1
|
Guo Z, Zhang Y, Xu W, Jin S, Gan X, Zhang H, Chen D, Jia Q. A von Hamos full-cylindrical spectrometer based on striped Si/Ge crystal for advanced x-ray spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:023102. [PMID: 36859069 DOI: 10.1063/5.0133896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
High-energy resolution core-level spectroscopies, including a group of different techniques to obtain element-specific information of the electronic structure around an absorption site, have become powerful tools for studying the chemical state, local geometric structure, and the nature of chemical bonding. High-resolution x-ray absorption and x-ray emission spectroscopies are well-established experimental techniques but have always been limited by the number of emitted photons and the limited acceptance of solid angles, as well as requiring high energy stability and repeatability for the whole experimental setup. A full-cylindrical x-ray spectrometer based on flexible HAPG (highly annealed pyrolitic graphite) mosaic crystals is an effective solution for the above issues. However, large-area HAPG remains expensive and is often not easy to access. Here, we present an alternative approach by using segmented single crystals (Si and Ge) with different orientations instead of the HAPG as a dispersive element. The proposed method drastically improved the energy resolution up to 0.2-2 eV in the range of 2-10 keV. High-pressure x-ray emission and resonant x-ray emission spectra are presented to demonstrate the capabilities of the instrument. The new design is particularly suitable for high-resolution spectroscopy applications at fourth-generation synchrotron radiation sources or free-electron lasers.
Collapse
Affiliation(s)
- Zhiying Guo
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yujun Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - ShuoXue Jin
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Gan
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Han Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Dongliang Chen
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Quanjie Jia
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Sahle CJ, Gerbon F, Henriquet C, Verbeni R, Detlefs B, Longo A, Mirone A, Lagier MC, Otte F, Spiekermann G, Petitgirard S. A compact von Hámos spectrometer for parallel X-ray Raman scattering and X-ray emission spectroscopy at ID20 of the European Synchrotron Radiation Facility. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:251-257. [PMID: 36601944 PMCID: PMC9814058 DOI: 10.1107/s1600577522011171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
A compact spectrometer for medium-resolution resonant and non-resonant X-ray emission spectroscopy in von Hámos geometry is described. The main motivation for the design and construction of the spectrometer is to allow for acquisition of non-resonant X-ray emission spectra while measuring non-resonant X-ray Raman scattering spectra at beamline ID20 of the European Synchrotron Radiation Facility. Technical details are provided and the performance and possible use of the spectrometer are demonstrated by presenting results of several X-ray spectroscopic methods on various compounds.
Collapse
Affiliation(s)
- Ch. J. Sahle
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - F. Gerbon
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - C. Henriquet
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - R. Verbeni
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - B. Detlefs
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - A. Longo
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - A. Mirone
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - M.-C. Lagier
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - F. Otte
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, PO Box 510119, 01314 Dresden, Germany
- The Rossendorf Beamline at ESRF – The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | - G. Spiekermann
- Department of Earth Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - S. Petitgirard
- Department of Earth Sciences, ETH Zürich, Zürich 8092, Switzerland
| |
Collapse
|
3
|
Hwang IH, Solovyev MA, Han SW, Chan MKY, Hammonds JP, Heald SM, Kelly SD, Schwarz N, Zhang X, Sun CJ. AXEAP: a software package for X-ray emission data analysis using unsupervised machine learning. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1309-1317. [PMID: 36073891 PMCID: PMC9455206 DOI: 10.1107/s1600577522006786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The Argonne X-ray Emission Analysis Package (AXEAP) has been developed to calibrate and process X-ray emission spectroscopy (XES) data collected with a two-dimensional (2D) position-sensitive detector. AXEAP is designed to convert a 2D XES image into an XES spectrum in real time using both calculations and unsupervised machine learning. AXEAP is capable of making this transformation at a rate similar to data collection, allowing real-time comparisons during data collection, reducing the amount of data stored from gigabyte-sized image files to kilobyte-sized text files. With a user-friendly interface, AXEAP includes data processing for non-resonant and resonant XES images from multiple edges and elements. AXEAP is written in MATLAB and can run on common operating systems, including Linux, Windows, and MacOS.
Collapse
Affiliation(s)
- In-Hui Hwang
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Mikhail A. Solovyev
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Sang-Wook Han
- Department of Physics Education and Institute of Fusion Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Maria K. Y. Chan
- Center for Nanoscale Nanomaterials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - John P. Hammonds
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Steve M. Heald
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Shelly D. Kelly
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Nicholas Schwarz
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Xiaoyi Zhang
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Cheng-Jun Sun
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| |
Collapse
|
4
|
Solovyev MA, Lockard JV, Huang X, Heald SM, Sun CJ. High resolution x-ray emission spectrometer for multiple hard x-ray emission lines: Demonstration for Cu Kα and Kβ emissions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:073105. [PMID: 34340408 DOI: 10.1063/5.0048726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
We present a compact 3D printed x-ray emission spectrometer based on the von Hamos geometry that represents a significant upgrade to the existing von Hamos geometry-based miniature x-ray emission spectrometer (miniXES) [Mattern et al., Rev. Sci. Instrum. 83(2), 023901 (2012)]. The upgrades include the incorporation of a higher pixel density 500K detector for improved energy resolution and an enlarged sample area to accommodate a wider range of sample formats. The versatile spectrometer houses removable crystal holders that can be easily exchanged, as well as movable alignment eyelets that give flexibility in Bragg angle selection. Designed for ease of manufacture, all the components, except for the apertures, can be 3D printed and readily assembled. We describe its implementation in measurements of resonant and non-resonant Cu Kα and Kβ x-ray emission and report the theoretical and measured energy resolution and collected solid angle of the emission.
Collapse
Affiliation(s)
- Mikhail A Solovyev
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | | | - XianRong Huang
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Steve M Heald
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Cheng-Jun Sun
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
5
|
Ravel B, Kropf AJ, Yang D, Wang M, Topsakal M, Lu D, Stennett MC, Hyatt NC. Nonresonant valence-to-core x-ray emission spectroscopy of niobium. PHYSICAL REVIEW. B 2018; 97:10.1103/PhysRevB.97.125139. [PMID: 31080938 PMCID: PMC6508660 DOI: 10.1103/physrevb.97.125139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The valence-to-core (V2C) portion of x-ray emission spectroscopy (XES) measures the electron states close to the Fermi level. These states are involved in bonding, thus providing a measure of the chemistry of the material. In this article, we show the V2C XES spectra for several niobium compounds. The Kβ″ peak in the V2C XES results from the transition of a ligand 2s electron into the 1s core-hole of the niobium, a transition allowed by hybridization with the niobium 4p. This location in energy of this weak peak shows a strong ligand dependence, thus providing a sensitive probe of the ligand environment about the niobium.
Collapse
Affiliation(s)
- Bruce Ravel
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | | | - Dali Yang
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Mengen Wang
- Materials Science and Engineering Department, Stony Brook University, Stony Brook, New York 11794, USA
| | - Mehmet Topsakal
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Deyu Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Martin C. Stennett
- Department of Engineering Materials, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Neil C. Hyatt
- Department of Engineering Materials, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
6
|
Shen G, Mao HK. High-pressure studies with x-rays using diamond anvil cells. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:016101. [PMID: 27873767 DOI: 10.1088/1361-6633/80/1/016101] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials' properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. These HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.
Collapse
Affiliation(s)
- Guoyin Shen
- Geophysical Laboratory, Carnegie Institution of Washington, Washington DC, USA
| | | |
Collapse
|
7
|
Pollock CJ, DeBeer S. Insights into the geometric and electronic structure of transition metal centers from valence-to-core X-ray emission spectroscopy. Acc Chem Res 2015; 48:2967-75. [PMID: 26401686 DOI: 10.1021/acs.accounts.5b00309] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A long-standing goal of inorganic chemists is the ability to decipher the geometric and electronic structures of chemical species. This is particularly true for the study of small molecule and biological catalysts, where this knowledge is critical for understanding how these molecules effect chemical transformations. Numerous techniques are available for this task, and collectively they have enabled detailed understanding of many complex chemical systems. Despite this battery of probes, however, challenges still remain, particularly when the structural question involves subtle perturbations of the ligands bound to a metal center, as is often the case during chemical reactions. It is here that, as an emerging probe of chemical structure, valence-to-core (VtC) X-ray emission spectroscopy (XES) holds promise. VtC XES begins with ionization of a 1s electron from a metal ion by high energy X-ray photons. Electrons residing in ligand-localized valence orbitals decay to fill the 1s hole, emitting fluorescent photons in the process; in this manner, VtC XES primarily probes the filled, ligand-based orbitals of a metal complex. This is in contrast to other X-ray based techniques, such as K-edge X-ray absorption and EXAFS, which probe the unoccupied d-manifold orbitals and atomic scatterers surrounding the metal, respectively. As a hard X-ray technique, VtC XES experiments can be performed on a variety of sample states and environments, enabling application to demanding systems, such as high pressure cells and dilute biological samples. VtC XES thus can offer unique insights into the geometric and electronic structures of inorganic complexes. In recent years, we have sought to use VtC XES in the study of inorganic and bioinorganic complexes; doing so, however, first required a thorough and detailed understanding of the information content of these spectra. Extensive experimental surveys of model compounds coupled to the insights provided by DFT calculated spectra of real and hypothetical compounds allowed the development of a framework whereby VtC XES spectra may be understood in terms of a molecular orbital picture. Specifically, VtC spectra may be interpreted as a probe of electronic structure for the ligands bound to a metal center, enabling access to chemical information that can be difficult to obtain with other methods. Examples of this include the ability to (1) assess the identity and number of atomic/small molecule ligands bound to a metal center, (2) quantify the degree of bond activation of a small molecule substrate, and (3) establish the protonation state of donor atoms. With this foundation established, VtC has been meaningfully applied to long-standing questions in bioinorganic chemistry, with the potential for numerous future applications in all areas of metal-mediated catalysis.
Collapse
Affiliation(s)
- Christopher J. Pollock
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Serena DeBeer
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstrasse
34-36, D-45470 Mülheim
an der Ruhr, Germany
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
8
|
Hoidn OR, Seidler GT. Note: A disposable x-ray camera based on mass produced complementary metal-oxide-semiconductor sensors and single-board computers. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:086107. [PMID: 26329247 DOI: 10.1063/1.4929713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2-6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ∼20% quantum efficiency at 2.6 keV with ∼190 eV resolution and a 100 kHz maximum detection rate. The detector platform's useful intrinsic energy resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry.
Collapse
Affiliation(s)
- Oliver R Hoidn
- Physics Department, University of Washington, Seattle, Washington 98195, USA
| | - Gerald T Seidler
- Physics Department, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
9
|
Xiao YM, Chow P, Boman G, Bai LG, Rod E, Bommannavar A, Kenney-Benson C, Sinogeikin S, Shen GY. New developments in high pressure x-ray spectroscopy beamline at High Pressure Collaborative Access Team. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:072206. [PMID: 26233346 DOI: 10.1063/1.4926888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 04/01/2015] [Indexed: 06/04/2023]
Abstract
The 16 ID-D (Insertion Device - D station) beamline of the High Pressure Collaborative Access Team at the Advanced Photon Source is dedicated to high pressure research using X-ray spectroscopy techniques typically integrated with diamond anvil cells. The beamline provides X-rays of 4.5-37 keV, and current available techniques include X-ray emission spectroscopy, inelastic X-ray scattering, and nuclear resonant scattering. The recent developments include a canted undulator upgrade, 17-element analyzer array for inelastic X-ray scattering, and an emission spectrometer using a polycapillary half-lens. Recent development projects and future prospects are also discussed.
Collapse
Affiliation(s)
- Y M Xiao
- HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - P Chow
- HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - G Boman
- HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - L G Bai
- HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - E Rod
- HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - A Bommannavar
- HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - C Kenney-Benson
- HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - S Sinogeikin
- HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - G Y Shen
- HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| |
Collapse
|
10
|
Garino C, Borfecchia E, Gobetto R, van Bokhoven JA, Lamberti C. Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.03.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Honkanen AP, Verbeni R, Simonelli L, Moretti Sala M, Monaco G, Huotari S. Study on the reflectivity properties of spherically bent analyser crystals. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:104-110. [PMID: 24365923 DOI: 10.1107/s160057751302242x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/09/2013] [Indexed: 06/03/2023]
Abstract
Theoretical and experimental studies are presented on properties of spherically bent analyser crystals for high-resolution X-ray spectrometry. A correction to the bent-crystal strain field owing to its finite surface area is derived. The results are used to explain the reflectivity curves and anisotropic properties of Si(660) and Si(553) analysers in near-backscattering geometry. The results from the calculation agree very well with experimental results obtained using an inelastic X-ray scattering synchrotron beamline.
Collapse
Affiliation(s)
| | - Roberto Verbeni
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | - Laura Simonelli
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | - Marco Moretti Sala
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | - Giulio Monaco
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | - Simo Huotari
- Department of Physics, PO Box 64, FI-00014 Helsinki, Finland
| |
Collapse
|
12
|
Mortensen DR, Seidler GT, Bradley JA, Lipp MJ, Evans WJ, Chow P, Xiao YM, Boman G, Bowden ME. A versatile medium-resolution x-ray emission spectrometer for diamond anvil cell applications. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:083908. [PMID: 24007080 DOI: 10.1063/1.4819257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We present design and performance details for a polycapillary-coupled x-ray spectrometer that provides very high collection efficiency at a moderate energy resolution suitable for many studies of nonresonant x-ray emission spectroscopy, especially for samples of heavy elements under high pressures. Using a single Bragg analyzer operating close to backscattering geometry so as to minimize the effect of the weak divergence of the quasicollimated exit beam from the polycapillary optic, this instrument can maintain a typical energy resolution of 5 eV over photon energies from 5 keV to 10 keV. We find dramatically improved count rates as compared to a traditional higher-resolution instrument based on a single spherically bent crystal analyzer.
Collapse
Affiliation(s)
- D R Mortensen
- Physics Department, University of Washington, Seattle, Washington 98195-1560, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Davis KM, Kosheleva I, Henning RW, Seidler GT, Pushkar Y. Kinetic modeling of the X-ray-induced damage to a metalloprotein. J Phys Chem B 2013; 117:9161-9. [PMID: 23815809 DOI: 10.1021/jp403654n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It is well-known that biological samples undergo X-ray-induced degradation. One of the fastest occurring X-ray-induced processes involves redox modifications (reduction or oxidation) of redox-active cofactors in proteins. Here we analyze room-temperature data on the photoreduction of Mn ions in the oxygen-evolving complex (OEC) of photosystem II, one of the most radiation damage-sensitive proteins and a key constituent of natural photosynthesis in plants, green algae, and cyanobacteria. Time-resolved X-ray emission spectroscopy with wavelength-dispersive detection was used to collect data on the progression of X-ray-induced damage. A kinetic model was developed to fit experimental results, and the rate constant for the reduction of OEC Mn(III) and Mn(IV) ions by solvated electrons was determined. From this model, the possible kinetics of X-ray-induced damage at a variety of experimental conditions, such as different rates of dose deposition as well as different excitation wavelengths, can be inferred. We observed a trend of increasing dosage threshold prior to the onset of X-ray-induced damage with increasing rates of dose deposition. This trend suggests that experimentation with higher rates of dose deposition is beneficial for measurements of biological samples sensitive to radiation damage, particularly at pink beam and X-ray free electron laser sources.
Collapse
Affiliation(s)
- Katherine M Davis
- Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
14
|
Szlachetko J, Nachtegaal M, de Boni E, Willimann M, Safonova O, Sa J, Smolentsev G, Szlachetko M, van Bokhoven JA, Dousse JC, Hoszowska J, Kayser Y, Jagodzinski P, Bergamaschi A, Schmitt B, David C, Lücke A. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:103105. [PMID: 23126749 DOI: 10.1063/1.4756691] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.
Collapse
Affiliation(s)
- J Szlachetko
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Davis KM, Mattern BA, Pacold JI, Zakharova T, Brewe D, Kosheleva I, Henning RW, Graber TJ, Heald SM, Seidler GT, Pushkar Y. Fast Detection Allows Analysis of the Electronic Structure of Metalloprotein by X-ray Emission Spectroscopy at Room Temperature. J Phys Chem Lett 2012; 3:1858-1864. [PMID: 22919444 PMCID: PMC3423219 DOI: 10.1021/jz3006223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The paradigm of "detection-before-destruction" was tested for a metalloprotein complex exposed at room temperature to the high x-ray flux typical of third generation synchrotron sources. Following the progression of the x-ray induced damage by Mn Kβ x-ray emission spectroscopy, we demonstrated the feasibility of collecting room temperature data on the electronic structure of native Photosystem II, a trans-membrane metalloprotein complex containing a Mn(4)Ca cluster. The determined non-damaging observation timeframe (about 100 milliseconds using continuous monochromatic beam, deposited dose 1*10(7) photons/µm(2) or 1.3*10(4) Gy, and 66 microseconds in pulsed mode using pink beam, deposited dose 4*10(7) photons/µm(2) or 4.2*10(4) Gy) is sufficient for the analysis of this protein's electron dynamics and catalytic mechanism at room temperature. Reported time frames are expected to be representative for other metalloproteins. The described instrumentation, based on the short working distance dispersive spectrometer, and experimental methodology is broadly applicable to time-resolved x-ray emission analysis at synchrotron and x-ray free-electron laser light sources.
Collapse
Affiliation(s)
| | - Brian A. Mattern
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Joseph I. Pacold
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | | | - Dale Brewe
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Robert W. Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Timothy J. Graber
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Steve M. Heald
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
| | - Gerald T. Seidler
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|