1
|
Li X, Xie Q, Luo M, Chen X. Theoretical Insights into the Catalytic Oxidation of Phenols and Arylamines by Laccases via the Proton-Coupled Electron Transfer Mechanism. J Phys Chem B 2024; 128:8915-8926. [PMID: 39231121 DOI: 10.1021/acs.jpcb.4c04426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Laccases play a vital role in the degradation of toxic phenolic and aromatic amine compounds, generating considerable attention in ecological pollution remediation. However, the distinct mechanism of the laccase-catalyzed oxidation of phenols and arylamines remains unclear. Here, we examined the catalytic oxidation mechanisms of phenols and arylamines by Trametes versicolor (TvL) and Melanocarpus albomyces (MaL) laccases using molecular docking, quantum mechanics (QM), and QM/molecular mechanics (QM/MM) calculations. We docked four phenolic substrates, including 1,2-benzenediol, 2-propenylphenol, 2-methoxyhydroquinone, and 2-aminophenol, to TvL and identified their favorable reaction conformations, in which Asp206 of TvL plays an important role in binding substrates to promote the catalytic reactions. Based on the docking conformations, the QM and QM/MM calculations revealed that the oxidation reactions take place via a proton-coupled electron transfer mechanism, with proton transfer (PT) from the hydroxyl groups of substrates to the side chain of Asp206 and synchronous electron hopping from the aromatic ring of substrates to the type one copper (T1Cu) of TvL. For the MaL and 2,6-dimethoxyphenol interacting system, the oxidation reactions occur through a concerted double-proton-coupled electron transfer mechanism with a water-mediated indirect PT from the hydroxyl group of substrates to the conserved Glu235 and electron hopping from the substrate to T1Cu at the same time. The corresponding energy barriers change from 0.7 to 18.4 kcal/mol, indicating the different degradation rates of the phenols and arylamines by laccases. These findings provide insights into the oxidation mechanism of phenols and arylamines by laccases and may extend the applications of laccases.
Collapse
Affiliation(s)
- Xin Li
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Qiong Xie
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Mengshi Luo
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Xiaohua Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
2
|
Olmeda I, Paredes-Martínez F, Sendra R, Casino P, Pardo I, Ferrer S. Biochemical and Structural Characterization of a Novel Psychrophilic Laccase (Multicopper Oxidase) Discovered from Oenococcus oeni 229 (ENOLAB 4002). Int J Mol Sci 2024; 25:8521. [PMID: 39126090 PMCID: PMC11312515 DOI: 10.3390/ijms25158521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Recently, prokaryotic laccases from lactic acid bacteria (LAB), which can degrade biogenic amines, were discovered. A laccase enzyme has been cloned from Oenococcus oeni, a very important LAB in winemaking, and it has been expressed in Escherichia coli. This enzyme has similar characteristics to those previously isolated from LAB as the ability to oxidize canonical substrates such as 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,6-dimethoxyphenol (2,6-DMP), and potassium ferrocyanide K4[Fe(CN6)], and non-conventional substrates as biogenic amines. However, it presents some distinctiveness, the most characteristic being its psychrophilic behaviour, not seen before among these enzymes. Psychrophilic enzymes capable of efficient catalysis at low temperatures are of great interest due to their potential applications in various biotechnological processes. In this study, we report the discovery and characterization of a new psychrophilic laccase, a multicopper oxidase (MCO), from the bacterium Oenococcus oeni. The psychrophilic laccase gene, designated as LcOe 229, was identified through the genomic analysis of O. oeni, a Gram-positive bacterium commonly found in wine fermentation. The gene was successfully cloned and heterologously expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity. Biochemical characterization of the psychrophilic laccase revealed its optimal activity at low temperatures, with a peak at 10 °C. To our knowledge, this is the lowest optimum temperature described so far for laccases. Furthermore, the psychrophilic laccase demonstrated remarkable stability and activity at low pH (optimum pH 2.5 for ABTS), suggesting its potential for diverse biotechnological applications. The kinetic properties of LcOe 229 were determined, revealing a high catalytic efficiency (kcat/Km) for several substrates at low temperatures. This exceptional cold adaptation of LcOe 229 indicates its potential as a biocatalyst in cold environments or applications requiring low-temperature processes. The crystal structure of the psychrophilic laccase was determined using X-ray crystallography demonstrating structural features similar to other LAB laccases, such as an extended N-terminal and an extended C-terminal end, with the latter containing a disulphide bond. Also, the structure shows two Met residues at the entrance of the T1Cu site, common in LAB laccases, which we suggest could be involved in substrate binding, thus expanding the substrate-binding pocket for laccases. A structural comparison of LcOe 229 with Antarctic laccases has not revealed specific features assigned to cold-active laccases versus mesophilic. Thus, further investigation of this psychrophilic laccase and its engineering could lead to enhanced cold-active enzymes with improved properties for future biotechnological applications. Overall, the discovery of this novel psychrophilic laccase from O. oeni expands our understanding of cold-adapted enzymes and presents new opportunities for their industrial applications in cold environments.
Collapse
Affiliation(s)
- Isidoro Olmeda
- Enolab, Departament de Microbiologia i Ecologia, Universitat de València, 46100 Burjassot, Valencia, Spain; (I.O.); (S.F.)
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain;
| | - Francisco Paredes-Martínez
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Valencia, Spain;
| | - Ramón Sendra
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Valencia, Spain;
| | - Patricia Casino
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Valencia, Spain;
- Group 739 of the Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER) del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Pardo
- Enolab, Departament de Microbiologia i Ecologia, Universitat de València, 46100 Burjassot, Valencia, Spain; (I.O.); (S.F.)
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain;
| | - Sergi Ferrer
- Enolab, Departament de Microbiologia i Ecologia, Universitat de València, 46100 Burjassot, Valencia, Spain; (I.O.); (S.F.)
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain;
| |
Collapse
|
3
|
Kang J, Shin J, Gray HB, Winkler JR. Resonance Raman spectra of blue copper proteins: Variable temperature spectra of Thermus thermophilus HB27 laccase. J Inorg Biochem 2023; 248:112362. [PMID: 37657184 PMCID: PMC10529995 DOI: 10.1016/j.jinorgbio.2023.112362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
The resonance Raman (rR) spectra of the oxidized type 1 copper active site (CuT1) in Thermus thermophilus HB27 laccase (Tth-lac) has been determined in the 20 to 80 °C temperature range using 633-nm excitation. The positions and relative intensities of rR peaks are virtually independent of temperature, indicating that CuT1 ligation is robust over the investigated range. The intensity-weighted average of Tth-lac Cu-SCys vibrations (<ν(Cu-SCys)>) = 423 cm-1) is higher than those of most cupredoxins but is comparable to those of other multicopper oxidases (MCOs). <ν(Cu-SCys)> values for Tth-lac and several CuT1 centers in cupredoxins and MCOs do not correlate well with Cu-SCys bond lengths but do exhibit systematic trends with redox thermodynamic properties. PROLOGUE: F. Ann Walker was a great scholar and dear friend. While at Columbia in the early 1960s, I (HBG) followed her graduate work at Brown on the effects of axial ligands on vanadyl ion EPR spectra. Dick Carlin, her thesis adviser, invited me to serve as external member of her thesis committee. I joined, made my way to Providence, met her just before the exam, and greatly admired (enjoyed!) her thoughtful responses to questions from physical chemists about metal-oxo electronic structures. Our friendship grew stronger over the years, enhanced by lively discussions of heme protein chemistry in San Francisco, Pasadena, Tucson, and at Gordon Research Conferences. Ann was a superstar in biological inorganic chemistry. She will be sorely missed but not forgotten.
Collapse
Affiliation(s)
- Janice Kang
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jieun Shin
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
4
|
Ali M, Bhardwaj P, Ishqi HM, Shahid M, Islam A. Laccase Engineering: Redox Potential Is Not the Only Activity-Determining Feature in the Metalloproteins. Molecules 2023; 28:6209. [PMID: 37687038 PMCID: PMC10488915 DOI: 10.3390/molecules28176209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023] Open
Abstract
Laccase, one of the metalloproteins, belongs to the multicopper oxidase family. It oxidizes a wide range of substrates and generates water as a sole by-product. The engineering of laccase is important to broaden their industrial and environmental applications. The general assumption is that the low redox potential of laccases is the principal obstacle, as evidenced by their low activity towards certain substrates. Therefore, the primary goal of engineering laccases is to improve their oxidation capability, thereby increasing their redox potential. Even though some of the determinants of laccase are known, it is still not entirely clear how to enhance its redox potential. However, the laccase active site has additional characteristics that regulate the enzymes' activity and specificity. These include the electrostatic and hydrophobic environment of the substrate binding pocket, the steric effect at the substrate binding site, and the orientation of the binding substrate with respect to the T1 site of the laccase. In this review, these features of the substrate binding site will be discussed to highlight their importance as a target for future laccase engineering.
Collapse
Affiliation(s)
- Misha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (M.A.); (P.B.)
| | - Priyanka Bhardwaj
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (M.A.); (P.B.)
| | - Hassan Mubarak Ishqi
- Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL 33136, USA;
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (M.A.); (P.B.)
| |
Collapse
|
5
|
Shelley KL, Garman EF. Quantifying and comparing radiation damage in the Protein Data Bank. Nat Commun 2022; 13:1314. [PMID: 35288575 PMCID: PMC8921271 DOI: 10.1038/s41467-022-28934-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/18/2022] [Indexed: 11/09/2022] Open
Abstract
Radiation damage remains one of the major bottlenecks to accurate structure solution in protein crystallography. It can induce structural and chemical changes in protein crystals, and is hence an important consideration when assessing the quality and biological veracity of crystal structures in repositories like the Protein Data Bank (PDB). However, detection of radiation damage artefacts has traditionally proved very challenging. To address this, here we introduce the Bnet metric. Bnet summarises in a single value the extent of damage suffered by a crystal structure by comparing the B-factor values of damage-prone and non-damage-prone atoms in a similar local environment. After validating that Bnet successfully detects damage in 23 different crystal structures previously characterised as damaged, we calculate Bnet values for 93,978 PDB crystal structures. Our metric highlights a range of damage features, many of which would remain unidentified by the other summary statistics typically calculated for PDB structures.
Collapse
Affiliation(s)
- Kathryn L Shelley
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom.
| | - Elspeth F Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
6
|
Santo AAE, Lazaroti VHR, Feliciano GT. Multidimensional redox potential/p Ka coupling in multicopper oxidases from molecular dynamics: implications for the proton transfer mechanism. Phys Chem Chem Phys 2021; 23:27348-27354. [PMID: 34854859 DOI: 10.1039/d1cp03095g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bilirubin oxidases (BOD) are metalloenzymes that catalyze the conversion of O2 and bilirubin to biliverdin and water in the metabolism of chlorophyll and porphyrin. In this work we have used the CpHMD method to analyze the effects of the different oxidation states on the BOD trinuclear cluster (TNC). Our results demonstrate that there is a link between the different oxidation states of copper ions and the protonation capacity of nearby titratable residues. Each configuration affects pKa differently, creating proton gradients within the enzyme that act in an extremely orderly manner. This order is closely linked to the catalytic mechanism and leads us to the conclusion of the entry of the O2 molecule and its reduction in water molecules is associated with the probability of the release of protons from nearby acid groups. With this information, we deduce that under the initial reaction conditions the acidic side chains of nearby residues can be protonated; this allows the enzyme to reduce the activation energy of the reaction by coupling the proton transfer to oxidation state changes in the metallic center.
Collapse
Affiliation(s)
- Anderson A E Santo
- Enginerring, Physics and Mathematics Department, São Paulo State University (Unesp), Institute of Chemistry, Araraquara, Brazil.
| | - Vitor Hugo R Lazaroti
- Enginerring, Physics and Mathematics Department, São Paulo State University (Unesp), Institute of Chemistry, Araraquara, Brazil.
| | - Gustavo T Feliciano
- Enginerring, Physics and Mathematics Department, São Paulo State University (Unesp), Institute of Chemistry, Araraquara, Brazil.
| |
Collapse
|
7
|
Miranda-Blancas R, Avelar M, Rodriguez-Arteaga A, Sinicropi A, Rudiño-Piñera E. The β-hairpin from the Thermus thermophilus HB27 laccase works as a pH-dependent switch to regulate laccase activity. J Struct Biol 2021; 213:107740. [PMID: 33962016 DOI: 10.1016/j.jsb.2021.107740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
The multi-copper oxidase from the hyper-thermophilic bacteria Thermus thermophilus (Tth-MCO), has been previously characterized and described as an example of a laccase with low catalytic properties, especially when it is compared with the activity of fungal laccases, but it is active at high temperatures. Structurally, Tth-MCO has a unique feature: a β-hairpin near the T1Cu site, which is not present in any other laccases deposited at the PDB. This β-hairpin has an expected crystallographic behavior in solvent-exposed areas of a crystallized protein: lack of electron density, high B-values and several crystalline contacts with neighboring crystallographic copies; however, its dynamical behavior in solution and its biological implications have not been described. Here, we describe four new Tth-MCO crystallographic structures, and the β-hairpin behavior has been analyzed by molecular dynamics simulations, considering the effect of pH and temperature. The β-hairpin new crystallographic conformations described here, together with their dynamics, were used to understand the pH-restrained laccase activity of Tth-MCO against substrates as syringaldazine. Remarkably, there are insertions in laccases from Thermus and Meiothermus genus, sharing the same position and a methionine-rich composition of the Tth-MCO β-hairpin. This unique high methionine content of the Tth-MCO β-hairpin is responsible to coordinate, Ag+1 and Hg+1 in oxidative conditions, but Cu+1 and Cu+2 are not coordinated in crystallographic experiments, regardless of the redox conditions; however, Ag+1 addition does not affect Tth-MCO laccase activity against syringaldazine. Here, we propose that the pH-dependent β-hairpin dynamical behavior could explain, at least in part, the inefficient laccase activity displayed by Tth-MCO in acidic pH values.
Collapse
Affiliation(s)
- R Miranda-Blancas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 2001 Universidad Av., Cuernavaca, Morelos 62210, Mexico; Instituto de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, 1001 Universidad Av., Cuernavaca, Morelos 62209, Mexico
| | - M Avelar
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - A Rodriguez-Arteaga
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 2001 Universidad Av., Cuernavaca, Morelos 62210, Mexico
| | - A Sinicropi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; Institute of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; CSGI, Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, Italy
| | - E Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 2001 Universidad Av., Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
8
|
Kumar A, Ahlawat S, Mohan H, Sharma KK. Stabilization-destabilization and redox properties of laccases from medicinal mushroom Ganoderma lucidum and human pathogen Yersinia enterocolitica. Int J Biol Macromol 2020; 167:369-381. [PMID: 33275974 DOI: 10.1016/j.ijbiomac.2020.11.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 02/01/2023]
Abstract
Laccases or benzenediol oxygen oxidoreductases (EC 1.10.3.2) are polyphenol multicopper oxidases that are known for their structural and functional diversity in various life forms. In the present study, the molecular and physico-chemical properties (redox-potential and secondary structures) of fungal laccase isozymes (FLIs) isolated from a medicinal mushroom Ganoderma lucidum were analyzed and compared with those of the recombinant bacterial laccases (rLac) obtained from different Yersinia enterocolitica strains. It was revealed that the FLIs contained His-Cys-His as the most conserved residue in its domain I Cu site, while the fourth and fifth residues were variable (Ile, Leu, or Phe). Evidently, the cyclic voltammetric measurements of Glac L2 at Type 1 Cu site revealed greater E° for ABTS/ABTS+ (0.312 V) and ABTS+/ABTS2+ (0.773 V) compared to the E° of rLac. Furthermore, circular dichroism-based conformational analysis revealed structural stability of the FLIs at acidic pH (3.0) and low temperature (<30 °C), while the isozymes were destabilized at neutral pH (7.0) and high-temperature conditions (>70 °C). The zymographic studies further confirmed the functional inactivation of FLIs at high temperatures (≥70 °C), predominantly due to domain unfolding. These findings provide novel insight into the evolution of the catalytic efficiency and redox properties of the FLIs, contributing to the existing knowledge regarding stress responses, metabolite production, and the biotechnological utilization of metabolites.
Collapse
Affiliation(s)
- Amit Kumar
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Shruti Ahlawat
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
9
|
Zhang Y, Lin DF, Hao J, Zhao ZH, Zhang YJ. The crucial role of bacterial laccases in the bioremediation of petroleum hydrocarbons. World J Microbiol Biotechnol 2020; 36:116. [PMID: 32661601 DOI: 10.1007/s11274-020-02888-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
Laccases (EC 1.10.3.2) are a class of metallo-oxidases found in a variety of fungi, plants, and bacteria as well as in certain insects. They can oxidize a wide variety of organic compounds and can be widely applied in many fields, especially in the field of biodegradation and detoxification of environmental pollutants. The practical efficacy of laccases depends on their ability to capture the target substance as well as their catalytic activity, which is related to their catalytic center, substrate selectivity, and substrate tolerance. Over the past few decades, many laccases have been identified in plants and fungi. Concurrently, bacterial laccases have received increasing attention because of their high thermostability and high tolerance to organic compounds. The aim of this review is to summarize the role of bacterial laccases in the bioremediation of petroleum hydrocarbons and to outline the correlation between the molecular structure of the mononuclear T1 Cu center of bacterial laccases and their substrate preference.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Dong-Fa Lin
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Jun Hao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Zhi-Hao Zhao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Ying-Jiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China. .,School of Life Science, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
10
|
Dasgupta R, Gupta KBSS, Nami F, de Groot HJM, Canters GW, Groenen EJJ, Ubbink M. Chemical Exchange at the Trinuclear Copper Center of Small Laccase from Streptomyces coelicolor. Biophys J 2020; 119:9-14. [PMID: 32531206 PMCID: PMC7335907 DOI: 10.1016/j.bpj.2020.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 01/05/2023] Open
Abstract
The trinuclear copper center (TNC) of laccase reduces oxygen to water with very little overpotential. The arrangement of the coppers and ligands in the TNC is known to be from many crystal structures, yet information about possible dynamics of the ligands is absent. Here, we report dynamics at the TNC of small laccase from Streptomyces coelicolor using paramagnetic NMR and electron paramagnetic resonance spectroscopy. Fermi contact-shifted resonances tentatively assigned to histidine Hδ1 display a two-state chemical exchange with exchange rates in the order of 100 s−1. In the electron paramagnetic resonance spectra, at least two forms are observed with different gz-values. It is proposed that the exchange processes reflect the rotational motion of histidine imidazole rings that coordinate the coppers in the TNC.
Collapse
Affiliation(s)
- Rubin Dasgupta
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Karthick B S S Gupta
- Huygens-Kammerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden, The Netherlands
| | - Faezeh Nami
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands; Huygens-Kammerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden, The Netherlands
| | - Huub J M de Groot
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Gerard W Canters
- Huygens-Kammerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden, The Netherlands
| | - Edgar J J Groenen
- Huygens-Kammerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden, The Netherlands
| | - Marcellus Ubbink
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
11
|
Zhu Y, Zhan J, Zhang Y, Lin Y, Yang X. The K428 residue from Thermus thermophilus SG0.5JP17-16 laccase plays the substantial role in substrate binding and oxidation. J Biomol Struct Dyn 2020; 39:1312-1320. [DOI: 10.1080/07391102.2020.1729864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yanyun Zhu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People’s Republic Of China
| | - Jiangbo Zhan
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People’s Republic Of China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People’s Republic Of China
| | - Ying Lin
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People’s Republic Of China
| | - Xiaorong Yang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People’s Republic Of China
| |
Collapse
|
12
|
Shin J, Gray HB, Winkler JR. Stability/activity tradeoffs in Thermusthermophilus HB27 laccase. J Biol Inorg Chem 2020; 25:233-238. [PMID: 31970489 DOI: 10.1007/s00775-020-01754-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/25/2019] [Indexed: 10/25/2022]
Abstract
We report the temperature dependence of the formal potential of type 1 copper (CuT1) in Thermusthermophilus HB27 laccase. Employing [Ru(NH3)4(bpy)](PF6)2 (0.505 vs. NHE) as the redox titrant, we found that the CuT12+/+ potential decreased from approximately 480 to 420 mV (vs. NHE) as the temperature was raised from 20 to 65 °C. Of importance is that the ΔSrc° of - 120 J mol-1 K-1 is substantially more negative than those for other blue copper proteins. We suggest that the highly unfavorable reduction entropy is attributable to CuT1 inaccessibility to the aqueous medium. Although the active site residues are buried, which is critical for maintaining thermostability, the flexibility around CuT1 is maintained, allowing enzyme activity at ambient temperature.
Collapse
Affiliation(s)
- Jieun Shin
- Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
13
|
Valles M, Kamaruddin AF, Wong LS, Blanford CF. Inhibition in multicopper oxidases: a critical review. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00724b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review critiques the literature on inhibition of O2-reduction catalysis in multicopper oxidases like laccase and bilirubin oxidase and provide recommendations for best practice when carrying out experiments and interpreting published data.
Collapse
Affiliation(s)
- Morgane Valles
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Chemistry
| | - Amirah F. Kamaruddin
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Materials
| | - Lu Shin Wong
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Chemistry
| | - Christopher F. Blanford
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Materials
| |
Collapse
|
14
|
Newton MA, Knorpp AJ, Meyet J, Stoian D, Nachtegaal M, Clark AH, Safonova OV, Emerich H, van Beek W, Sushkevich VL, van Bokhoven JA. Unwanted effects of X-rays in surface grafted copper(ii) organometallics and copper exchanged zeolites, how they manifest, and what can be done about them. Phys Chem Chem Phys 2020; 22:6826-6837. [DOI: 10.1039/d0cp00402b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Commonly applied powder densities at modern X-ray spectroscopy resources have the capacity to affect, in a deleterious manner, the results obtained from a measurement on copper(ii) containing materials.
Collapse
Affiliation(s)
- Mark A. Newton
- Department of Chemical and Bioengineering
- ETH Zurich
- Zurich
- Switzerland
| | - Amy J. Knorpp
- Department of Chemical and Bioengineering
- ETH Zurich
- Zurich
- Switzerland
| | - Jordan Meyet
- Department of Chemical and Bioengineering
- ETH Zurich
- Zurich
- Switzerland
| | | | | | | | | | | | | | | | - Jeroen A. van Bokhoven
- Department of Chemical and Bioengineering
- ETH Zurich
- Zurich
- Switzerland
- Paul Scherrer Institut
| |
Collapse
|
15
|
Hitaishi VP, Clément R, Quattrocchi L, Parent P, Duché D, Zuily L, Ilbert M, Lojou E, Mazurenko I. Interplay between Orientation at Electrodes and Copper Activation of Thermus thermophilus Laccase for O2 Reduction. J Am Chem Soc 2019; 142:1394-1405. [DOI: 10.1021/jacs.9b11147] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Vivek Pratap Hitaishi
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
- Aix Marseille Univ, CNRS, IMM FR 3479, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
| | - Romain Clément
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
- Aix Marseille Univ, CNRS, IMM FR 3479, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
| | - Ludovica Quattrocchi
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
- Aix Marseille Univ, CNRS, IMM FR 3479, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
| | - Philippe Parent
- Aix Marseille Univ, CNRS, CINAM UMR 7325, Campus de Luminy, 13288 Marseille, Cedex 09, France
| | - David Duché
- Aix Marseille Univ, Université de Toulon, CNRS, IM2NP UMR 7334, 13397 Marseille, France
| | - Lisa Zuily
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
- Aix Marseille Univ, CNRS, IMM FR 3479, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
| | - Marianne Ilbert
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
- Aix Marseille Univ, CNRS, IMM FR 3479, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
- Aix Marseille Univ, CNRS, IMM FR 3479, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
| | - Ievgen Mazurenko
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
- Aix Marseille Univ, CNRS, IMM FR 3479, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
| |
Collapse
|
16
|
Polyakov KM, Gavryushov S, Fedorova TV, Glazunova OA, Popov AN. The subatomic resolution study of laccase inhibition by chloride and fluoride anions using single-crystal serial crystallography: insights into the enzymatic reaction mechanism. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:804-816. [DOI: 10.1107/s2059798319010684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
Laccases are enzymes that catalyze the oxidation of a wide range of organic and inorganic substrates accompanied by the reduction of molecular oxygen to water. Here, a subatomic resolution X-ray crystallographic study of the mechanism of inhibition of the laccase from the basidiomycete fungus Steccherinum murashkinskyi by chloride and fluoride ions is presented. Three series of X-ray diffraction data sets were collected with increasing doses of absorbed X-ray radiation from a native S. murashkinskyi laccase crystal and from crystals of complexes of the laccase with chloride and fluoride ions. The data for the native laccase crystal confirmed the previously deduced enzymatic mechanism of molecular oxygen reduction. The structures of the complexes allowed the localization of chloride and fluoride ions in the channel near the T2 copper ion. These ions replace the oxygen ligand of the T2 copper ion in this channel and can play the role of this ligand in the enzymatic reaction. As follows from analysis of the structures from the increasing dose series, the inhibition of laccases by chloride and fluoride anions can be explained by the fact that the binding of these negatively charged ions at the position of the oxygen ligand of the T2 copper ion impedes the reduction of the T2 copper ion.
Collapse
|
17
|
Gabdulkhakov A, Kolyadenko I, Kostareva O, Mikhaylina A, Oliveira P, Tamagnini P, Lisov A, Tishchenko S. Investigations of Accessibility of T2/T3 Copper Center of Two-Domain Laccase from Streptomyces griseoflavus Ac-993. Int J Mol Sci 2019; 20:ijms20133184. [PMID: 31261802 PMCID: PMC6650940 DOI: 10.3390/ijms20133184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022] Open
Abstract
Laccases (EC 1.10.3.2) are multicopper oxidoreductases acting on diphenols and related substances. Laccases are highly important for biotechnology and environmental remediation. These enzymes contain mononuclear one T2 copper ion and two T3 copper ions (Cu3α and Cu3β), which form the so-called trinuclear center (TNC). Along with the typical three-domain laccases Bacteria produce two-domain (2D) enzymes, which are active at neutral and basic pH, thermostable, and resistant to inhibitors. In this work we present the comparative analysis of crystal structures and catalytic properties of recombinant 2D laccase from Streptomyces griseoflavus Ac-993 (SgfSL) and its four mutant forms with replacements of two amino acid residues, located at the narrowing of the presumable T3-solvent tunnels. We obtained inactive enzymes with substitutions of His165, with Phe, and Ile170 with Ala or Phe. His165Ala variant was more active than the wild type. We suggest that His165 is a “gateway” at the O2-tunnel leading from solvent to the Cu3β of the enzyme. The side chain of Ile170 could be indirectly involved in the coordination of copper ions at the T3 center by maintaining the position of the imidazole ring of His157 that belongs to the first coordination sphere of Cu3α.
Collapse
Affiliation(s)
- Azat Gabdulkhakov
- Institute of Protein Research RAS, Institutskaya 4, Pushchino, Moscow 142290, Russia
| | - Ilya Kolyadenko
- Institute of Protein Research RAS, Institutskaya 4, Pushchino, Moscow 142290, Russia
| | - Olga Kostareva
- Institute of Protein Research RAS, Institutskaya 4, Pushchino, Moscow 142290, Russia
| | - Alisa Mikhaylina
- Institute of Protein Research RAS, Institutskaya 4, Pushchino, Moscow 142290, Russia
| | - Paulo Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Paula Tamagnini
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Alexander Lisov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142292, Moscow Region, Russia
| | - Svetlana Tishchenko
- Institute of Protein Research RAS, Institutskaya 4, Pushchino, Moscow 142290, Russia.
| |
Collapse
|
18
|
Mukhopadhyay BP. Putative role of conserved water molecules in the hydration and inter-domain recognition of mono nuclear copper centers in O2-bound human ceruloplasmin: A comparative study between X-ray and MD simulated structures. Bioinformation 2019; 15:402-411. [PMID: 31312077 PMCID: PMC6614124 DOI: 10.6026/97320630015402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/02/2019] [Indexed: 11/23/2022] Open
Abstract
Human Ceruloplasmin (hCP) is an unique multicopper oxidase which involves in different biological functions e.g., iron metabolism, copper transportation, biogenic amine oxidation ,and its malfunction causes Wilson's and Menkes diseases. MD- simulation studies of O2- bound solvated structure have revealed the role of several conserved/ semi-conserved water molecules in the hydration of type-I copper centers and their involvement to recognition dynamics of these metal centers. In O2- bound structure, hydration potentiality of CuRS (Cu1106) type-I copper center is observed to be unique, where two water molecules (W1-W2) are interacting with the metal sites, which was not found in X-ray structures of hCP. Generally, in the interdomain recognition of CuCys-His to CuRS, CuRS to CuPR and CuPR to CuCys-His centers, the copper bound His-residue of one domain interacts with the Glu-residue of other complementary domain through conserved/ semi-conserved (W3 to W5) water- mediated hydrogen bonds (Cu-His...W...Glu), however direct salt-bridge (Cu-His...Glu) interaction were observed in the X- ray structures. The MD- simulated and X- ray structures have indicated some possibilities on the Cu-His...W...Glu ↔ Cu-His...Glu transition during the interdomain recognition of type-I copper centers, which may have some importance in biology and chemistry of ceruloplasmin.
Collapse
Affiliation(s)
- Bishnu P. Mukhopadhyay
- Department of Chemistry National Institute of Technology-Durgapur, West Bengal, Durgapur - 713209, India
| |
Collapse
|
19
|
Multicopper oxidases: Biocatalysts in microbial pathogenesis and stress management. Microbiol Res 2019; 222:1-13. [DOI: 10.1016/j.micres.2019.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/03/2019] [Accepted: 02/14/2019] [Indexed: 02/08/2023]
|
20
|
Zhu Y, Zhang Y, Zhan J, Lin Y, Yang X. Axial bonds at the T1 Cu site of Thermus thermophilus SG0.5JP17-16 laccase influence enzymatic properties. FEBS Open Bio 2019; 9:986-995. [PMID: 30964606 PMCID: PMC6487685 DOI: 10.1002/2211-5463.12633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 11/24/2022] Open
Abstract
Laccase is a multi‐copper oxidase which oxidizes substrate at the type 1 copper site, simultaneously coupling the reduction of dioxygen to water at the trinuclear copper center. In this study, we used site‐directed mutagenesis to study the effect of axial bonds between the metal and amino acid residue side chains in lacTT. Our kinetic and spectral data showed that the replacement of the axial residue with non‐coordinating residues resulted in higher efficiency (kcat/Km) and a lower Cu2+ population at the type 1 copper site, while substitution with strongly coordinating residues resulted in lower efficiency and a higher Cu2+ population, as compared with the wild‐type. The redox potentials of mutants with hydrophobic axial residues (Ala and Phe) were higher than that of the wild‐type. In conclusion, these insights into the catalytic mechanism of laccase may be of use in protein engineering to fine‐tune its enzymatic properties for industrial application.
Collapse
Affiliation(s)
- Yanyun Zhu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing TechnologySchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing TechnologySchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Jiangbo Zhan
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing TechnologySchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Ying Lin
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing TechnologySchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Xiaorong Yang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing TechnologySchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
21
|
Crystal structures of multicopper oxidase CueO G304K mutant: structural basis of the increased laccase activity. Sci Rep 2018; 8:14252. [PMID: 30250139 PMCID: PMC6155172 DOI: 10.1038/s41598-018-32446-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/05/2018] [Indexed: 01/13/2023] Open
Abstract
The multicopper oxidase CueO is involved in copper homeostasis and copper (Cu) tolerance in Escherichia coli. The laccase activity of CueO G304K mutant is higher than wild-type CueO. To explain this increase in activity, we solved the crystal structure of G304K mutant at 1.49 Å. Compared with wild-type CueO, the G304K mutant showed dramatic conformational changes in methionine-rich helix and the relative regulatory loop (R-loop). We further solved the structure of Cu-soaked enzyme, and found that the addition of Cu ions induced further conformational changes in the R-loop and methionine-rich helix as a result of the new Cu-binding sites on the enzyme's surface. We propose a mechanism for the enhanced laccase activity of the G304K mutant, where movements of the R-loop combined with the changes of the methionine-rich region uncover the T1 Cu site allowing greater access of the substrate. Two of the G304K double mutants showed the enhanced or decreased laccase activity, providing further evidence for the interaction between the R-loop and the methionine-rich region. The cuprous oxidase activity of these mutants was about 20% that of wild-type CueO. These structural features of the G304K mutant provide clues for designing specific substrate-binding mutants in the biotechnological applications.
Collapse
|
22
|
|
23
|
Abstract
![]()
Work on the electronic
structures of metal–oxo complexes
began in Copenhagen over 50 years ago. This work led to the prediction
that tetragonal multiply bonded transition metal–oxos would
not be stable beyond the iron–ruthenium–osmium oxo wall
in the periodic table and that triply bonded metal–oxos could
not be protonated, even in the strongest Brønsted acids. In this
theory, only double bonded metal–oxos could attract protons,
with basicities being a function of the electron donating ability
of ancillary ligands. Such correlations of electronic structure with
reactivity have gained importance in recent years, most notably owing
to the widespread recognition that high-valent iron–oxos are
intermediates in biological reactions critical to life on Earth. In this Account, we focus attention on the oxygenations of inert
organic substrates by cytochromes P450, as these reactions involve
multiply bonded iron–oxos. We emphasize that P450 iron–oxos
are strong oxidants, so strong that they would destroy nearby amino
acids if substrates are not oxygenated rapidly; it is our view that
these high-valent iron–oxos are such dangerous reactive oxygen
species that Nature surely found ways to disable them. Looking more
deeply into this matter, mainly by examining many thousands of structures
in the Protein Data Bank, we have found that P450s and other enzymes
that require oxygen for function have chains of tyrosines and tryptophans
that extend from active-site regions to protein surfaces. Tyrosines
are near the heme active sites in bacterial P450s, whereas tryptophan
is closest in most human enzymes. High-valent iron–oxo survival
times taken from hole hopping maps range from a few nanoseconds to
milliseconds, depending on the distance of the closest Trp or Tyr
residue to the heme. In our proposed mechanism, multistep hole tunneling
(hopping) through Tyr/Trp chains guides the damaging oxidizing hole
to the protein surface, where it can be quenched by soluble protein
or small molecule reductants. As the Earth’s oxygenic atmosphere
is believed to have developed about 2.5 billion years ago, the increase
in occurrence frequency of tyrosine and tryptophan since the last
universal evolutionary ancestor may be in part a consequence of enzyme
protective functions that developed to cope with the environmental
toxin, O2.
Collapse
Affiliation(s)
- Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Jay R. Winkler
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
24
|
Wherland S, Pecht I. Radiation chemists look at damage in redox proteins induced by X-rays. Proteins 2018; 86:817-826. [DOI: 10.1002/prot.25521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/26/2018] [Accepted: 04/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Scot Wherland
- Department of Chemistry; Washington State University; Pullman Washington
| | - Israel Pecht
- Department of Immunology; The Weizmann Institute of Science; Rehovot 76100 Israel
| |
Collapse
|
25
|
Four second-sphere residues of Thermus thermophilus SG0.5JP17-16 laccase tune the catalysis by hydrogen-bonding networks. Appl Microbiol Biotechnol 2018. [DOI: 10.1007/s00253-018-8875-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Kumari A, Kishor N, Guptasarma P. Characterization of a mildly alkalophilic and thermostable recombinant Thermus thermophilus laccase with applications in decolourization of dyes. Biotechnol Lett 2017; 40:285-295. [PMID: 29063287 DOI: 10.1007/s10529-017-2461-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/12/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine the potential for applications of TthLAC, a monomeric (~ 53 kDa) laccase encoded by the genome of Thermus thermophilus (strain HB 27) which can be produced at low cost in Escherichia coli. RESULT Functional, thermostable and mildly alkalophilic TthLAC of high purity (> 90%) was produced through simple heating of suspended (TthLAC overexpressing) E.coli cells at 65 °C. For reactions of short duration (< 1 h) the temperature for optimal activity is ~ 90 °C. However, TthLAC undergoes slow partial unfolding and thermal inactivation above 65 °C, making it unsuitable for long incubations above this temperature. With different substrates, optimal function was observed from pH 6 to 8. With the substrate, ABTS, catalytic efficiency (K m) and maximum velocity (Vmax) at 60 °C and pH 6.0 were determined to be 2.4 × 103 µM and 0.04 × 103 µM/min respectively. Ultra-pure, affinity-purified TthLAC was used to confirm and characterize the enzyme's ability to oxidize known (laccase) substrates such as ABTS, syringaldazine and 4-fluoro-2-methylphenol. TthLAC decoloured up to six different industrial dyes, with or without the use of redox mediators such as ABTS. CONCLUSIONS Unlike versatile laccases from most other sources, which tend to be thermolabile as well as acidophilic, TthLAC is a versatile, thermostable, mildly alkalophilic laccase which can be produced at low cost in E.coli for various redox applications.
Collapse
Affiliation(s)
- Arpana Kumari
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Nitin Kishor
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Purnananda Guptasarma
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
27
|
Polyakov KM, Gavryushov S, Ivanova S, Fedorova TV, Glazunova OA, Popov AN, Koroleva OV. Structural study of the X-ray-induced enzymatic reduction of molecular oxygen to water bySteccherinum murashkinskyilaccase: insights into the reaction mechanism. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:388-401. [DOI: 10.1107/s2059798317003667] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/07/2017] [Indexed: 01/07/2023]
Abstract
The laccase fromSteccherinum murashkinskyiis a member of the large family of multicopper oxidases that catalyze the oxidation of a wide range of organic and inorganic substrates, accompanied by the reduction of dioxygen to water. The reducing properties of X-ray radiation and the high quality of the laccase crystals allow the study of the catalytic reduction of dioxygen to water directly in a crystal. A series of diffraction data sets with increasing absorbed radiation dose were collected from a single crystal ofSteccherinum murashkinskyilaccase at 1.35 Å resolution. Changes in the active-site structure associated with the reduction of molecular oxygen to water on increasing the absorbed dose of ionizing radiation were detected. The structures in the series are mixtures of different states of the enzyme–substrate complex. Nevertheless, it was possible to interpret these structures as complexes of various oxygen ligands with copper ions in different oxidation states. The results allowed the mechanism of oxygen reduction catalyzed by laccases to be refined.
Collapse
|
28
|
Safarian S, Rajendran C, Müller H, Preu J, Langer JD, Ovchinnikov S, Hirose T, Kusumoto T, Sakamoto J, Michel H. Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases. Science 2016; 352:583-6. [PMID: 27126043 DOI: 10.1126/science.aaf2477] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/28/2016] [Indexed: 12/29/2022]
Abstract
The cytochrome bd oxidases are terminal oxidases that are present in bacteria and archaea. They reduce molecular oxygen (dioxygen) to water, avoiding the production of reactive oxygen species. In addition to their contribution to the proton motive force, they mediate viability under oxygen-related stress conditions and confer tolerance to nitric oxide, thus contributing to the virulence of pathogenic bacteria. Here we present the atomic structure of the bd oxidase from Geobacillus thermodenitrificans, revealing a pseudosymmetrical subunit fold. The arrangement and order of the heme cofactors support the conclusions from spectroscopic measurements that the cleavage of the dioxygen bond may be mechanistically similar to that in the heme-copper-containing oxidases, even though the structures are completely different.
Collapse
Affiliation(s)
- Schara Safarian
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt/Main, Germany
| | - Chitra Rajendran
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt/Main, Germany. Present address: Faculty of Biology and Preclinical Medicine, University of Regensburg, Universitätsstrasse 31, D-93051 Regensburg, Germany
| | - Hannelore Müller
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt/Main, Germany
| | - Julia Preu
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt/Main, Germany
| | - Julian D Langer
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt/Main, Germany. Present address: Department of Molecular Membrane Biology, Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, D-60438 Frankfurt/Main, Germany
| | | | - Taichiro Hirose
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka-ken 820-8502, Japan
| | - Tomoichirou Kusumoto
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka-ken 820-8502, Japan
| | - Junshi Sakamoto
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka-ken 820-8502, Japan
| | - Hartmut Michel
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt/Main, Germany.
| |
Collapse
|
29
|
Liu Z, Xie T, Zhong Q, Wang G. Crystal structure of CotA laccase complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) at a novel binding site. Acta Crystallogr F Struct Biol Commun 2016; 72:328-35. [PMID: 27050268 PMCID: PMC4822991 DOI: 10.1107/s2053230x1600426x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 03/13/2016] [Indexed: 01/13/2023] Open
Abstract
The CotA laccase from Bacillus subtilis is an abundant component of the spore outer coat and has been characterized as a typical laccase. The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) in a hole motif has been solved. The novel binding site was about 26 Å away from the T1 binding pocket. Comparison with known structures of other laccases revealed that the hole is a specific feature of CotA. The key residues Arg476 and Ser360 were directly bound to ABTS. Site-directed mutagenesis studies revealed that the residues Arg146, Arg429 and Arg476, which are located at the bottom of the novel binding site, are essential for the oxidation of ABTS and syringaldazine. Specially, a Thr480Phe variant was identified to be almost 3.5 times more specific for ABTS than for syringaldazine compared with the wild type. These results suggest this novel binding site for ABTS could be a potential target for protein engineering of CotA laccases.
Collapse
Affiliation(s)
- Zhongchuan Liu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
- Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of China
| | - Tian Xie
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
- Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of China
| | - Qiuping Zhong
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
- Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Ganggang Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
- Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of China
| |
Collapse
|