1
|
Zhang W, Zhang X, Feng D, Liang Y, Wu Z, Du S, Zhou Y, Geng C, Men P, Fu C, Huang X, Lu X. Discovery of a Unique Flavonoid Biosynthesis Mechanism in Fungi by Genome Mining. Angew Chem Int Ed Engl 2023; 62:e202215529. [PMID: 36704842 DOI: 10.1002/anie.202215529] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
Flavonoids are important plant natural products with variable structures and bioactivities. All known plant flavonoids are generated under the catalysis of a type III polyketide synthase (PKS) followed by a chalcone isomerase (CHI) and a flavone synthase (FNS). In this study, the biosynthetic gene cluster of chlorflavonin, a fungal flavonoid with acetolactate synthase inhibitory activity, was discovered using a self-resistance-gene-directed strategy. A novel flavonoid biosynthetic pathway in fungi was revealed. A core nonribosomal peptide synthetase-polyketide synthase (NRPS-PKS) is responsible for the generation of the key precursor chalcone. Then, a new type of CHI catalyzes the conversion of a chalcone into a flavanone by a histidine-mediated oxa-Michael addition mechanism. Finally, the desaturation of flavanone to flavone is catalyzed by a new type of FNS, a flavin mononucleotide (FMN)-dependent oxidoreductase.
Collapse
Affiliation(s)
- Wei Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Dandan Feng
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Yajing Liang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Zhenying Wu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Siyu Du
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Yu Zhou
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Ce Geng
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Ping Men
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Chunxiang Fu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,Shandong Energy Institute, Qingdao, Shandong, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266101, China
| |
Collapse
|
2
|
Furumura S, Ozaki T, Sugawara A, Morishita Y, Tsukada K, Ikuta T, Inoue A, Asai T. Identification and Functional Characterization of Fungal Chalcone Synthase and Chalcone Isomerase. JOURNAL OF NATURAL PRODUCTS 2023; 86:398-405. [PMID: 36762727 PMCID: PMC9972472 DOI: 10.1021/acs.jnatprod.2c01027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 05/23/2023]
Abstract
By mining fungal genomic information, a noncanonical iterative type I PKS fused with an N-terminal adenylation-thiolation didomain, which catalyzes the formation of naringenin chalcone, was found. Structural prediction and molecular docking analysis indicated that a C-terminal thioesterase domain was involved in the Claisen-type cyclization. An enzyme responsible for formation of (2S)-flavanone in the biosynthesis of fungal flavonoids was also identified. Collectively, these findings demonstrate unprecedented fungal biosynthetic machinery leading to plant-like metabolites.
Collapse
|
3
|
Palm GJ, Thomsen M, Berndt L, Hinrichs W. Structural Basis for (2 R,3 R)-Taxifolin Binding and Reaction Products to the Bacterial Chalcone Isomerase of Eubacterium ramulus. Molecules 2022; 27:molecules27227909. [PMID: 36432010 PMCID: PMC9694015 DOI: 10.3390/molecules27227909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022] Open
Abstract
The bacterial chalcone isomerase (CHI) from Eubacterium ramulus catalyses the first step in a flavanone-degradation pathway by a reverse Michael addition. The overall fold and the constitution of the active site of the enzyme completely differ from the well-characterised chalcone isomerase of plants. For (+)-taxifolin, CHI catalyses the intramolecular ring contraction to alphitonin. In this study, Fwe perform crystal structure analyses of CHI and its active site mutant His33Ala in the presence of the substrate taxifolin at 2.15 and 2.8 Å resolution, respectively. The inactive enzyme binds the substrate (+)-taxifolin as well defined, whereas the electron density maps of the native CHI show a superposition of substrate, product alphitonin, and most probably also the reaction intermediate taxifolin chalcone. Evidently, His33 mediates the stereospecific acid-base reaction by abstracting a proton from the flavonoid scaffold. The stereospecificity of the product is discussed.
Collapse
|
4
|
Werner N, Werten S, Hoppen J, Palm GJ, Göttfert M, Hinrichs W. The induction mechanism of the flavonoid-responsive regulator FrrA. FEBS J 2022; 289:507-518. [PMID: 34314575 DOI: 10.1111/febs.16141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Bradyrhizobium diazoefficiens, a bacterial symbiont of soybean and other leguminous plants, enters a nodulation-promoting genetic programme in the presence of host-produced flavonoids and related signalling compounds. Here, we describe the crystal structure of an isoflavonoid-responsive regulator (FrrA) from Bradyrhizobium, as well as cocrystal structures with inducing and noninducing ligands (genistein and naringenin, respectively). The structures reveal a TetR-like fold whose DNA-binding domain is capable of adopting a range of orientations. A single molecule of either genistein or naringenin is asymmetrically bound in a central cavity of the FrrA homodimer, mainly via C-H contacts to the π-system of the ligands. Strikingly, however, the interaction does not provoke any conformational changes in the repressor. Both the flexible positioning of the DNA-binding domain and the absence of structural change upon ligand binding are corroborated by small-angle X-ray scattering (SAXS) experiments in solution. Together with a model of the promoter-bound state of FrrA our results suggest that inducers act as a wedge, preventing the DNA-binding domains from moving close enough together to interact with successive positions of the major groove of the palindromic operator.
Collapse
Affiliation(s)
- Nadine Werner
- Institute for Biochemistry, Department Molecular Structural Biology, University of Greifswald, Germany
| | - Sebastiaan Werten
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Austria
| | - Jens Hoppen
- Institute for Biochemistry, Department Molecular Structural Biology, University of Greifswald, Germany
| | - Gottfried J Palm
- Institute for Biochemistry, Department Molecular Structural Biology, University of Greifswald, Germany
| | - Michael Göttfert
- Institute of Genetics, Dresden University of Technology, Germany
| | - Winfried Hinrichs
- Institute for Biochemistry, Department Molecular Structural Biology, University of Greifswald, Germany
| |
Collapse
|
5
|
Sost MM, Ahles S, Verhoeven J, Verbruggen S, Stevens Y, Venema K. A Citrus Fruit Extract High in Polyphenols Beneficially Modulates the Gut Microbiota of Healthy Human Volunteers in a Validated In Vitro Model of the Colon. Nutrients 2021; 13:nu13113915. [PMID: 34836169 PMCID: PMC8619629 DOI: 10.3390/nu13113915] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
The effect of a Citrus Fruit Extract high in the polyphenols hesperidin and naringin (CFE) on modulation of the composition and activity of the gut microbiota was tested in a validated, dynamic in vitro model of the colon (TIM-2). CFE was provided at two doses (250 and 350 mg/day) for 3 days. CFE led to a dose-dependent increase in Roseburia, Eubacterium ramulus, and Bacteroides eggerthii. There was a shift in production of short-chain fatty acids, where acetate production increased on CFE, while butyrate decreased. In overweight and obesity, acetate has been shown to increase fat oxidation when produced in the distal gut, and stimulate secretion of appetite-suppressive neuropeptides. Thus, the data in the in vitro model point towards mechanisms underlying the effects of the polyphenols in CFE with respect to modulation of the gut microbiota, both in composition and activity. These results should be confirmed in a clinical trial.
Collapse
Affiliation(s)
- Mônica Maurer Sost
- Centre for Healthy Eating & Food Innovation (HEFI), Campus Venlo, Maastricht University, Villafloraweg 1, 5928 SZ Venlo, The Netherlands; (M.M.S.); (J.V.); (S.V.)
| | - Sanne Ahles
- BioActor B.V., 6229 GS Maastricht, The Netherlands; (S.A.); (Y.S.)
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Jessica Verhoeven
- Centre for Healthy Eating & Food Innovation (HEFI), Campus Venlo, Maastricht University, Villafloraweg 1, 5928 SZ Venlo, The Netherlands; (M.M.S.); (J.V.); (S.V.)
| | - Sanne Verbruggen
- Centre for Healthy Eating & Food Innovation (HEFI), Campus Venlo, Maastricht University, Villafloraweg 1, 5928 SZ Venlo, The Netherlands; (M.M.S.); (J.V.); (S.V.)
| | - Yala Stevens
- BioActor B.V., 6229 GS Maastricht, The Netherlands; (S.A.); (Y.S.)
- Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Campus Venlo, Maastricht University, Villafloraweg 1, 5928 SZ Venlo, The Netherlands; (M.M.S.); (J.V.); (S.V.)
- Correspondence: ; Tel.: +31-622-435-111
| |
Collapse
|
6
|
Flavonoid-Modifying Capabilities of the Human Gut Microbiome-An In Silico Study. Nutrients 2021; 13:nu13082688. [PMID: 34444848 PMCID: PMC8398226 DOI: 10.3390/nu13082688] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Flavonoids are a major group of dietary plant polyphenols and have a positive health impact, but their modification and degradation in the human gut is still widely unknown. Due to the rise of metagenome data of the human gut microbiome and the assembly of hundreds of thousands of bacterial metagenome-assembled genomes (MAGs), large-scale screening for potential flavonoid-modifying enzymes of human gut bacteria is now feasible. With sequences of characterized flavonoid-transforming enzymes as queries, the Unified Human Gastrointestinal Protein catalog was analyzed and genes encoding putative flavonoid-modifying enzymes were quantified. The results revealed that flavonoid-modifying enzymes are often encoded in gut bacteria hitherto not considered to modify flavonoids. The enzymes for the physiologically important daidzein-to-equol conversion, well studied in Slackiaisoflavoniconvertens, were encoded only to a minor extent in Slackia MAGs, but were more abundant in Adlercreutzia equolifaciens and an uncharacterized Eggerthellaceae species. In addition, enzymes with a sequence identity of about 35% were encoded in highly abundant MAGs of uncultivated Collinsella species, which suggests a hitherto uncharacterized daidzein-to-equol potential in these bacteria. Of all potential flavonoid modification steps, O-deglycosylation (including derhamnosylation) was by far the most abundant in this analysis. In contrast, enzymes putatively involved in C-deglycosylation were detected less often in human gut bacteria and mainly found in Agathobacter faecis (formerly Roseburia faecis). Homologs to phloretin hydrolase, flavanonol/flavanone-cleaving reductase and flavone reductase were of intermediate abundance (several hundred MAGs) and mainly prevalent in Flavonifractor plautii. This first comprehensive insight into the black box of flavonoid modification in the human gut highlights many hitherto overlooked and uncultured bacterial genera and species as potential key organisms in flavonoid modification. This could lead to a significant contribution to future biochemical-microbiological investigations on gut bacterial flavonoid transformation. In addition, our results are important for individual nutritional recommendations and for biotechnological applications that rely on novel enzymes catalyzing potentially useful flavonoid modification reactions.
Collapse
|
7
|
Meinert H, Yi D, Zirpel B, Schuiten E, Geißler T, Gross E, Brückner SI, Hartmann B, Röttger C, Ley JP, Bornscheuer UT. Entdeckung neuer bakterieller Chalconisomerasen durch eine Sequenz‐Struktur‐Funktions‐Evolutions‐Strategie für die enzymatische Synthese von (
S
)‐Flavanonen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hannes Meinert
- Abt. Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix-Hausdorff-Straße 4 17489 Greifswald Deutschland
| | - Dong Yi
- Abt. Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix-Hausdorff-Straße 4 17489 Greifswald Deutschland
| | | | - Eva Schuiten
- Abt. Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix-Hausdorff-Straße 4 17489 Greifswald Deutschland
| | | | - Egon Gross
- Symrise Postfach 1253 37603 Holzminden Deutschland
| | | | | | | | - Jakob P. Ley
- Symrise Postfach 1253 37603 Holzminden Deutschland
| | - Uwe T. Bornscheuer
- Abt. Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix-Hausdorff-Straße 4 17489 Greifswald Deutschland
| |
Collapse
|
8
|
Yi D, Bayer T, Badenhorst CPS, Wu S, Doerr M, Höhne M, Bornscheuer UT. Recent trends in biocatalysis. Chem Soc Rev 2021; 50:8003-8049. [PMID: 34142684 PMCID: PMC8288269 DOI: 10.1039/d0cs01575j] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Biocatalysis has undergone revolutionary progress in the past century. Benefited by the integration of multidisciplinary technologies, natural enzymatic reactions are constantly being explored. Protein engineering gives birth to robust biocatalysts that are widely used in industrial production. These research achievements have gradually constructed a network containing natural enzymatic synthesis pathways and artificially designed enzymatic cascades. Nowadays, the development of artificial intelligence, automation, and ultra-high-throughput technology provides infinite possibilities for the discovery of novel enzymes, enzymatic mechanisms and enzymatic cascades, and gradually complements the lack of remaining key steps in the pathway design of enzymatic total synthesis. Therefore, the research of biocatalysis is gradually moving towards the era of novel technology integration, intelligent manufacturing and enzymatic total synthesis.
Collapse
Affiliation(s)
- Dong Yi
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Shuke Wu
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Matthias Höhne
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| |
Collapse
|
9
|
Meinert H, Yi D, Zirpel B, Schuiten E, Geißler T, Gross E, Brückner SI, Hartmann B, Röttger C, Ley JP, Bornscheuer UT. Discovery of Novel Bacterial Chalcone Isomerases by a Sequence-Structure-Function-Evolution Strategy for Enzymatic Synthesis of (S)-Flavanones. Angew Chem Int Ed Engl 2021; 60:16874-16879. [PMID: 34129275 PMCID: PMC8361940 DOI: 10.1002/anie.202107182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Indexed: 11/05/2022]
Abstract
Chalcone isomerase (CHI) is a key enzyme in the biosynthesis of flavonoids in plants. The first bacterial CHI (CHIera ) was identified from Eubacterium ramulus, but its distribution, evolutionary source, substrate scope, and stereoselectivity are still unclear. Here, we describe the identification of 66 novel bacterial CHIs from Genbank using a novel Sequence-Structure-Function-Evolution (SSFE) strategy. These novel bacterial CHIs show diversity in substrate specificity towards various hydroxylated and methoxylated chalcones. The mutagenesis of CHIera according to the substrate binding models of these novel bacterial CHIs resulted in several variants with greatly improved activity towards these chalcones. Furthermore, the preparative scale conversion catalyzed by bacterial CHIs has been performed for five chalcones and revealed (S)-selectivity with up to 96 % ee, which provides an alternative biocatalytic route for the synthesis of (S)-flavanones in high yields.
Collapse
Affiliation(s)
- Hannes Meinert
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17489, Greifswald, Germany
| | - Dong Yi
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17489, Greifswald, Germany
| | | | - Eva Schuiten
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17489, Greifswald, Germany
| | | | - Egon Gross
- Symrise, P.O. Box 1253, 37603, Holzminden, Germany
| | | | | | | | - Jakob P Ley
- Symrise, P.O. Box 1253, 37603, Holzminden, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17489, Greifswald, Germany
| |
Collapse
|
10
|
Burke JR, La Clair JJ, Philippe RN, Pabis A, Corbella M, Jez JM, Cortina GA, Kaltenbach M, Bowman ME, Louie GV, Woods KB, Nelson AT, Tawfik DS, Kamerlin SC, Noel JP. Bifunctional Substrate Activation via an Arginine Residue Drives Catalysis in Chalcone Isomerases. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jason R. Burke
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - James J. La Clair
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Ryan N. Philippe
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Anna Pabis
- Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
| | - Marina Corbella
- Department of Chemistry−BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Joseph M. Jez
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - George A. Cortina
- Department of Molecular Physiology and Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Miriam Kaltenbach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Marianne E. Bowman
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Gordon V. Louie
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Katherine B. Woods
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Andrew T. Nelson
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Dan S. Tawfik
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shina C.L. Kamerlin
- Department of Chemistry−BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Joseph P. Noel
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| |
Collapse
|
11
|
Abstract
Enzymes that catalyze a Michael-type addition in polyketide biosynthesis are summarized and discussed.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| |
Collapse
|
12
|
Kaltenbach M, Burke JR, Dindo M, Pabis A, Munsberg FS, Rabin A, Kamerlin SCL, Noel JP, Tawfik DS. Evolution of chalcone isomerase from a noncatalytic ancestor. Nat Chem Biol 2018; 14:548-555. [PMID: 29686356 DOI: 10.1038/s41589-018-0042-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 03/01/2018] [Indexed: 11/09/2022]
Abstract
The emergence of catalysis in a noncatalytic protein scaffold is a rare, unexplored event. Chalcone isomerase (CHI), a key enzyme in plant flavonoid biosynthesis, is presumed to have evolved from a nonenzymatic ancestor related to the widely distributed fatty-acid binding proteins (FAPs) and a plant protein family with no isomerase activity (CHILs). Ancestral inference supported the evolution of CHI from a protein lacking isomerase activity. Further, we identified four alternative founder mutations, i.e., mutations that individually instated activity, including a mutation that is not phylogenetically traceable. Despite strong epistasis in other cases of protein evolution, CHI's laboratory reconstructed mutational trajectory shows weak epistasis. Thus, enantioselective CHI activity could readily emerge despite a catalytically inactive starting point. Accordingly, X-ray crystallography, NMR, and molecular dynamics simulations reveal reshaping of the active site toward a productive substrate-binding mode and repositioning of the catalytic arginine that was inherited from the ancestral fatty-acid binding proteins.
Collapse
Affiliation(s)
- Miriam Kaltenbach
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Jason R Burke
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mirco Dindo
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.,Department of Neuroscience, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| | - Anna Pabis
- Uppsala Biomedicinsk Centrum, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Fabian S Munsberg
- Uppsala Biomedicinsk Centrum, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Avigayel Rabin
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Shina C L Kamerlin
- Uppsala Biomedicinsk Centrum, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Joseph P Noel
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Dan S Tawfik
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Crystal structure and enzymatic properties of chalcone isomerase from the Antarctic vascular plant Deschampsia antarctica Desv. PLoS One 2018; 13:e0192415. [PMID: 29394293 PMCID: PMC5796730 DOI: 10.1371/journal.pone.0192415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/23/2018] [Indexed: 02/06/2023] Open
Abstract
Chalcone isomerase (CHI) is an important enzyme for flavonoid biosynthesis that catalyzes the intramolecular cyclization of chalcones into (S)-flavanones. CHIs have been classified into two types based on their substrate specificity. Type I CHIs use naringenin chalcone as a substrate and are found in most of plants besides legumes, whereas type II CHIs in leguminous plants can also utilize isoliquiritigenin. In this study, we found that the CHI from the Antarctic plant Deschampsia antarctica (DaCHI1) is of type I based on sequence homology but can use type II CHI substrates. To clarify the enzymatic mechanism of DaCHI1 at the molecular level, the crystal structures of unliganded DaCHI1 and isoliquiritigenin-bound DaCHI1 were determined at 2.7 and 2.1 Å resolutions, respectively. The structures revealed that isoliquiritigenin binds to the active site of DaCHI1 and induces conformational changes. Additionally, the activity assay showed that while DaCHI1 exhibits substrate preference for naringenin chalcone, it can also utilize isoliquiritigenin although the catalytic activity was relatively low. Based on these results, we propose that DaCHI1 uses various substrates to produce antioxidant flavonoids as an adaptation to oxidative stresses associated with harsh environmental conditions.
Collapse
|
14
|
Zühlsdorf M, Hinrichs W. Assemblins as maturational proteases in herpesviruses. J Gen Virol 2017; 98:1969-1984. [PMID: 28758622 DOI: 10.1099/jgv.0.000872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During assembly of herpesvirus capsids, a protein scaffold self-assembles to ring-like structures forming the scaffold of the spherical procapsids. Proteolytic activity of the herpesvirus maturational protease causes structural changes that result in angularization of the capsids. In those mature icosahedral capsids, the packaging of viral DNA into the capsids can take place. The strictly regulated protease is called assemblin. It is inactive in its monomeric state and activated by dimerization. The structures of the dimeric forms of several assemblins from all herpesvirus subfamilies have been elucidated in the last two decades. They revealed a unique serine-protease fold with a catalytic triad consisting of a serine and two histidines. Inhibitors that disturb dimerization by binding to the dimerization area were found recently. Additionally, the structure of the monomeric form of assemblin from pseudorabies virus and some monomer-like structures of Kaposi's sarcoma-associated herpesvirus assemblin were solved. These findings are the proof-of-principle for the development of new anti-herpesvirus drugs. Therefore, the most important information on this fascinating and unique class of proteases is summarized here.
Collapse
Affiliation(s)
- Martin Zühlsdorf
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489 Greifswald, Germany
| | - Winfried Hinrichs
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489 Greifswald, Germany
| |
Collapse
|
15
|
Chalcone Isomerase from Eubacterium ramulus Catalyzes the Ring Contraction of Flavanonols. J Bacteriol 2016; 198:2965-2974. [PMID: 27551015 DOI: 10.1128/jb.00490-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/05/2016] [Indexed: 01/07/2023] Open
Abstract
The enzyme catalyzing the ring-contracting conversion of the flavanonol taxifolin to the auronol alphitonin in the course of flavonoid degradation by the human intestinal anaerobe Eubacterium ramulus was purified and characterized. It stereospecifically catalyzed the isomerization of (+)-taxifolin but not that of (-)-taxifolin. The Km for (+)-taxifolin was 6.4 ± 0.8 μM, and the Vmax was 108 ± 4 μmol min-1 (mg protein)-1 The enzyme also isomerized (+)-dihydrokaempferol, another flavanonol, to maesopsin. Inspection of the encoding gene revealed its complete identity to that of the gene encoding chalcone isomerase (CHI) from E. ramulus Based on the reported X-ray crystal structure of CHI (M. Gall et al., Angew Chem Int Ed 53:1439-1442, 2014, http://dx.doi.org/10.1002/anie.201306952), docking experiments suggest the substrate binding mode of flavanonols and their stereospecific conversion. Mutation of the active-site histidine (His33) to alanine led to a complete loss of flavanonol isomerization by CHI, which indicates that His33 is also essential for this activity. His33 is proposed to mediate the stereospecific abstraction of a proton from the hydroxymethylene carbon of the flavanonol C-ring followed by ring opening and recyclization. A flavanonol-isomerizing enzyme was also identified in the flavonoid-converting bacterium Flavonifractor plautii based on its 50% sequence identity to the CHI from E. ramulus IMPORTANCE: Chalcone isomerase was known to be involved in flavone/flavanone conversion by the human intestinal bacterium E. ramulus Here we demonstrate that this enzyme moreover catalyzes a key step in the breakdown of flavonols/flavanonols. Thus, a single isomerase plays a dual role in the bacterial conversion of dietary bioactive flavonoids. The identification of a corresponding enzyme in the human intestinal bacterium F. plautii suggests a more widespread occurrence of this isomerase in flavonoid-degrading bacteria.
Collapse
|
16
|
Stevens JF, Maier CS. The Chemistry of Gut Microbial Metabolism of Polyphenols. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2016; 15:425-444. [PMID: 27274718 PMCID: PMC4888912 DOI: 10.1007/s11101-016-9459-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 03/02/2016] [Indexed: 05/18/2023]
Abstract
Gut microbiota contribute to the metabolism of dietary polyphenols and affect the bioavailability of both the parent polyphenols and their metabolites. Although there is a large number of reports of specific polyphenol metabolites, relatively little is known regarding the chemistry and enzymology of the metabolic pathways utilized by specific microbial species and taxa, which is the focus of this review. Major classes of dietary polyphenols include monomeric and oligomeric catechins (proanthocyanidins), flavonols, flavanones, ellagitannins, and isoflavones. Gut microbial metabolism of representatives of these polyphenol classes can be classified as A- and C-ring cleavage (retro Claisen reactions), C-ring cleavage mediated by dioxygenases, dehydroxylations (decarboxylation or reduction reactions followed by release of H2O molecules), and hydrogenations of alkene moieties in polyphenols, such as resveratrol, curcumin, and isoflavones (mediated by NADPH-dependent reductases). The qualitative and quantitative metabolic output of the gut microbiota depends to a large extent on the metabolic capacity of individual taxa, which emphasizes the need for assessment of functional analysis in conjunction with determinations of gut microbiota compositions.
Collapse
Affiliation(s)
- Jan F Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97330; Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97330; Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330
| |
Collapse
|
17
|
Braune A, Blaut M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 2016; 7:216-34. [PMID: 26963713 PMCID: PMC4939924 DOI: 10.1080/19490976.2016.1158395] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/19/2016] [Indexed: 02/03/2023] Open
Abstract
The gut microbiota plays a crucial role in the conversion of dietary flavonoids and thereby affects their health-promoting effects in the human host. The identification of the bacteria involved in intestinal flavonoid conversion has gained increasing interest. This review summarizes available information on the so far identified human intestinal flavonoid-converting bacterial species and strains as well as their enzymes catalyzing the underlying reactions. The majority of described species involved in flavonoid transformation are capable of carrying out the O-deglycosylation of flavonoids. Other bacteria cleave the less common flavonoid-C-glucosides and/or further degrade the aglycones of flavonols, flavanonols, flavones, flavanones, dihydrochalcones, isoflavones and monomeric flavan-3-ols. To increase the currently limited knowledge in this field, identification of flavonoid-converting bacteria should be continued using culture-dependent screening or isolation procedures and molecular approaches based on sequence information of the involved enzymes.
Collapse
Affiliation(s)
- Annett Braune
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| |
Collapse
|