1
|
Dickerson JL, McCubbin PTN, Brooks‐Bartlett JC, Garman EF. Doses for X-ray and electron diffraction: New features in RADDOSE-3D including intensity decay models. Protein Sci 2024; 33:e5005. [PMID: 38923423 PMCID: PMC11196903 DOI: 10.1002/pro.5005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/17/2024] [Accepted: 04/15/2024] [Indexed: 06/28/2024]
Abstract
New features in the dose estimation program RADDOSE-3D are summarised. They include the facility to enter a diffraction intensity decay model which modifies the "Diffraction Weighted Dose" output from a "Fluence Weighted Dose" to a "Diffraction-Decay Weighted Dose", a description of RADDOSE-ED for use in electron diffraction experiments, where dose is historically quoted in electrons/Å2 rather than in gray (Gy), and finally the development of a RADDOSE-3D GUI, enabling easy access to all the options available in the program.
Collapse
Affiliation(s)
- Joshua L. Dickerson
- Department of Biochemistry, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordUK
- MRC Laboratory of Molecular BiologyCambridge Biomedical CampusCambridgeUK
| | - Patrick T. N. McCubbin
- Department of Biochemistry, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordUK
- Division of Structural Biology, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | | | - Elspeth F. Garman
- Department of Biochemistry, Dorothy Crowfoot Hodgkin BuildingUniversity of OxfordOxfordUK
| |
Collapse
|
2
|
Winter G, Gildea RJ, Paterson NG, Beale J, Gerstel M, Axford D, Vollmar M, McAuley KE, Owen RL, Flaig R, Ashton AW, Hall DR. How best to use photons. Acta Crystallogr D Struct Biol 2019; 75:242-261. [PMID: 30950396 PMCID: PMC6450062 DOI: 10.1107/s2059798319003528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/13/2019] [Indexed: 11/10/2022] Open
Abstract
Strategies for collecting X-ray diffraction data have evolved alongside beamline hardware and detector developments. The traditional approaches for diffraction data collection have emphasised collecting data from noisy integrating detectors (i.e. film, image plates and CCD detectors). With fast pixel array detectors on stable beamlines, the limiting factor becomes the sample lifetime, and the question becomes one of how to expend the photons that your sample can diffract, i.e. as a smaller number of stronger measurements or a larger number of weaker data. This parameter space is explored via experiment and synthetic data treatment and advice is derived on how best to use the equipment on a modern beamline. Suggestions are also made on how to acquire data in a conservative manner if very little is known about the sample lifetime.
Collapse
Affiliation(s)
- Graeme Winter
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Richard J. Gildea
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Neil G. Paterson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - John Beale
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Markus Gerstel
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Melanie Vollmar
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Katherine E. McAuley
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Ralf Flaig
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Alun W. Ashton
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - David R. Hall
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| |
Collapse
|
3
|
Molecular architecture of the PBP2-MreC core bacterial cell wall synthesis complex. Nat Commun 2017; 8:776. [PMID: 28974686 PMCID: PMC5626683 DOI: 10.1038/s41467-017-00783-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/27/2017] [Indexed: 11/24/2022] Open
Abstract
Bacterial cell wall biosynthesis is an essential process that requires the coordinated activity of peptidoglycan biosynthesis enzymes within multi-protein complexes involved in cell division (the “divisome”) and lateral wall growth (the “elongasome”). MreC is a structural protein that serves as a platform during wall elongation, scaffolding other essential peptidoglycan biosynthesis macromolecules, such as penicillin-binding proteins. Despite the importance of these multi-partite complexes, details of their architecture have remained elusive due to the transitory nature of their interactions. Here, we present the crystal structures of the soluble PBP2:MreC core elongasome complex from Helicobacter pylori, and of uncomplexed PBP2. PBP2 recognizes the two-winged MreC molecule upon opening of its N-terminal region, revealing a hydrophobic zipper that serves as binding platform. The PBP2:MreC interface is essential both for protein recognition in vitro and maintenance of bacterial shape and growth. This work allows visualization as to how peptidoglycan machinery proteins are scaffolded, revealing interaction regions that could be targeted by tailored inhibitors. Bacterial wall biosynthesis is a complex process that requires the coordination of multiple enzymes. Here, the authors structurally characterize the PBP2:MreC complex involved in peptidoglycan elongation and cross-linking, and demonstrate that its disruption leads to loss of H. pylori shape and inability to sustain growth.
Collapse
|
4
|
Bonnet J, Cartannaz J, Tourcier G, Contreras-Martel C, Kleman JP, Morlot C, Vernet T, Di Guilmi AM. Autocatalytic association of proteins by covalent bond formation: a Bio Molecular Welding toolbox derived from a bacterial adhesin. Sci Rep 2017; 7:43564. [PMID: 28252635 PMCID: PMC5333627 DOI: 10.1038/srep43564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/25/2017] [Indexed: 11/26/2022] Open
Abstract
Unusual intramolecular cross-links present in adhesins from Gram-positive bacteria have been used to develop a generic process amenable to biotechnology applications. Based on the crystal structure of RrgA, the Streptococcus pneumoniae pilus adhesin, we provide evidence that two engineered protein fragments retain their ability to associate covalently with high specificity, in vivo and in vitro, once isolated from the parent protein. We determined the optimal conditions for the assembly of the complex and we solved its crystal structure at 2 Å. Furthermore, we demonstrate biotechnological applications related to antibody production, nanoassembly and cell-surface labeling based on this process we named Bio Molecular Welding.
Collapse
Affiliation(s)
- J Bonnet
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - J Cartannaz
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - G Tourcier
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - C Contreras-Martel
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - J P Kleman
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - C Morlot
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - T Vernet
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - A M Di Guilmi
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| |
Collapse
|
5
|
Storm SLS, Dall’Antonia F, Bourenkov G, Schneider TR. Identification of the point of diminishing returns in high-multiplicity data collection for sulfur SAD phasing. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:19-28. [PMID: 28009543 PMCID: PMC5182018 DOI: 10.1107/s1600577516014764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/19/2016] [Indexed: 05/30/2023]
Abstract
High-quality high-multiplicity X-ray diffraction data were collected on five different crystals of thaumatin using a homogeneous-profile X-ray beam at E = 8 keV to investigate the counteracting effects of increased multiplicity and increased radiation damage on the quality of anomalous diffraction data collected on macromolecular crystals. By comparing sulfur substructures obtained from subsets of the data selected as a function of absorbed X-ray dose with sulfur positions in the respective refined reference structures, the doses at which the highest quality of anomalous differences could be obtained were identified for the five crystals. A statistic σ{ΔF}D, calculated as the width σ of the normalized distribution of a set {ΔF} of anomalous differences collected at a dose D, is suggested as a measure of anomalous data quality as a function of dose. An empirical rule is proposed to identify the dose at which the gains in data quality due to increased multiplicity are outbalanced by the losses due to decreases in signal-to-noise as a consequence of radiation damage. Identifying this point of diminishing returns allows the optimization of the choice of data collection parameters and the selection of data to be used in subsequent crystal structure determination steps.
Collapse
Affiliation(s)
- Selina L. S. Storm
- Hamburg Outstation c/o DESY, European Molecular Biology Laboratory, Notkestrasse 85, 22603 Hamburg, Germany
| | - Fabio Dall’Antonia
- Hamburg Outstation c/o DESY, European Molecular Biology Laboratory, Notkestrasse 85, 22603 Hamburg, Germany
| | - Gleb Bourenkov
- Hamburg Outstation c/o DESY, European Molecular Biology Laboratory, Notkestrasse 85, 22603 Hamburg, Germany
| | - Thomas R. Schneider
- Hamburg Outstation c/o DESY, European Molecular Biology Laboratory, Notkestrasse 85, 22603 Hamburg, Germany
| |
Collapse
|
6
|
Polsinelli I, Savko M, Rouanet-Mehouas C, Ciccone L, Nencetti S, Orlandini E, Stura EA, Shepard W. Comparison of helical scan and standard rotation methods in single-crystal X-ray data collection strategies. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:42-52. [PMID: 28009545 DOI: 10.1107/s1600577516018488] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
X-ray radiation in macromolecular crystallography can chemically alter the biological material and deteriorate the integrity of the crystal lattice with concomitant loss of resolution. Typical alterations include decarboxylation of glutamic and aspartic residues, breaking of disulfide bonds and the reduction of metal centres. Helical scans add a small translation to the crystal in the rotation method, so that for every image the crystal is shifted to expose a fresh part. On beamline PROXIMA 2A at Synchrotron SOLEIL, this procedure has been tested with various parameters in an attempt to understand how to mitigate the effects of radiation damage. Here, the strategies used and the crystallographic metrics for various scenarios are reported. Among these, the loss of bromine from bromophenyl moieties appears to be a useful monitor of radiation damage as the carbon-bromine bond is very sensitive to X-ray irradiation. Two cases are focused on where helical scans are shown to be superior in obtaining meaningful data compared with conventional methods. In one case the initial resolution of the crystal is extended over time, and in the second case the anomalous signal is preserved to provide greater effective multiplicity and easier phasing.
Collapse
Affiliation(s)
- Ivan Polsinelli
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Martin Savko
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Cecile Rouanet-Mehouas
- CEA, iBiTec-S, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), F-91191 Gif-sur-Yvette, France
| | - Lidia Ciccone
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Susanna Nencetti
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | | | - Enrico A Stura
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - William Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| |
Collapse
|
7
|
Hirata K, Foadi J, Evans G, Hasegawa K, Zeldin OB. Structural Biology with Microfocus Beamlines. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-4-431-56030-2_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
8
|
Bowler MW, Svensson O, Nurizzo D. Fully automatic macromolecular crystallography: the impact of MASSIF-1 on the optimum acquisition and quality of data. CRYSTALLOGR REV 2016. [DOI: 10.1080/0889311x.2016.1155050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
de Sanctis D, Zubieta C, Felisaz F, Caserotto H, Nanao MH. Radiation-damage-induced phasing: a case study using UV irradiation with light-emitting diodes. Acta Crystallogr D Struct Biol 2016; 72:395-402. [PMID: 26960126 PMCID: PMC4784670 DOI: 10.1107/s2059798315021658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 11/15/2015] [Indexed: 11/16/2022] Open
Abstract
Exposure to X-rays, high-intensity visible light or ultraviolet radiation results in alterations to protein structure such as the breakage of disulfide bonds, the loss of electron density at electron-rich centres and the movement of side chains. These specific changes can be exploited in order to obtain phase information. Here, a case study using insulin to illustrate each step of the radiation-damage-induced phasing (RIP) method is presented. Unlike a traditional X-ray-induced damage step, specific damage is introduced via ultraviolet light-emitting diodes (UV-LEDs). In contrast to UV lasers, UV-LEDs have the advantages of small size, low cost and relative ease of use.
Collapse
Affiliation(s)
- Daniele de Sanctis
- ESRF, The European Synchrotron, 71 Rue des Martyrs, 38000 Grenoble, France
| | - Chloe Zubieta
- CNRS, Université Grenoble Alpes, CEA, DSV, INRA, iRTSV, Laboratoire de Physiologie Cellulaire and Végétale, UMR 5168, 38054 Grenoble, France
| | - Franck Felisaz
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France
| | - Hugo Caserotto
- ESRF, The European Synchrotron, 71 Rue des Martyrs, 38000 Grenoble, France
| | - Max H. Nanao
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France
- Unit of Virus Host Cell Interactions, UJF–EMBL–CNRS, UMI 3265, 71 avenue des Martyrs, CS 90181, F-38042 Grenoble Cedex 9, France
| |
Collapse
|
10
|
Zander U, Bourenkov G, Popov AN, de Sanctis D, Svensson O, McCarthy AA, Round E, Gordeliy V, Mueller-Dieckmann C, Leonard GA. MeshAndCollect: an automated multi-crystal data-collection workflow for synchrotron macromolecular crystallography beamlines. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2328-43. [PMID: 26527148 PMCID: PMC4631482 DOI: 10.1107/s1399004715017927] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/24/2015] [Indexed: 01/30/2023]
Abstract
Here, an automated procedure is described to identify the positions of many cryocooled crystals mounted on the same sample holder, to rapidly predict and rank their relative diffraction strengths and to collect partial X-ray diffraction data sets from as many of the crystals as desired. Subsequent hierarchical cluster analysis then allows the best combination of partial data sets, optimizing the quality of the final data set obtained. The results of applying the method developed to various systems and scenarios including the compilation of a complete data set from tiny crystals of the membrane protein bacteriorhodopsin and the collection of data sets for successful structure determination using the single-wavelength anomalous dispersion technique are also presented.
Collapse
Affiliation(s)
- Ulrich Zander
- Structural Biology Group, European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble, France
| | - Gleb Bourenkov
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | - Alexander N. Popov
- Structural Biology Group, European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble, France
| | - Daniele de Sanctis
- Structural Biology Group, European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble, France
| | - Olof Svensson
- Structural Biology Group, European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble, France
| | - Andrew A. McCarthy
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
- Unit of Virus Host-Cell Interactions, Université Grenoble Alpes–EMBL–CNRS, 38042 Grenoble, France
| | - Ekaterina Round
- Université Grenoble Alpes, IBS, 38044 Grenoble, France
- CNRS, IBS, 38044 Grenoble, France
- CEA, IBS, 38044 Grenoble, France
- ICS-6: Molecular Biophysics, Institute of Complex Systems (ICS), Research Centre Juelich, 52425 Juelich, Germany
- Laboratory for Advanced Studies of Membrane Proteins, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russian Federation
| | - Valentin Gordeliy
- Université Grenoble Alpes, IBS, 38044 Grenoble, France
- CNRS, IBS, 38044 Grenoble, France
- CEA, IBS, 38044 Grenoble, France
- ICS-6: Molecular Biophysics, Institute of Complex Systems (ICS), Research Centre Juelich, 52425 Juelich, Germany
- Laboratory for Advanced Studies of Membrane Proteins, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russian Federation
| | | | - Gordon A. Leonard
- Structural Biology Group, European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble, France
| |
Collapse
|
11
|
Trofimov AA, Polyakov KM, Lazarenko VA, Popov AN, Tikhonova TV, Tikhonov AV, Popov VO. Structural study of the X-ray-induced enzymatic reaction of octahaem cytochromecnitrite reductase. ACTA ACUST UNITED AC 2015; 71:1087-94. [DOI: 10.1107/s1399004715003053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/12/2015] [Indexed: 11/10/2022]
Abstract
Octahaem cytochromecnitrite reductase from the bacteriumThioalkalivibrio nitratireducenscatalyzes the reduction of nitrite to ammonium and of sulfite to sulfide. The reducing properties of X-ray radiation and the high quality of the enzyme crystals allow study of the catalytic reaction of cytochromecnitrite reductase directly in a crystal of the enzyme, with the reaction being induced by X-rays. Series of diffraction data sets with increasing absorbed dose were collected from crystals of the free form of the enzyme and its complexes with nitrite and sulfite. The corresponding structures revealed gradual changes associated with the reduction of the catalytic haems by X-rays. In the case of the nitrite complex the conversion of the nitrite ions bound in the active sites to NO species was observed, which is the beginning of the catalytic reaction. For the free form, an increase in the distance between the oxygen ligand bound to the catalytic haem and the iron ion of the haem took place. In the case of the sulfite complex no enzymatic reaction was detected, but there were changes in the arrangement of the active-site water molecules that were presumably associated with a change in the protonation state of the sulfite ions.
Collapse
|
12
|
Data collection for crystallographic structure determination. Methods Mol Biol 2014. [PMID: 24590721 DOI: 10.1007/978-1-4939-0354-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Diffraction data measurement is the final experimental step of crystal structure analysis; all subsequent stages are computational. Good-quality data, optimized for a particular application, make the structure solution and refinement easier and enhance the accuracy of the final models. This chapter describes the principles of the rotation method of data collection and discusses various scenarios that are useful for different types of applications, such as anomalous phasing, molecular replacement, ligand identification, etc. Some typical problems encountered in practice are also discussed.
Collapse
|
13
|
Abstract
Radiation damage is a major cause of failure in macromolecular crystallography experiments. Although it is always best to evenly illuminate the entire volume of a homogeneously diffracting crystal, limitations of the available equipment and imperfections in the sample often require a more sophisticated targeting strategy, involving microbeams smaller than the crystal, and translations of the crystal during data collection. This leads to a highly inhomogeneous distribution of absorbed X-rays (i.e., dose). Under these common experimental conditions, the relationship between dose and time is nonlinear, making it difficult to design an experimental strategy that optimizes the radiation damage lifetime of the crystal, or to assign appropriate dose values to an experiment. We present, and experimentally validate, a predictive metric diffraction-weighted dose for modeling the rate of decay of total diffracted intensity from protein crystals in macromolecular crystallography, and hence we can now assign appropriate "dose" values to modern experimental setups. Further, by taking the ratio of total elastic scattering to diffraction-weighted dose, we show that it is possible to directly compare potential data-collection strategies to optimize the diffraction for a given level of damage under specific experimental conditions. As an example of the applicability of this method, we demonstrate that by offsetting the rotation axis from the beam axis by 1.25 times the full-width half maximum of the beam, it is possible to significantly extend the dose lifetime of the crystal, leading to a higher number of diffracted photons, better statistics, and lower overall radiation damage.
Collapse
|
14
|
Krojer T, Pike ACW, von Delft F. Squeezing the most from every crystal: the fine details of data collection. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1303-13. [PMID: 23793157 PMCID: PMC3689534 DOI: 10.1107/s0907444913013280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/14/2013] [Indexed: 11/11/2022]
Abstract
Modern synchrotron beamlines offer instrumentation of unprecedented quality, which in turn encourages increasingly marginal experiments, and for these, as much as ever, the ultimate success of data collection depends on the experience, but especially the care, of the experimenter. A representative set of difficult cases has been encountered at the Structural Genomics Consortium, a worldwide structural genomics initiative of which the Oxford site currently deposits three novel human structures per month. Achieving this target relies heavily on frequent visits to the Diamond Light Source, and the variety of crystal systems still demand customized data collection, diligent checks and careful planning of each experiment. Here, an overview is presented of the techniques and procedures that have been refined over the years and that are considered synchrotron best practice.
Collapse
Affiliation(s)
- Tobias Krojer
- Structural Genomics Consortium, Oxford University, Roosevelt Drive, Oxford OX3 7DQ, England
| | - Ashley C. W. Pike
- Structural Genomics Consortium, Oxford University, Roosevelt Drive, Oxford OX3 7DQ, England
| | - Frank von Delft
- Structural Genomics Consortium, Oxford University, Roosevelt Drive, Oxford OX3 7DQ, England
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| |
Collapse
|
15
|
Leal RMF, Bourenkov G, Russi S, Popov AN. A survey of global radiation damage to 15 different protein crystal types at room temperature: a new decay model. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:14-22. [PMID: 23254652 PMCID: PMC3943537 DOI: 10.1107/s0909049512049114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/29/2012] [Indexed: 05/11/2023]
Abstract
The radiation damage rates to crystals of 15 model macromolecular structures were studied using an automated radiation sensitivity characterization procedure. The diffracted intensity variation with dose is described by a two-parameter model. This model includes a strong resolution-independent decay specific to room-temperature measurements along with a linear increase in overall Debye-Waller factors. An equivalent representation of sensitivity via a single parameter, normalized half-dose, is introduced. This parameter varies by an order of magnitude between the different structures studied. The data show a correlation of crystal radiation sensitivity with crystal solvent content but no dose-rate dependency was detected in the range 0.05-300 kGy s(-1). The results of the crystal characterization are suitable for either optimal planning of room-temperature data collection or in situ crystallization plate screening experiments.
Collapse
Affiliation(s)
| | - Gleb Bourenkov
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85b, Hamburg 22607, Germany
| | | | | |
Collapse
|
16
|
Garman EF, Weik M. Radiation damage to biological macromolecules: some answers and more questions. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:1-6. [PMID: 23254650 DOI: 10.1107/s0909049512050418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 06/01/2023]
Abstract
Research into radiation damage in macromolecular crystallography has matured over the last few years, resulting in a better understanding of both the processes and timescales involved. In turn this is now allowing practical recommendations for the optimization of crystal dose lifetime to be suggested. Some long-standing questions have been answered by recent investigations, and from these answers new challenges arise and areas of investigation can be proposed. Six papers published in this volume give an indication of some of the current directions of this field and also that of single-particle cryo-microscopy, and the brief summary below places them into the overall framework of ongoing research into macromolecular crystallography radiation damage.
Collapse
Affiliation(s)
- Elspeth F Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | |
Collapse
|
17
|
de Sanctis D, Nanao MH. Segmenting data sets for RIP. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1152-62. [PMID: 22948916 DOI: 10.1107/s0907444912023475] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/22/2012] [Indexed: 11/10/2022]
Abstract
Specific radiation damage can be used for the phasing of macromolecular crystal structures. In practice, however, the optimization of the X-ray dose used to `burn' the crystal to induce specific damage can be difficult. Here, a method is presented in which a single large data set that has not been optimized in any way for radiation-damage-induced phasing (RIP) is segmented into multiple sub-data sets, which can then be used for RIP. The efficacy of this method is demonstrated using two model systems and two test systems. A method to improve the success of this type of phasing experiment by varying the composition of the two sub-data sets with respect to their separation by image number, and hence by absorbed dose, as well as their individual completeness is illustrated.
Collapse
Affiliation(s)
- Daniele de Sanctis
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
| | | |
Collapse
|
18
|
Brockhauser S, Svensson O, Bowler MW, Nanao M, Gordon E, Leal RMF, Popov A, Gerring M, McCarthy AA, Gotz A. The use of workflows in the design and implementation of complex experiments in macromolecular crystallography. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:975-84. [PMID: 22868763 PMCID: PMC3413211 DOI: 10.1107/s090744491201863x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 04/25/2012] [Indexed: 11/10/2022]
Abstract
The automation of beam delivery, sample handling and data analysis, together with increasing photon flux, diminishing focal spot size and the appearance of fast-readout detectors on synchrotron beamlines, have changed the way that many macromolecular crystallography experiments are planned and executed. Screening for the best diffracting crystal, or even the best diffracting part of a selected crystal, has been enabled by the development of microfocus beams, precise goniometers and fast-readout detectors that all require rapid feedback from the initial processing of images in order to be effective. All of these advances require the coupling of data feedback to the experimental control system and depend on immediate online data-analysis results during the experiment. To facilitate this, a Data Analysis WorkBench (DAWB) for the flexible creation of complex automated protocols has been developed. Here, example workflows designed and implemented using DAWB are presented for enhanced multi-step crystal characterizations, experiments involving crystal reorientation with kappa goniometers, crystal-burning experiments for empirically determining the radiation sensitivity of a crystal system and the application of mesh scans to find the best location of a crystal to obtain the highest diffraction quality. Beamline users interact with the prepared workflows through a specific brick within the beamline-control GUI MXCuBE.
Collapse
Affiliation(s)
- Sandor Brockhauser
- European Molecular Biology Laboratory, 6 Rue Jules Horowitz, BP 181, 38042 Grenoble, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wheeler MJ, Russi S, Bowler MG, Bowler MW. Measurement of the equilibrium relative humidity for common precipitant concentrations: facilitating controlled dehydration experiments. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:111-4. [PMID: 22232186 PMCID: PMC3253849 DOI: 10.1107/s1744309111054029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/15/2011] [Indexed: 11/10/2022]
Abstract
The dehydration of crystals of macromolecules has long been known to have the potential to increase their diffraction quality. A number of methods exist to change the relative humidity that surrounds crystals, but for reproducible results, with complete characterization of the changes induced, a precise humidity-control device coupled with an X-ray source is required. The first step in these experiments is to define the relative humidity in equilibrium with the mother liquor of the system under study; this can often be quite time-consuming. In order to reduce the time spent on this stage of the experiment, the equilibrium relative humidity for a range of concentrations of the most commonly used precipitants has been measured. The relationship between the precipitant solution and equilibrium relative humidity is explained by Raoult's law for the equilibrium vapour pressure of water above a solution. The results also have implications for the choice of cryoprotectant and solutions used to dehydrate crystals. For the most commonly used precipitants (10-30% PEG 2000-8000), the starting point will be a relative humidity of 99.5%.
Collapse
Affiliation(s)
- Matthew J. Wheeler
- Structural Biology Group, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble, France
| | - Silvia Russi
- European Molecular Biology Laboratory, Grenoble Outstation, 6 Rue Jules Horowitz, 38042 Grenoble, France
| | - Michael G. Bowler
- Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, England
| | - Matthew W. Bowler
- Structural Biology Group, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble, France
| |
Collapse
|
20
|
Liu ZJ, Chen L, Wu D, Ding W, Zhang H, Zhou W, Fu ZQ, Wang BC. A multi-dataset data-collection strategy produces better diffraction data. Acta Crystallogr A 2011; 67:544-9. [PMID: 22011470 PMCID: PMC3211246 DOI: 10.1107/s0108767311037469] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/14/2011] [Indexed: 11/27/2022] Open
Abstract
A multi-dataset (MDS) data-collection strategy is proposed and analyzed for macromolecular crystal diffraction data acquisition. The theoretical analysis indicated that the MDS strategy can reduce the standard deviation (background noise) of diffraction data compared with the commonly used single-dataset strategy for a fixed X-ray dose. In order to validate the hypothesis experimentally, a data-quality evaluation process, termed a readiness test of the X-ray data-collection system, was developed. The anomalous signals of sulfur atoms in zinc-free insulin crystals were used as the probe to differentiate the quality of data collected using different data-collection strategies. The data-collection results using home-laboratory-based rotating-anode X-ray and synchrotron X-ray systems indicate that the diffraction data collected with the MDS strategy contain more accurate anomalous signals from sulfur atoms than the data collected with a regular data-collection strategy. In addition, the MDS strategy offered more advantages with respect to radiation-damage-sensitive crystals and better usage of rotating-anode as well as synchrotron X-rays.
Collapse
Affiliation(s)
- Zhi-Jie Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Lirong Chen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Dong Wu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Wei Ding
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Hua Zhang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Weihong Zhou
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Qing Fu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
21
|
Winter G, McAuley KE. Automated data collection for macromolecular crystallography. Methods 2011; 55:81-93. [DOI: 10.1016/j.ymeth.2011.06.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022] Open
|
22
|
Garman EF, Weik M. Macromolecular crystallography radiation damage research: what's new? JOURNAL OF SYNCHROTRON RADIATION 2011; 18:313-7. [PMID: 21525638 PMCID: PMC3083910 DOI: 10.1107/s0909049511013859] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 04/12/2011] [Indexed: 05/05/2023]
Abstract
Radiation damage in macromolecular crystallography has become a mainstream concern over the last ten years. The current status of research into this area is briefly assessed, and the ten new papers published in this issue are set into the context of previous work in the field. Some novel and exciting developments emerging over the last two years are also summarized.
Collapse
Affiliation(s)
- Elspeth F. Garman
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Martin Weik
- Comissariat à l’Energie Atomique, Institut de Biologie Structurale, F-38054 Grenoble, France
- CNRS, UMR5075, F-38027 Grenoble, France
- Université Joseph Fourier, F-38000 Grenoble, France
- ESRF, 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex, France
| |
Collapse
|