1
|
Greisman JB, Dalton KM, Sheehan CJ, Klureza MA, Kurinov I, Hekstra DR. Native SAD phasing at room temperature. Acta Crystallogr D Struct Biol 2022; 78:986-996. [PMID: 35916223 PMCID: PMC9344477 DOI: 10.1107/s2059798322006799] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Single-wavelength anomalous diffraction (SAD) is a routine method for overcoming the phase problem when solving macromolecular structures. This technique requires the accurate measurement of intensities to determine differences between Bijvoet pairs. Although SAD experiments are commonly conducted at cryogenic temperatures to mitigate the effects of radiation damage, such temperatures can alter the conformational ensemble of the protein and may impede the merging of data from multiple crystals due to non-uniform freezing. Here, a strategy is presented to obtain high-quality data from room-temperature, single-crystal experiments. To illustrate the strengths of this approach, native SAD phasing at 6.55 keV was used to solve four structures of three model systems at 295 K. The resulting data sets allow automatic phasing and model building, and reveal alternate conformations that reflect the structure of proteins at room temperature.
Collapse
Affiliation(s)
- Jack B. Greisman
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts, USA
| | - Kevin M. Dalton
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts, USA
| | - Candice J. Sheehan
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts, USA
| | - Margaret A. Klureza
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts, USA
| | - Igor Kurinov
- NE-CAT, Department of Chemistry and Chemical Biology, Cornell University, 9700 South Cass Avenue, Argonne, Illinois, USA
| | - Doeke R. Hekstra
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 52 Oxford Street, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Nakatsu T. What Kind of Measurements Can Be Made with an X-ray Free Electron Laser at SACLA? YAKUGAKU ZASSHI 2022; 142:479-485. [DOI: 10.1248/yakushi.21-00203-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Toru Nakatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
3
|
Pan D, Oyama R, Sato T, Nakane T, Mizunuma R, Matsuoka K, Joti Y, Tono K, Nango E, Iwata S, Nakatsu T, Kato H. Crystal structure of CmABCB1 multi-drug exporter in lipidic mesophase revealed by LCP-SFX. IUCRJ 2022; 9:134-145. [PMID: 35059217 PMCID: PMC8733880 DOI: 10.1107/s2052252521011611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
CmABCB1 is a Cyanidioschyzon merolae homolog of human ABCB1, a well known ATP-binding cassette (ABC) transporter responsible for multi-drug resistance in various cancers. Three-dimensional structures of ABCB1 homologs have revealed the snapshots of inward- and outward-facing states of the transporters in action. However, sufficient information to establish the sequential movements of the open-close cycles of the alternating-access model is still lacking. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has proven its worth in determining novel structures and recording sequential conformational changes of proteins at room temperature, especially for medically important membrane proteins, but it has never been applied to ABC transporters. In this study, 7.7 mono-acyl-glycerol with cholesterol as the host lipid was used and obtained well diffracting microcrystals of the 130 kDa CmABCB1 dimer. Successful SFX experiments were performed by adjusting the viscosity of the crystal suspension of the sponge phase with hy-droxy-propyl methyl-cellulose and using the high-viscosity sample injector for data collection at the SACLA beamline. An outward-facing structure of CmABCB1 at a maximum resolution of 2.22 Å is reported, determined by SFX experiments with crystals formed in the lipidic cubic phase (LCP-SFX), which has never been applied to ABC transporters. In the type I crystal, CmABCB1 dimers interact with adjacent molecules via not only the nucleotide-binding domains but also the transmembrane domains (TMDs); such an interaction was not observed in the previous type II crystal. Although most parts of the structure are similar to those in the previous type II structure, the substrate-exit region of the TMD adopts a different configuration in the type I structure. This difference between the two types of structures reflects the flexibility of the substrate-exit region of CmABCB1, which might be essential for the smooth release of various substrates from the transporter.
Collapse
Affiliation(s)
- Dongqing Pan
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryo Oyama
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomomi Sato
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takanori Nakane
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryo Mizunuma
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Keita Matsuoka
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toru Nakatsu
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hiroaki Kato
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
4
|
Nass K, Bacellar C, Cirelli C, Dworkowski F, Gevorkov Y, James D, Johnson PJM, Kekilli D, Knopp G, Martiel I, Ozerov D, Tolstikova A, Vera L, Weinert T, Yefanov O, Standfuss J, Reiche S, Milne CJ. Pink-beam serial femtosecond crystallography for accurate structure-factor determination at an X-ray free-electron laser. IUCRJ 2021; 8:905-920. [PMID: 34804544 PMCID: PMC8562661 DOI: 10.1107/s2052252521008046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 05/25/2023]
Abstract
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables essentially radiation-damage-free macromolecular structure determination using microcrystals that are too small for synchrotron studies. However, SFX experiments often require large amounts of sample in order to collect highly redundant data where some of the many stochastic errors can be averaged out to determine accurate structure-factor amplitudes. In this work, the capability of the Swiss X-ray free-electron laser (SwissFEL) was used to generate large-bandwidth X-ray pulses [Δλ/λ = 2.2% full width at half-maximum (FWHM)], which were applied in SFX with the aim of improving the partiality of Bragg spots and thus decreasing sample consumption while maintaining the data quality. Sensitive data-quality indicators such as anomalous signal from native thaumatin micro-crystals and de novo phasing results were used to quantify the benefits of using pink X-ray pulses to obtain accurate structure-factor amplitudes. Compared with data measured using the same setup but using X-ray pulses with typical quasi-monochromatic XFEL bandwidth (Δλ/λ = 0.17% FWHM), up to fourfold reduction in the number of indexed diffraction patterns required to obtain similar data quality was achieved. This novel approach, pink-beam SFX, facilitates the yet underutilized de novo structure determination of challenging proteins at XFELs, thereby opening the door to more scientific breakthroughs.
Collapse
Affiliation(s)
- Karol Nass
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Camila Bacellar
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Claudio Cirelli
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Florian Dworkowski
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Yaroslav Gevorkov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Daniel James
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | | | - Demet Kekilli
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Gregor Knopp
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Isabelle Martiel
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Dmitry Ozerov
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Alexandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Laura Vera
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Tobias Weinert
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Jörg Standfuss
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Sven Reiche
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | | |
Collapse
|
5
|
Heavy Atom Detergent/Lipid Combined X-ray Crystallography for Elucidating the Structure-Function Relationships of Membrane Proteins. MEMBRANES 2021; 11:membranes11110823. [PMID: 34832053 PMCID: PMC8625833 DOI: 10.3390/membranes11110823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 02/03/2023]
Abstract
Membrane proteins reside in the lipid bilayer of biomembranes and the structure and function of these proteins are closely related to their interactions with lipid molecules. Structural analyses of interactions between membrane proteins and lipids or detergents that constitute biological or artificial model membranes are important for understanding the functions and physicochemical properties of membrane proteins and biomembranes. Determination of membrane protein structures is much more difficult when compared with that of soluble proteins, but the development of various new technologies has accelerated the elucidation of the structure-function relationship of membrane proteins. This review summarizes the development of heavy atom derivative detergents and lipids that can be used for structural analysis of membrane proteins and their interactions with detergents/lipids, including their application with X-ray free-electron laser crystallography.
Collapse
|
6
|
Murakawa T, Suzuki M, Arima T, Sugahara M, Tanaka T, Tanaka R, Iwata S, Nango E, Tono K, Hayashi H, Fukui K, Yano T, Tanizawa K, Okajima T. Microcrystal preparation for serial femtosecond X-ray crystallography of bacterial copper amine oxidase. Acta Crystallogr F Struct Biol Commun 2021; 77:356-363. [PMID: 34605440 PMCID: PMC8488853 DOI: 10.1107/s2053230x21008967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/28/2021] [Indexed: 11/10/2022] Open
Abstract
Recent advances in serial femtosecond X-ray crystallography (SFX) using X-ray free-electron lasers have paved the way for determining radiation-damage-free protein structures under nonfreezing conditions. However, the large-scale preparation of high-quality microcrystals of uniform size is a prerequisite for SFX, and this has been a barrier to its widespread application. Here, a convenient method for preparing high-quality microcrystals of a bacterial quinoprotein enzyme, copper amine oxidase from Arthrobacter globiformis, is reported. The method consists of the mechanical crushing of large crystals (5-15 mm3), seeding the crushed crystals into the enzyme solution and standing for 1 h at an ambient temperature of ∼26°C, leading to the rapid formation of microcrystals with a uniform size of 3-5 µm. The microcrystals diffracted X-rays to a resolution beyond 2.0 Å in SFX measurements at the SPring-8 Angstrom Compact Free Electron Laser facility. The damage-free structure determined at 2.2 Å resolution was essentially identical to that determined previously by cryogenic crystallography using synchrotron X-ray radiation.
Collapse
Affiliation(s)
- Takeshi Murakawa
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Mamoru Suzuki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshi Arima
- SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Michihiro Sugahara
- SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomoyuki Tanaka
- SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rie Tanaka
- SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - So Iwata
- SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Eriko Nango
- SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Kensuke Tono
- SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Hideyuki Hayashi
- Department of Chemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Kenji Fukui
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Katsuyuki Tanizawa
- Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Toshihide Okajima
- Department of Chemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
- Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
7
|
Nass K, Cheng R, Vera L, Mozzanica A, Redford S, Ozerov D, Basu S, James D, Knopp G, Cirelli C, Martiel I, Casadei C, Weinert T, Nogly P, Skopintsev P, Usov I, Leonarski F, Geng T, Rappas M, Doré AS, Cooke R, Nasrollahi Shirazi S, Dworkowski F, Sharpe M, Olieric N, Bacellar C, Bohinc R, Steinmetz MO, Schertler G, Abela R, Patthey L, Schmitt B, Hennig M, Standfuss J, Wang M, Milne CJ. Advances in long-wavelength native phasing at X-ray free-electron lasers. IUCRJ 2020; 7:965-975. [PMID: 33209311 PMCID: PMC7642782 DOI: 10.1107/s2052252520011379] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/19/2020] [Indexed: 05/31/2023]
Abstract
Long-wavelength pulses from the Swiss X-ray free-electron laser (XFEL) have been used for de novo protein structure determination by native single-wavelength anomalous diffraction (native-SAD) phasing of serial femtosecond crystallography (SFX) data. In this work, sensitive anomalous data-quality indicators and model proteins were used to quantify improvements in native-SAD at XFELs such as utilization of longer wavelengths, careful experimental geometry optimization, and better post-refinement and partiality correction. Compared with studies using shorter wavelengths at other XFELs and older software versions, up to one order of magnitude reduction in the required number of indexed images for native-SAD was achieved, hence lowering sample consumption and beam-time requirements significantly. Improved data quality and higher anomalous signal facilitate so-far underutilized de novo structure determination of challenging proteins at XFELs. Improvements presented in this work can be used in other types of SFX experiments that require accurate measurements of weak signals, for example time-resolved studies.
Collapse
Affiliation(s)
- Karol Nass
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Robert Cheng
- LeadXpro AG, Park InnovAARE, Villigen, 5234, Switzerland
| | - Laura Vera
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Aldo Mozzanica
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Sophie Redford
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Dmitry Ozerov
- Science IT, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Shibom Basu
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Daniel James
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Gregor Knopp
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Claudio Cirelli
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Isabelle Martiel
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Cecilia Casadei
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Przemyslaw Nogly
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Wolfgang-Pauli-Strasse 27, Zürich, 8093, Switzerland
| | - Petr Skopintsev
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
- Department of Biology, ETH Zürich, Wolfgang-Pauli-Strasse 27, Zürich, 8093, Switzerland
| | - Ivan Usov
- Science IT, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Filip Leonarski
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Tian Geng
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Mathieu Rappas
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Andrew S. Doré
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Robert Cooke
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | | | - Florian Dworkowski
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - May Sharpe
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Camila Bacellar
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Rok Bohinc
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Michel O. Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
- Biozentrum, University of Basel, Basel, 4056, Switzerland
| | - Gebhard Schertler
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
- Department of Biology, ETH Zürich, Wolfgang-Pauli-Strasse 27, Zürich, 8093, Switzerland
| | - Rafael Abela
- LeadXpro AG, Park InnovAARE, Villigen, 5234, Switzerland
| | - Luc Patthey
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Bernd Schmitt
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Michael Hennig
- LeadXpro AG, Park InnovAARE, Villigen, 5234, Switzerland
| | - Jörg Standfuss
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Meitian Wang
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Christopher J. Milne
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| |
Collapse
|
8
|
A Perspective on Molecular Structure and Bond-Breaking in Radiation Damage in Serial Femtosecond Crystallography. CRYSTALS 2020. [DOI: 10.3390/cryst10070585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
X-ray free-electron lasers (XFELs) have a unique capability for time-resolved studies of protein dynamics and conformational changes on femto- and pico-second time scales. The extreme intensity of X-ray pulses can potentially cause significant modifications to the sample structure during exposure. Successful time-resolved XFEL crystallography depends on the unambiguous interpretation of the protein dynamics of interest from the effects of radiation damage. Proteins containing relatively heavy elements, such as sulfur or metals, have a higher risk for radiation damage. In metaloenzymes, for example, the dynamics of interest usually occur at the metal centers, which are also hotspots for damage due to the higher atomic number of the elements they contain. An ongoing challenge with such local damage is to understand the residual bonding in these locally ionized systems and bond-breaking dynamics. Here, we present a perspective on radiation damage in XFEL experiments with a particular focus on the impacts for time-resolved protein crystallography. We discuss recent experimental and modelling results of bond-breaking and ion motion at disulfide bonding sites in protein crystals.
Collapse
|
9
|
Brewster AS, Bhowmick A, Bolotovsky R, Mendez D, Zwart PH, Sauter NK. SAD phasing of XFEL data depends critically on the error model. Acta Crystallogr D Struct Biol 2019; 75:959-968. [PMID: 31692470 PMCID: PMC6834081 DOI: 10.1107/s2059798319012877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/17/2019] [Indexed: 11/11/2022] Open
Abstract
A nonlinear least-squares method for refining a parametric expression describing the estimated errors of reflection intensities in serial crystallographic (SX) data is presented. This approach, which is similar to that used in the rotation method of crystallographic data collection at synchrotrons, propagates error estimates from photon-counting statistics to the merged data. Here, it is demonstrated that the application of this approach to SX data provides better SAD phasing ability, enabling the autobuilding of a protein structure that had previously failed to be built. Estimating the error in the merged reflection intensities requires the understanding and propagation of all of the sources of error arising from the measurements. One type of error, which is well understood, is the counting error introduced when the detector counts X-ray photons. Thus, if other types of random errors (such as readout noise) as well as uncertainties in systematic corrections (such as from X-ray attenuation) are completely understood, they can be propagated along with the counting error, as appropriate. In practice, most software packages propagate as much error as they know how to model and then include error-adjustment terms that scale the error estimates until they explain the variance among the measurements. If this is performed carefully, then during SAD phasing likelihood-based approaches can make optimal use of these error estimates, increasing the chance of a successful structure solution. In serial crystallography, SAD phasing has remained challenging, with the few examples of de novo protein structure solution each requiring many thousands of diffraction patterns. Here, the effects of different methods of treating the error estimates are estimated and it is shown that using a parametric approach that includes terms proportional to the known experimental uncertainty, the reflection intensity and the squared reflection intensity to improve the error estimates can allow SAD phasing even from weak zinc anomalous signal.
Collapse
Affiliation(s)
- Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Robert Bolotovsky
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Derek Mendez
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Petrus H. Zwart
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Zatsepin NA, Li C, Colasurd P, Nannenga BL. The complementarity of serial femtosecond crystallography and MicroED for structure determination from microcrystals. Curr Opin Struct Biol 2019; 58:286-293. [PMID: 31345629 DOI: 10.1016/j.sbi.2019.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 11/19/2022]
Abstract
In recent years, nano and microcrystals have emerged as a valuable source of high-resolution structural information owing to the invention of serial femtosecond crystallography (SFX) with X-ray free electron lasers and microcrystal electron diffraction (MicroED) using electron cryomicroscopes. Once considered useless for structure determination, nano/microcrystals now confer significant advantages for static and time-resolved structure determination from a wide variety of difficult-to-study targets. MicroED has been used to obtain sub-Ångstrom resolution maps in which hydrogen atoms can be clearly resolved from only a few nano/microcrystals, while SFX has been used to probe protein dynamics following reaction initiation on time scales from femtoseconds to minutes. We review these two complementary techniques and their abilities for high-resolution structure determination.
Collapse
Affiliation(s)
- Nadia A Zatsepin
- Department of Physics, Arizona State University, P.O. Box 871504, Tempe, AZ 85287, USA
| | - Chufeng Li
- Department of Physics, Arizona State University, P.O. Box 871504, Tempe, AZ 85287, USA
| | - Paige Colasurd
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Brent L Nannenga
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
11
|
Guo G, Zhu P, Fuchs MR, Shi W, Andi B, Gao Y, Hendrickson WA, McSweeney S, Liu Q. Synchrotron microcrystal native-SAD phasing at a low energy. IUCRJ 2019; 6:532-542. [PMID: 31316798 PMCID: PMC6608635 DOI: 10.1107/s2052252519004536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/03/2019] [Indexed: 05/31/2023]
Abstract
De novo structural evaluation of native biomolecules from single-wavelength anomalous diffraction (SAD) is a challenge because of the weakness of the anomalous scattering. The anomalous scattering from relevant native elements - primarily sulfur in proteins and phospho-rus in nucleic acids - increases as the X-ray energy decreases toward their K-edge transitions. Thus, measurements at a lowered X-ray energy are promising for making native SAD routine and robust. For microcrystals with sizes less than 10 µm, native-SAD phasing at synchrotron microdiffraction beamlines is even more challenging because of difficulties in sample manipulation, diffraction data collection and data analysis. Native-SAD analysis from microcrystals by using X-ray free-electron lasers has been demonstrated but has required use of thousands of thousands of microcrystals to achieve the necessary accuracy. Here it is shown that by exploitation of anomalous microdiffraction signals obtained at 5 keV, by the use of polyimide wellmounts, and by an iterative crystal and frame-rejection method, microcrystal native-SAD phasing is possible from as few as about 1 200 crystals. Our results show the utility of low-energy native-SAD phasing with microcrystals at synchrotron microdiffraction beamlines.
Collapse
Affiliation(s)
- Gongrui Guo
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ping Zhu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Martin R. Fuchs
- Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Wuxian Shi
- Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Babak Andi
- Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yuan Gao
- Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Wayne A. Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Sean McSweeney
- Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
12
|
Abstract
X-ray free-electron lasers provide femtosecond-duration pulses of hard X-rays with a peak brightness approximately one billion times greater than is available at synchrotron radiation facilities. One motivation for the development of such X-ray sources was the proposal to obtain structures of macromolecules, macromolecular complexes, and virus particles, without the need for crystallization, through diffraction measurements of single noncrystalline objects. Initial explorations of this idea and of outrunning radiation damage with femtosecond pulses led to the development of serial crystallography and the ability to obtain high-resolution structures of small crystals without the need for cryogenic cooling. This technique allows the understanding of conformational dynamics and enzymatics and the resolution of intermediate states in reactions over timescales of 100 fs to minutes. The promise of more photons per atom recorded in a diffraction pattern than electrons per atom contributing to an electron micrograph may enable diffraction measurements of single molecules, although challenges remain.
Collapse
Affiliation(s)
- Henry N. Chapman
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, 22761 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
13
|
Abstract
G protein-coupled receptors (GPCRs) represent a large superfamily of membrane proteins that mediate cell signaling and regulate a variety of physiological processes in the human body. Structure-function studies of this superfamily were enabled a decade ago by multiple breakthroughs in technology that included receptor stabilization, crystallization in a membrane environment, and microcrystallography. The recent emergence of X-ray free-electron lasers (XFELs) has further accelerated structural studies of GPCRs and other challenging proteins by overcoming radiation damage and providing access to high-resolution structures and dynamics using micrometer-sized crystals. Here, we summarize key technology advancements and major milestones of GPCR research using XFELs and provide a brief outlook on future developments in the field.
Collapse
Affiliation(s)
- Benjamin Stauch
- Department of Chemistry and Bridge Institute, University of Southern California, Los Angeles, California 90089, USA; ,
| | - Vadim Cherezov
- Department of Chemistry and Bridge Institute, University of Southern California, Los Angeles, California 90089, USA; ,
| |
Collapse
|
14
|
Two-colour serial femtosecond crystallography dataset from gadoteridol-derivatized lysozyme for MAD phasing. Sci Data 2017; 4:170188. [PMID: 29231920 PMCID: PMC5726314 DOI: 10.1038/sdata.2017.188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/10/2017] [Indexed: 11/15/2022] Open
Abstract
We provide a detailed description of a gadoteridol-derivatized lysozyme (gadolinium lysozyme) two-colour serial femtosecond crystallography (SFX) dataset for multiple wavelength anomalous dispersion (MAD) structure determination. The data was collected at the Spring-8 Angstrom Compact free-electron LAser (SACLA) facility using a two-colour double-pulse beam to record two diffraction patterns simultaneously in one diffraction image. Gadolinium lysozyme was chosen as a well-established model system that has a very strong anomalous signal. Diffraction patterns from gadolinium lysozyme microcrystals were recorded to a resolution of 1.9 Å in both colours. This dataset is publicly available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development.
Collapse
|
15
|
Mizohata E, Nakane T, Fukuda Y, Nango E, Iwata S. Serial femtosecond crystallography at the SACLA: breakthrough to dynamic structural biology. Biophys Rev 2017; 10:209-218. [PMID: 29196935 DOI: 10.1007/s12551-017-0344-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
X-ray crystallography visualizes the world at the atomic level. It has been used as the most powerful technique for observing the three-dimensional structures of biological macromolecules and has pioneered structural biology. To determine a crystal structure with high resolution, it was traditionally required to prepare large crystals (> 200 μm). Later, synchrotron radiation facilities, such as SPring-8, that produce powerful X-rays were built. They enabled users to obtain good quality X-ray diffraction images even with smaller crystals (ca. 200-50 μm). In recent years, one of the most important technological innovations in structural biology has been the development of X-ray free electron lasers (XFELs). The SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan generates the XFEL beam by accelerating electrons to relativistic speeds and directing them through in-vacuum, short-period undulators. Since user operation started in 2012, we have been involved in the development of serial femtosecond crystallography (SFX) measurement systems using XFEL at the SACLA. The SACLA generates X-rays a billion times brighter than SPring-8. The extremely bright XFEL pulses enable data collection with microcrystals (ca. 50-1 μm). Although many molecular analysis techniques exist, SFX is the only technique that can visualize radiation-damage-free structures of biological macromolecules at room temperature in atomic resolution and fast time resolution. Here, we review the achievements of the SACLA-SFX Project in the past 5 years. In particular, we focus on: (1) the measurement system for SFX; (2) experimental phasing by SFX; (3) enzyme chemistry based on damage-free room-temperature structures; and (4) molecular movie taken by time-resolved SFX.
Collapse
Affiliation(s)
- Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 OQH, UK
| | - Yohta Fukuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
16
|
X-ray free electron laser: opportunities for drug discovery. Essays Biochem 2017; 61:529-542. [PMID: 29118098 DOI: 10.1042/ebc20170031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 01/16/2023]
Abstract
Past decades have shown the impact of structural information derived from complexes of drug candidates with their protein targets to facilitate the discovery of safe and effective medicines. Despite recent developments in single particle cryo-electron microscopy, X-ray crystallography has been the main method to derive structural information. The unique properties of X-ray free electron laser (XFEL) with unmet peak brilliance and beam focus allow X-ray diffraction data recording and successful structure determination from smaller and weaker diffracting crystals shortening timelines in crystal optimization. To further capitalize on the XFEL advantage, innovations in crystal sample delivery for the X-ray experiment, data collection and processing methods are required. This development was a key contributor to serial crystallography allowing structure determination at room temperature yielding physiologically more relevant structures. Adding the time resolution provided by the femtosecond X-ray pulse will enable monitoring and capturing of dynamic processes of ligand binding and associated conformational changes with great impact to the design of candidate drug compounds.
Collapse
|
17
|
Gorel A, Motomura K, Fukuzawa H, Doak RB, Grünbein ML, Hilpert M, Inoue I, Kloos M, Kovácsová G, Nango E, Nass K, Roome CM, Shoeman RL, Tanaka R, Tono K, Joti Y, Yabashi M, Iwata S, Foucar L, Ueda K, Barends TRM, Schlichting I. Multi-wavelength anomalous diffraction de novo phasing using a two-colour X-ray free-electron laser with wide tunability. Nat Commun 2017; 8:1170. [PMID: 29079797 PMCID: PMC5660077 DOI: 10.1038/s41467-017-00754-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022] Open
Abstract
Serial femtosecond crystallography at X-ray free-electron lasers (XFELs) offers unprecedented possibilities for macromolecular structure determination of systems prone to radiation damage. However, de novo structure determination, i.e., without prior structural knowledge, is complicated by the inherent inaccuracy of serial femtosecond crystallography data. By its very nature, serial femtosecond crystallography data collection entails shot-to-shot fluctuations in X-ray wavelength and intensity as well as variations in crystal size and quality that must be averaged out. Hence, to obtain accurate diffraction intensities for de novo phasing, large numbers of diffraction patterns are required, and, concomitantly large volumes of sample and long X-ray free-electron laser beamtimes. Here we show that serial femtosecond crystallography data collected using simultaneous two-colour X-ray free-electron laser pulses can be used for multiple wavelength anomalous dispersion phasing. The phase angle determination is significantly more accurate than for single-colour phasing. We anticipate that two-colour multiple wavelength anomalous dispersion phasing will enhance structure determination of difficult-to-phase proteins at X-ray free-electron lasers. X-ray free-electron lasers produce bright femtosecond X-ray pulses. Here, the authors use a two-colour X-ray free-electron laser beam for simultaneous two-wavelength data collection and show that protein structures can be determined with multiple wavelength anomalous dispersion phasing, which is important for difficult-to-phase projects.
Collapse
Affiliation(s)
- Alexander Gorel
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Koji Motomura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan.,RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan
| | - Hironobu Fukuzawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan.,RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan
| | - R Bruce Doak
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Marie Luise Grünbein
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Mario Hilpert
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Ichiro Inoue
- RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan
| | - Marco Kloos
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Gabriela Kovácsová
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Eriko Nango
- RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Karol Nass
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Christopher M Roome
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Robert L Shoeman
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Rie Tanaka
- RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan
| | - So Iwata
- RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Lutz Foucar
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan.,RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan
| | - Thomas R M Barends
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany.
| |
Collapse
|
18
|
Olczak A, Cianci M. The signal-to-noise ratio in SAD experiments. CRYSTALLOGR REV 2017. [DOI: 10.1080/0889311x.2017.1386182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Andrzej Olczak
- Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
19
|
Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons. Nat Commun 2017; 8:542. [PMID: 28912485 PMCID: PMC5599499 DOI: 10.1038/s41467-017-00630-4] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022] Open
Abstract
Historically, room-temperature structure determination was succeeded by cryo-crystallography to mitigate radiation damage. Here, we demonstrate that serial millisecond crystallography at a synchrotron beamline equipped with high-viscosity injector and high frame-rate detector allows typical crystallographic experiments to be performed at room-temperature. Using a crystal scanning approach, we determine the high-resolution structure of the radiation sensitive molybdenum storage protein, demonstrate soaking of the drug colchicine into tubulin and native sulfur phasing of the human G protein-coupled adenosine receptor. Serial crystallographic data for molecular replacement already converges in 1,000–10,000 diffraction patterns, which we collected in 3 to maximally 82 minutes. Compared with serial data we collected at a free-electron laser, the synchrotron data are of slightly lower resolution, however fewer diffraction patterns are needed for de novo phasing. Overall, the data we collected by room-temperature serial crystallography are of comparable quality to cryo-crystallographic data and can be routinely collected at synchrotrons. Serial crystallography was developed for protein crystal data collection with X-ray free-electron lasers. Here the authors present several examples which show that serial crystallography using high-viscosity injectors can also be routinely employed for room-temperature data collection at synchrotrons.
Collapse
|
20
|
Yamashita K, Kuwabara N, Nakane T, Murai T, Mizohata E, Sugahara M, Pan D, Masuda T, Suzuki M, Sato T, Kodan A, Yamaguchi T, Nango E, Tanaka T, Tono K, Joti Y, Kameshima T, Hatsui T, Yabashi M, Manya H, Endo T, Kato R, Senda T, Kato H, Iwata S, Ago H, Yamamoto M, Yumoto F, Nakatsu T. Experimental phase determination with selenomethionine or mercury-derivatization in serial femtosecond crystallography. IUCRJ 2017; 4:639-647. [PMID: 28989719 PMCID: PMC5619855 DOI: 10.1107/s2052252517008557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/08/2017] [Indexed: 05/31/2023]
Abstract
Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) holds enormous potential for the structure determination of proteins for which it is difficult to produce large and high-quality crystals. SFX has been applied to various systems, but rarely to proteins that have previously unknown structures. Consequently, the majority of previously obtained SFX structures have been solved by the molecular replacement method. To facilitate protein structure determination by SFX, it is essential to establish phasing methods that work efficiently for SFX. Here, selenomethionine derivatization and mercury soaking have been investigated for SFX experiments using the high-energy XFEL at the SPring-8 Angstrom Compact Free-Electron Laser (SACLA), Hyogo, Japan. Three successful cases are reported of single-wavelength anomalous diffraction (SAD) phasing using X-rays of less than 1 Å wavelength with reasonable numbers of diffraction patterns (13 000, 60 000 and 11 000). It is demonstrated that the combination of high-energy X-rays from an XFEL and commonly used heavy-atom incorporation techniques will enable routine de novo structural determination of biomacromolecules.
Collapse
Affiliation(s)
- Keitaro Yamashita
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Naoyuki Kuwabara
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Murai
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michihiro Sugahara
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Dongqing Pan
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tetsuya Masuda
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Mamoru Suzuki
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomomi Sato
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Atsushi Kodan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomohiro Yamaguchi
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takashi Kameshima
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takaki Hatsui
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Ryuichi Kato
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Hiroaki Kato
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideo Ago
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Fumiaki Yumoto
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Toru Nakatsu
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
21
|
Abstract
A synopsis of and prospects for de novo phasing using diffraction data collected at X-ray free-electron lasers are given.
Collapse
|
22
|
Johansson LC, Stauch B, Ishchenko A, Cherezov V. A Bright Future for Serial Femtosecond Crystallography with XFELs. Trends Biochem Sci 2017; 42:749-762. [PMID: 28733116 DOI: 10.1016/j.tibs.2017.06.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/12/2017] [Accepted: 06/20/2017] [Indexed: 11/19/2022]
Abstract
X-ray free electron lasers (XFELs) have the potential to revolutionize macromolecular structural biology due to the unique combination of spatial coherence, extreme peak brilliance, and short duration of X-ray pulses. A recently emerged serial femtosecond (fs) crystallography (SFX) approach using XFEL radiation overcomes some of the biggest hurdles of traditional crystallography related to radiation damage through the diffraction-before-destruction principle. Intense fs XFEL pulses enable high-resolution room-temperature structure determination of difficult-to-crystallize biological macromolecules, while simultaneously opening a new era of time-resolved structural studies. Here, we review the latest developments in instrumentation, sample delivery, data analysis, crystallization methods, and applications of SFX to important biological questions, and conclude with brief insights into the bright future of structural biology using XFELs.
Collapse
Affiliation(s)
- Linda C Johansson
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089-3303, USA
| | - Benjamin Stauch
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089-3303, USA
| | - Andrii Ishchenko
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089-3303, USA
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089-3303, USA.
| |
Collapse
|
23
|
Spence JCH. XFELs for structure and dynamics in biology. IUCRJ 2017; 4:322-339. [PMID: 28875020 PMCID: PMC5571796 DOI: 10.1107/s2052252517005760] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/17/2017] [Indexed: 05/20/2023]
Abstract
The development and application of the free-electron X-ray laser (XFEL) to structure and dynamics in biology since its inception in 2009 are reviewed. The research opportunities which result from the ability to outrun most radiation-damage effects are outlined, and some grand challenges are suggested. By avoiding the need to cool samples to minimize damage, the XFEL has permitted atomic resolution imaging of molecular processes on the 100 fs timescale under near-physiological conditions and in the correct thermal bath in which molecular machines operate. Radiation damage, comparisons of XFEL and synchrotron work, single-particle diffraction, fast solution scattering, pump-probe studies on photosensitive proteins, mix-and-inject experiments, caged molecules, pH jump and other reaction-initiation methods, and the study of molecular machines are all discussed. Sample-delivery methods and data-analysis algorithms for the various modes, from serial femtosecond crystallo-graphy to fast solution scattering, fluctuation X-ray scattering, mixing jet experiments and single-particle diffraction, are also reviewed.
Collapse
Affiliation(s)
- J. C. H. Spence
- Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| |
Collapse
|
24
|
Sugahara M, Nakane T, Masuda T, Suzuki M, Inoue S, Song C, Tanaka R, Nakatsu T, Mizohata E, Yumoto F, Tono K, Joti Y, Kameshima T, Hatsui T, Yabashi M, Nureki O, Numata K, Nango E, Iwata S. Hydroxyethyl cellulose matrix applied to serial crystallography. Sci Rep 2017; 7:703. [PMID: 28386083 PMCID: PMC5429652 DOI: 10.1038/s41598-017-00761-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/13/2017] [Indexed: 11/24/2022] Open
Abstract
Serial femtosecond crystallography (SFX) allows structures of proteins to be determined at room temperature with minimal radiation damage. A highly viscous matrix acts as a crystal carrier for serial sample loading at a low flow rate that enables the determination of the structure, while requiring consumption of less than 1 mg of the sample. However, a reliable and versatile carrier matrix for a wide variety of protein samples is still elusive. Here we introduce a hydroxyethyl cellulose-matrix carrier, to determine the structure of three proteins. The de novo structure determination of proteinase K from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of the praseodymium atom was demonstrated using 3,000 diffraction images.
Collapse
Affiliation(s)
- Michihiro Sugahara
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuya Masuda
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Mamoru Suzuki
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeyuki Inoue
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Changyong Song
- Department of Physics, POSTECH, Pohang, 37673, Republic of Korea
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Toru Nakatsu
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumiaki Yumoto
- Structural Biology Research Center, KEK High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Takashi Kameshima
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Takaki Hatsui
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Keiji Numata
- Enzyme Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
25
|
Abstract
The intense X-ray pulses from free-electron lasers, of only femtoseconds duration, outrun most of the processes that lead to structural degradation in X-ray exposures of macromolecules. Using these sources it is therefore possible to increase the dose to macromolecular crystals by several orders of magnitude higher than usually tolerable in conventional measurements, allowing crystal size to be decreased dramatically in diffraction measurements and without the need to cool the sample. Such pulses lead to the eventual vaporization of the sample, which has required a measurement approach, called serial crystallography, of consolidating snapshot diffraction patterns of many individual crystals. This in turn has further separated the connection between dose and obtainable diffraction information, with the only requirement from a single pattern being that to give enough information to place it, in three-dimensional reciprocal space, in relation to other patterns. Millions of extremely weak patterns can be collected and combined in this way, requiring methods to rapidly replenish the sample into the beam while generating the lowest possible background . The method is suited to time-resolved measurements over timescales below 1 ps to several seconds, and opens new opportunities for phasing. Some straightforward considerations of achievable signal levels are discussed and compared with a wide variety of recent experiments carried out at XFEL, synchrotron, and even laboratory sources, to discuss the capabilities of these new approaches and give some perspectives on their further development.
Collapse
Affiliation(s)
- Henry N Chapman
- Center for Free-Electron Laser Science, DESY, Hamburg, 22607, Germany.
- Department of Physics, University of Hamburg, Hamburg, 22607, Germany.
- The Centre for Ultrafast Imaging, University of Hamburg, Hamburg, 22607, Germany.
| |
Collapse
|
26
|
Liu Q, Hendrickson WA. Contemporary Use of Anomalous Diffraction in Biomolecular Structure Analysis. Methods Mol Biol 2017; 1607:377-399. [PMID: 28573582 DOI: 10.1007/978-1-4939-7000-1_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The normal elastic X-ray scattering that depends only on electron density can be modulated by an "anomalous" component due to resonance between X-rays and electronic orbitals. Anomalous scattering thereby precisely identifies atomic species, since orbitals distinguish atomic elements, which enables the multi- and single-wavelength anomalous diffraction (MAD and SAD) methods. SAD now predominates in de novo structure determination of biological macromolecules, and we focus here on the prevailing SAD method. We describe the anomalous phasing theory and the periodic table of phasing elements that are available for SAD experiments, differentiating between those readily accessible for at-resonance experiments and those that can be effective away from an edge. We describe procedures for present-day SAD phasing experiments and we discuss optimization of anomalous signals for challenging applications. We also describe methods for using anomalous signals as molecular markers for tracing and element identification. Emerging developments and perspectives are discussed in brief.
Collapse
Affiliation(s)
- Qun Liu
- Biology Department, Brookhaven National Laboratory, PO Box 5000, 50 Bell Ave, Building 463, Upton, NY, 11973, USA.
| | - Wayne A Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, 202 Black Building, 650 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
27
|
Hasegawa K, Yamashita K, Murai T, Nuemket N, Hirata K, Ueno G, Ago H, Nakatsu T, Kumasaka T, Yamamoto M. Development of a dose-limiting data collection strategy for serial synchrotron rotation crystallography. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:29-41. [PMID: 28009544 PMCID: PMC5182019 DOI: 10.1107/s1600577516016362] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/13/2016] [Indexed: 05/22/2023]
Abstract
Serial crystallography, in which single-shot diffraction images are collected, has great potential for protein microcrystallography. Although serial femtosecond crystallography (SFX) has been successfully demonstrated, limited beam time prevents its routine use. Inspired by SFX, serial synchrotron crystallography (SSX) has been investigated at synchrotron macromolecular crystallography beamlines. Unlike SFX, the longer exposure time of milliseconds to seconds commonly used in SSX causes radiation damage. However, in SSX, crystals can be rotated during the exposure, which can achieve efficient coverage of the reciprocal space. In this study, mercury single-wavelength anomalous diffraction (Hg-SAD) phasing of the luciferin regenerating enzyme (LRE) was performed using serial synchrotron rotation crystallography. The advantages of rotation and influence of dose on the data collected were evaluated. The results showed that sample rotation was effective for accurate data collection, and the optimum helical rotation step depended on multiple factors such as multiplicity and partiality of reflections, exposure time per rotation angle and the contribution from background scattering. For the LRE microcrystals, 0.25° was the best rotation step for the achievable resolution limit, whereas a rotation step larger than or equal to 1° was favorable for Hg-SAD phasing. Although an accumulated dose beyond 1.1 MGy caused specific damage at the Hg site, increases in resolution and anomalous signal were observed up to 3.4 MGy because of a higher signal-to-noise ratio.
Collapse
Affiliation(s)
- Kazuya Hasegawa
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo 679-5198, Japan
| | | | - Tomohiro Murai
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Nipawan Nuemket
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo 679-5198, Japan
| | - Kunio Hirata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo 679-5148, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Go Ueno
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo 679-5148, Japan
| | - Hideo Ago
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo 679-5148, Japan
| | - Toru Nakatsu
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo 679-5148, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo 679-5148, Japan
| | | |
Collapse
|
28
|
Abstract
AbstractIn 1912, Max von Laue and collaborators first observed diffraction spots from a millimeter-sized crystal of copper sulfate using an X-ray tube. Crystallography was born of this experiment, and since then, diffraction by both X-rays and electrons has revealed a myriad of inorganic and organic structures, including structures of complex protein assemblies. Advancements in X-ray sources have spurred a revolution in structure determination, facilitated by the development of new methods. This review explores some of the frontier methods that are shaping the future of X-ray diffraction, including coherent diffractive imaging, serial femtosecond X-ray crystallography and small-angle X-ray scattering. Collectively, these methods expand the current limits of structure determination in biological systems across multiple length and time scales.
Collapse
|
29
|
Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser. Nat Commun 2016; 7:13388. [PMID: 27811937 PMCID: PMC5097167 DOI: 10.1038/ncomms13388] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/28/2016] [Indexed: 01/08/2023] Open
Abstract
Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity and wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs. X-ray free electron lasers are increasingly available for use in macromolecular structure determination. Here, the authors describe the successful use of selenium single-wavelength anomalous diffraction data to calculate experimentally derived phases.
Collapse
|
30
|
Membrane protein structure determination by SAD, SIR, or SIRAS phasing in serial femtosecond crystallography using an iododetergent. Proc Natl Acad Sci U S A 2016; 113:13039-13044. [PMID: 27799539 DOI: 10.1073/pnas.1602531113] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 3D structure determination of biological macromolecules by X-ray crystallography suffers from a phase problem: to perform Fourier transformation to calculate real space density maps, both intensities and phases of structure factors are necessary; however, measured diffraction patterns give only intensities. Although serial femtosecond crystallography (SFX) using X-ray free electron lasers (XFELs) has been steadily developed since 2009, experimental phasing still remains challenging. Here, using 7.0-keV (1.771 Å) X-ray pulses from the SPring-8 Angstrom Compact Free Electron Laser (SACLA), iodine single-wavelength anomalous diffraction (SAD), single isomorphous replacement (SIR), and single isomorphous replacement with anomalous scattering (SIRAS) phasing were performed in an SFX regime for a model membrane protein bacteriorhodopsin (bR). The crystals grown in bicelles were derivatized with an iodine-labeled detergent heavy-atom additive 13a (HAD13a), which contains the magic triangle, I3C head group with three iodine atoms. The alkyl tail was essential for binding of the detergent to the surface of bR. Strong anomalous and isomorphous difference signals from HAD13a enabled successful phasing using reflections up to 2.1-Å resolution from only 3,000 and 4,000 indexed images from native and derivative crystals, respectively. When more images were merged, structure solution was possible with data truncated at 3.3-Å resolution, which is the lowest resolution among the reported cases of SFX phasing. Moreover, preliminary SFX experiment showed that HAD13a successfully derivatized the G protein-coupled A2a adenosine receptor crystallized in lipidic cubic phases. These results pave the way for de novo structure determination of membrane proteins, which often diffract poorly, even with the brightest XFEL beams.
Collapse
|
31
|
Phosphorus SAD Phasing for Nucleic Acid Structures: Limitations and Potential. CRYSTALS 2016. [DOI: 10.3390/cryst6100125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Batyuk A, Galli L, Ishchenko A, Han GW, Gati C, Popov PA, Lee MY, Stauch B, White TA, Barty A, Aquila A, Hunter MS, Liang M, Boutet S, Pu M, Liu ZJ, Nelson G, James D, Li C, Zhao Y, Spence JCH, Liu W, Fromme P, Katritch V, Weierstall U, Stevens RC, Cherezov V. Native phasing of x-ray free-electron laser data for a G protein-coupled receptor. SCIENCE ADVANCES 2016; 2:e1600292. [PMID: 27679816 PMCID: PMC5035125 DOI: 10.1126/sciadv.1600292] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 08/01/2016] [Indexed: 05/23/2023]
Abstract
Serial femtosecond crystallography (SFX) takes advantage of extremely bright and ultrashort pulses produced by x-ray free-electron lasers (XFELs), allowing for the collection of high-resolution diffraction intensities from micrometer-sized crystals at room temperature with minimal radiation damage, using the principle of "diffraction-before-destruction." However, de novo structure factor phase determination using XFELs has been difficult so far. We demonstrate the ability to solve the crystallographic phase problem for SFX data collected with an XFEL using the anomalous signal from native sulfur atoms, leading to a bias-free room temperature structure of the human A2A adenosine receptor at 1.9 Å resolution. The advancement was made possible by recent improvements in SFX data analysis and the design of injectors and delivery media for streaming hydrated microcrystals. This general method should accelerate structural studies of novel difficult-to-crystallize macromolecules and their complexes.
Collapse
Affiliation(s)
- Alexander Batyuk
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Lorenzo Galli
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Andrii Ishchenko
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.; Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Gye Won Han
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.; Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Cornelius Gati
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Petr A Popov
- Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA.; Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia.; Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ming-Yue Lee
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.; Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Benjamin Stauch
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.; Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Thomas A White
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Andrew Aquila
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Mengning Liang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Mengchen Pu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Jie Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.; iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Garrett Nelson
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Daniel James
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Chufeng Li
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Yun Zhao
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - John C H Spence
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Wei Liu
- Center for Applied Structural Discovery at the Biodesign Institute, School of Molecular Sciences, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
| | - Petra Fromme
- Center for Applied Structural Discovery at the Biodesign Institute, School of Molecular Sciences, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA
| | - Vsevolod Katritch
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.; Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA.; Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Raymond C Stevens
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.; Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA.; Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.; iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Vadim Cherezov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.; Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA.; Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia.; Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.; Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
33
|
Ginn HM, Evans G, Sauter NK, Stuart DI. On the release of cppxfel for processing X-ray free-electron laser images. J Appl Crystallogr 2016; 49:1065-1072. [PMID: 27275149 PMCID: PMC4886992 DOI: 10.1107/s1600576716006981] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
As serial femtosecond crystallography expands towards a variety of delivery methods, including chip-based methods, and smaller collected data sets, the requirement to optimize the data analysis to produce maximum structure quality is becoming increasingly pressing. Here cppxfel, a software package primarily written in C++, which showcases several data analysis techniques, is released. This software package presently indexes images using DIALS (diffraction integration for advanced light sources) and performs an initial orientation matrix refinement, followed by post-refinement of individual images against a reference data set. Cppxfel is released with the hope that the unique and useful elements of this package can be repurposed for existing software packages. However, as released, it produces high-quality crystal structures and is therefore likely to be also useful to experienced users of X-ray free-electron laser (XFEL) software who wish to maximize the information extracted from a limited number of XFEL images.
Collapse
Affiliation(s)
- Helen Mary Ginn
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, Oxfordshire OX3 7BN, UK
| | - Gwyndaf Evans
- Diamond House, Harwell Science and Innovation Campus, Fermi Avenue, Didcot, Oxfordshire OX11 QX, UK
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - David Ian Stuart
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, Oxfordshire OX3 7BN, UK
- Diamond House, Harwell Science and Innovation Campus, Fermi Avenue, Didcot, Oxfordshire OX11 QX, UK
| |
Collapse
|
34
|
Nakane T, Joti Y, Tono K, Yabashi M, Nango E, Iwata S, Ishitani R, Nureki O. Data processing pipeline for serial femtosecond crystallography at SACLA. J Appl Crystallogr 2016; 49:1035-1041. [PMID: 27275146 PMCID: PMC4886989 DOI: 10.1107/s1600576716005720] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/06/2016] [Indexed: 11/10/2022] Open
Abstract
A data processing pipeline for serial femtosecond crystallography at SACLA was developed, based on Cheetah [Barty et al. (2014). J. Appl. Cryst.47, 1118-1131] and CrystFEL [White et al. (2016). J. Appl. Cryst.49, 680-689]. The original programs were adapted for data acquisition through the SACLA API, thread and inter-node parallelization, and efficient image handling. The pipeline consists of two stages: The first, online stage can analyse all images in real time, with a latency of less than a few seconds, to provide feedback on hit rate and detector saturation. The second, offline stage converts hit images into HDF5 files and runs CrystFEL for indexing and integration. The size of the filtered compressed output is comparable to that of a synchrotron data set. The pipeline enables real-time feedback and rapid structure solution during beamtime.
Collapse
Affiliation(s)
- Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| |
Collapse
|
35
|
Hao Q. De novo phasing with optimized XFEL data. IUCRJ 2016; 3:161-2. [PMID: 27158501 PMCID: PMC4856137 DOI: 10.1107/s2052252516006758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nass et al. [IUCrJ (2016), 3, 180-191] have demonstrated that serial femtosecond crystallography (SFX) data collected at X-ray free-electron lasers (XFELs) can be successfully phased using only the weak anomalous scattering from the native S atoms.
Collapse
Affiliation(s)
- Quan Hao
- School of Biomedical Sciences, L04-48 Laboratory Block, University of Hong Kong, 21 Sassoon Road, Hong Kong
| |
Collapse
|
36
|
Nass K, Meinhart A, Barends TRM, Foucar L, Gorel A, Aquila A, Botha S, Doak RB, Koglin J, Liang M, Shoeman RL, Williams G, Boutet S, Schlichting I. Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data. IUCRJ 2016; 3:180-91. [PMID: 27158504 PMCID: PMC4856140 DOI: 10.1107/s2052252516002980] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/18/2016] [Indexed: 05/23/2023]
Abstract
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) offers unprecedented possibilities for macromolecular structure determination of systems that are prone to radiation damage. However, phasing XFEL data de novo is complicated by the inherent inaccuracy of SFX data, and only a few successful examples, mostly based on exceedingly strong anomalous or isomorphous difference signals, have been reported. Here, it is shown that SFX data from thaumatin microcrystals can be successfully phased using only the weak anomalous scattering from the endogenous S atoms. Moreover, a step-by-step investigation is presented of the particular problems of SAD phasing of SFX data, analysing data from a derivative with a strong anomalous signal as well as the weak signal from endogenous S atoms.
Collapse
Affiliation(s)
- Karol Nass
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Anton Meinhart
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Thomas R. M. Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Lutz Foucar
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Alexander Gorel
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Andrew Aquila
- European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg, Germany
| | - Sabine Botha
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - R. Bruce Doak
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Jason Koglin
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Mengning Liang
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Robert L. Shoeman
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Garth Williams
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Sebastien Boutet
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ilme Schlichting
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Oil-free hyaluronic acid matrix for serial femtosecond crystallography. Sci Rep 2016; 6:24484. [PMID: 27087008 PMCID: PMC4834484 DOI: 10.1038/srep24484] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/30/2016] [Indexed: 11/08/2022] Open
Abstract
The grease matrix was originally introduced as a microcrystal-carrier for serial femtosecond crystallography and has been expanded to applications for various types of proteins, including membrane proteins. However, the grease-based matrix has limited application for oil-sensitive proteins. Here we introduce a grease-free, water-based hyaluronic acid matrix. Applications for proteinase K and lysozyme proteins were able to produce electron density maps at 2.3-Å resolution.
Collapse
|
38
|
Rose JP, Wang BC. SAD phasing: History, current impact and future opportunities. Arch Biochem Biophys 2016; 602:80-94. [PMID: 27036852 DOI: 10.1016/j.abb.2016.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 01/17/2023]
Abstract
Single wavelength anomalous diffraction (SAD) can trace its beginnings to the early 1950s. Researchers at the time recognized that SAD offers some unique features that might be advantageous for crystallographic phasing, despite the fact that at that time recording accurate SAD data was problematic. In this review we will follow the trail from those early days, highlighting key advances in the field and interpreting them in terms on how they stimulated continued phasing development that produced the theoretical foundation for the routine macromolecular structure determination by SAD today. The technological advances over the past three decades in both hardware and software, which played a significant role in making SAD phasing a 'first choice method', will also be described.
Collapse
Affiliation(s)
- John P Rose
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
39
|
Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography. Proc Natl Acad Sci U S A 2016; 113:2928-33. [PMID: 26929369 DOI: 10.1073/pnas.1517770113] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proton-coupled electron transfer (PCET), a ubiquitous phenomenon in biological systems, plays an essential role in copper nitrite reductase (CuNiR), the key metalloenzyme in microbial denitrification of the global nitrogen cycle. Analyses of the nitrite reduction mechanism in CuNiR with conventional synchrotron radiation crystallography (SRX) have been faced with difficulties, because X-ray photoreduction changes the native structures of metal centers and the enzyme-substrate complex. Using serial femtosecond crystallography (SFX), we determined the intact structures of CuNiR in the resting state and the nitrite complex (NC) state at 2.03- and 1.60-Å resolution, respectively. Furthermore, the SRX NC structure representing a transient state in the catalytic cycle was determined at 1.30-Å resolution. Comparison between SRX and SFX structures revealed that photoreduction changes the coordination manner of the substrate and that catalytically important His255 can switch hydrogen bond partners between the backbone carbonyl oxygen of nearby Glu279 and the side-chain hydroxyl group of Thr280. These findings, which SRX has failed to uncover, propose a redox-coupled proton switch for PCET. This concept can explain how proton transfer to the substrate is involved in intramolecular electron transfer and why substrate binding accelerates PCET. Our study demonstrates the potential of SFX as a powerful tool to study redox processes in metalloenzymes.
Collapse
|