry, University of Toledo, Toledo, OH 53606, USA
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Julian C.-H. Chen
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
27
|
Kovalevsky AY, Chatake T, Shibayama N, Park SY, Ishikawa T, Mustyakimov M, Fisher Z, Langan P, Morimoto Y. Direct determination of protonation states of histidine residues in a 2 A neutron structure of deoxy-human normal adult hemoglobin and implications for the Bohr effect. J Mol Biol 2010; 398:276-91. [PMID: 20230836 DOI: 10.1016/j.jmb.2010.03.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 03/06/2010] [Accepted: 03/09/2010] [Indexed: 11/26/2022]
Abstract
We have investigated the protonation states of histidine residues (potential Bohr groups) in the deoxy form (T state) of human hemoglobin by direct determination of hydrogen (deuterium) positions with the neutron protein crystallography technique. The reversible binding of protons is key to the allosteric regulation of human hemoglobin. The protonation states of 35 of the 38 His residues were directly determined from neutron scattering omit maps, with 3 of the remaining residues being disordered. Protonation states of 5 equivalent His residues--alpha His20, alpha His50, alpha His89, beta His143, and beta His146--differ between the symmetry-related globin subunits. The distal His residues, alpha His58 and beta His63, are protonated in the alpha 1 beta 1 heterodimer and are neutral in alpha 2 beta 2. Buried residue alpha His103 is found to be protonated in both subunits. These distal and buried residues have the potential to act as Bohr groups. The observed protonation states of His residues are compared to changes in their pK(a) values during the transition from the T to the R state and the results provide some new insights into our understanding of the molecular mechanism of the Bohr effect.
Collapse
Affiliation(s)
- Andrey Y Kovalevsky
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fisher SZ, Kovalevsky AY, Domsic JF, Mustyakimov M, McKenna R, Silverman DN, Langan PA. Neutron structure of human carbonic anhydrase II: implications for proton transfer. Biochemistry 2010; 49:415-21. [PMID: 20025241 PMCID: PMC2893723 DOI: 10.1021/bi901995n] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human carbonic anhydrase II (HCA II) catalyzes the reversible hydration of carbon dioxide to form bicarbonate and a proton. Despite many high-resolution X-ray crystal structures, mutagenesis, and kinetic data, the structural details of the active site, especially the proton transfer pathway, are unclear. A large HCA II crystal was prepared at pH 9.0 and subjected to vapor H-D exchange to replace labile hydrogens with deuteriums. Neutron diffraction studies were conducted at the Protein Crystallography Station at Los Alamos National Laboratory. The structure to 2.0 A resolution reveals several interesting active site features: (1) the Zn-bound solvent appearing to be predominantly a D(2)O molecule, (2) the orientation and hydrogen bonding pattern of solvent molecules in the active site cavity, (3) the side chain of His64 being unprotonated (neutral) and predominantly in an inward conformation pointing toward the zinc, and (4) the phenolic side chain of Tyr7 appearing to be unprotonated. The implications of these details are discussed, and a proposed mechanism for proton transfer is presented.
Collapse
Affiliation(s)
- S Zoë Fisher
- Bioscience Division MS M888, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Blakeley MP, Langan P, Niimura N, Podjarny A. Neutron crystallography: opportunities, challenges, and limitations. Curr Opin Struct Biol 2008; 18:593-600. [PMID: 18656544 DOI: 10.1016/j.sbi.2008.06.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 06/26/2008] [Indexed: 10/21/2022]
Abstract
Neutron crystallography has had an important, but relatively small role in structural biology over the years. In this review of recently determined neutron structures, a theme emerges of a field currently expanding beyond its traditional boundaries, to address larger and more complex problems, with smaller samples and shorter data collection times, and employing more sophisticated structure determination and refinement methods. The origin of this transformation can be found in a number of advances including first, the development of neutron image-plates and quasi-Laue methods at nuclear reactor neutron sources and the development of time-of-flight Laue methods and electronic detectors at spallation neutron sources; second, new facilities and methods for sample perdeuteration and crystallization; third, new approaches and computational tools for structure determination.
Collapse
|