1
|
Chen H, Bykov M, Batyrev IG, Brüning L, Bykova E, Mahmood MF, Chariton S, Prakapenka VB, Fedotenko T, Glazyrin K, Mezouar M, Garbarino G, Steele A, Goncharov AF. Synthesis and Stability of High-Energy-Density Niobium Nitrides under High-Pressure Conditions. Inorg Chem 2025; 64:692-700. [PMID: 39707975 DOI: 10.1021/acs.inorgchem.4c03331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
High-energy-density materials (HEDMs) are crucial in various applications, from energy storage to defense technologies. Transition metal polynitrides are promising candidates for HEDMs. Using single-crystal synchrotron X-ray diffraction, we investigated the crystal structures of niobium nitride, specifically Nb2N3 and NbN2, under high-pressure conditions of up to 86 GPa. At higher pressures, niobium polynitrides NbN4 and NbN5 were observed to be stable from 100 to 120 GPa, which feature low-order nitrogen bonding. The low-order bonded nitrogen in NbN4 and NbN5 forms multiple polynitrogen anions at megabar pressure ranges. In the Nb-N system, we observed an increasing coordination number of metal-nitrogen as pressure increased. These structures were supported by density functional theory (DFT) calculations and Raman spectroscopy.
Collapse
Affiliation(s)
- Huawei Chen
- Department of Mathematics, Howard University, Washington D.C. 20059 United States
- The Earth and Planets Laboratory Carnegie Science, Washington D.C. 20015, United States
| | - Maxim Bykov
- Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Iskander G Batyrev
- U.S. Army DEVCOM Army Research Laboratory, FCDD-RLA-WA, Aberdeen Proving Ground, Maryland 21005 United States
| | - Lukas Brüning
- Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Elena Bykova
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| | - Mohammad F Mahmood
- Department of Mathematics, Howard University, Washington D.C. 20059 United States
| | - Stella Chariton
- Center for Advanced Radiation Sources, University of Chicago, Argonne, Illinois 60439, United States
| | - Vitali B Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, Argonne, Illinois 60439, United States
| | - Timofey Fedotenko
- Deutsches Elektronene-Synchrotron DESY Notkestr. 85, 22607 Hamburg, Germany
| | | | - Mohamed Mezouar
- European Synchrotron Radiation Facility Grenoble Cedex F-38043 France
| | - Gaston Garbarino
- European Synchrotron Radiation Facility Grenoble Cedex F-38043 France
| | - Andrew Steele
- The Earth and Planets Laboratory Carnegie Science, Washington D.C. 20015, United States
| | - Alexander F Goncharov
- The Earth and Planets Laboratory Carnegie Science, Washington D.C. 20015, United States
| |
Collapse
|
2
|
Bayarjargal L, Spahr D, Bykova E, Wang Y, Giordano N, Milman V, Winkler B. High-Pressure Synthesis of an Iron Carbonate, Fe 2[CO 3] 3. Inorg Chem 2024; 63:21637-21644. [PMID: 39466183 DOI: 10.1021/acs.inorgchem.4c03177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We synthesized an iron carbonate, Fe23+[CO3]3, by reacting Fe2O3 with CO2 at high temperatures and pressures of approximately 33(3) GPa. The structure was solved by single-crystal X-ray diffraction. Full geometry optimizations based on density functional theory reproduced the crystal structure. This compound crystallizes in the monoclinic space group P21/n. The characteristic feature of the Fe2[CO3]3-structure is the presence of 7- and 8-fold coordinated trivalent cations and noncoplanar [CO3]2- groups. The normals of the [CO3]2- groups point in four different directions. The bulk modulus of Fe2[CO3]3 is K0 = 138(34)GPa (when Kp is fixed to 4). While previous studies have shown that siderite, Fe2+CO3 decomposes at lower mantle conditions (pressures between 20 and 50 GPa and high temperatures), Fe23+[CO3]3 may be stable around 33(3) GPa and up to 2600(300) K. Iron carbonates with Fe3+ are therefore more likely present at lower mantle conditions than carbonates containing Fe2+.
Collapse
Affiliation(s)
- Lkhamsuren Bayarjargal
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany
| | - Dominik Spahr
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany
| | - Elena Bykova
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany
| | - Yu Wang
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany
| | - Nico Giordano
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Victor Milman
- Dassault Systèmes BIOVIA, 22 Cambridge Science Park, Cambridge CB4 0WN, United Kingdom
| | - Björn Winkler
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany
| |
Collapse
|
3
|
Spahr D, Bayarjargal L, Bykov M, Brüning L, Jurzick PL, Wang Y, Milman V, Refson K, Mezouar M, Winkler B. Ca 3[C 2O 5] 2[CO 3] is a pyrocarbonate which can be formed at p, T-conditions prevalent in the Earth's transition zone. Commun Chem 2024; 7:238. [PMID: 39433974 PMCID: PMC11494096 DOI: 10.1038/s42004-024-01293-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/30/2024] [Indexed: 10/23/2024] Open
Abstract
Understanding the fate of subducted carbonates is a prerequisite for the elucidation of the Earth's deep carbon cycle. Here we show that the concomitant presence of Ca[CO3] with CO2 in a subducting slab very likely results in the formation of an anhydrous mixed pyrocarbonate,Ca 3 C 2 O 5 2 CO 3 , at moderate pressure ( ≈ 20 GPa) and temperature ( ≈ 1500 K) conditions. We show that at these conditionsCa 3 C 2 O 5 2 CO 3 can be obtained by reacting Ca[CO3] with CO2 in a laser-heated diamond anvil cell. The crystal structure was obtained from synchrotron-based single crystal X-ray diffraction data. Density Functional Perturbation Theory calculations in combination with experimental Raman spectroscopy results unambiguously confirmed the structural model. The crystal structure ofCa 3 C 2 O 5 2 CO 3 is characterized by the presence ofCO 3 2 - - andC 2 O 5 2 - -groups. The results presented here imply that the formation ofCa 3 C 2 O 5 2 CO 3 needs to be taken into account when constructing models of the deep carbon cycle of the Earth.
Collapse
Affiliation(s)
- Dominik Spahr
- Goethe University Frankfurt, Institute of Geosciences, Altenhöferallee 1, 60438, Frankfurt, Germany.
| | - Lkhamsuren Bayarjargal
- Goethe University Frankfurt, Institute of Geosciences, Altenhöferallee 1, 60438, Frankfurt, Germany
| | - Maxim Bykov
- Goethe University Frankfurt, Institute of Inorganic and Analytical Chemistry, Max-von-Laue-Straße 7, 60438, Frankfurt, Germany
| | - Lukas Brüning
- Goethe University Frankfurt, Institute of Inorganic and Analytical Chemistry, Max-von-Laue-Straße 7, 60438, Frankfurt, Germany
| | - Pascal L Jurzick
- University of Cologne, Institute of Inorganic Chemistry, Greinstraße 6, 50939, Cologne, Germany
| | - Yu Wang
- Goethe University Frankfurt, Institute of Geosciences, Altenhöferallee 1, 60438, Frankfurt, Germany
| | - Victor Milman
- Dassault Systèmes BIOVIA, 22 Cambridge Science Park, Cambridge, CB4 0FJ, UK
| | - Keith Refson
- ISIS Facility, Science and Technology Facilities Council, Harwell Campus, Chilton, Didcot, Oxon OX11, UK
| | - Mohamed Mezouar
- European Synchrotron Radiation Facility ESRF, 71 avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - Björn Winkler
- Goethe University Frankfurt, Institute of Geosciences, Altenhöferallee 1, 60438, Frankfurt, Germany
| |
Collapse
|
4
|
Aslandukova A, Aslandukov A, Akbar FI, Yin Y, Trybel F, Hanfland M, Pakhomova A, Chariton S, Prakapenka V, Dubrovinskaia N, Dubrovinsky L. High-Pressure oC16-YBr 3 Polymorph Recoverable to Ambient Conditions: From 3D Framework to Layered Material. Inorg Chem 2024; 63:15611-15618. [PMID: 38953784 DOI: 10.1021/acs.inorgchem.4c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Exfoliation of graphite and the discovery of the unique properties of graphene─graphite's single layer─have raised significant attention to layered compounds as potential precursors to 2D materials with applications in optoelectronics, spintronics, sensors, and solar cells. In this work, a new orthorhombic polymorph of yttrium bromide, oC16-YBr3 was synthesized from yttrium and CBr4 in a laser-heated diamond anvil cell at 45 GPa and 3000 K. The structure of oC16-YBr3 was solved and refined using in situ synchrotron single-crystal X-ray diffraction. At high pressure, it can be described as a 3D framework of YBr9 polyhedra, but upon decompression below 15 GPa, the structure motif changes to layered, with layers comprising edge-sharing YBr8 polyhedra weakly bonded by van der Waals interactions. The layered oC16-YBr3 material can be recovered to ambient conditions, and according to Perdew-Burke-Ernzerhof-density functional theory calculations, it exhibits semiconductor properties with a band gap that is highly sensitive to pressure. This polymorph possesses a low exfoliation energy of 0.30 J/m2. Our results expand the list of layered trivalent rare-earth metal halides and provide insights into how high pressure alters their structural motifs and physical properties.
Collapse
Affiliation(s)
- Alena Aslandukova
- Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440 Bayreuth, Germany
| | - Andrey Aslandukov
- Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440 Bayreuth, Germany
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
| | - Fariia Iasmin Akbar
- Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440 Bayreuth, Germany
| | - Yuqing Yin
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Florian Trybel
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Michael Hanfland
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex, France
| | - Anna Pakhomova
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex, France
| | - Stella Chariton
- Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, United States
| | - Vitali Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, United States
| | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Leonid Dubrovinsky
- Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
5
|
Aslandukov A, Liang A, Ehn A, Trybel F, Yin Y, Aslandukova A, Akbar FI, Ranieri U, Spender J, Howie RT, Bright EL, Wright J, Hanfland M, Garbarino G, Mezouar M, Fedotenko T, Abrikosov IA, Dubrovinskaia N, Dubrovinsky L, Laniel D. Synthesis of LaCN 3, TbCN 3, CeCN 5, and TbCN 5 Polycarbonitrides at Megabar Pressures. J Am Chem Soc 2024; 146:18161-18171. [PMID: 38916483 PMCID: PMC11229003 DOI: 10.1021/jacs.4c06068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024]
Abstract
Inorganic ternary metal-C-N compounds with covalently bonded C-N anions encompass important classes of solids such as cyanides and carbodiimides, well known at ambient conditions and composed of [CN]- and [CN2]2- anions, as well as the high-pressure formed guanidinates featuring [CN3]5- anion. At still higher pressures, carbon is expected to be 4-fold coordinated by nitrogen atoms, but hitherto, such CN4-built anions are missing. In this study, four polycarbonitride compounds (LaCN3, TbCN3, CeCN5, and TbCN5) are synthesized in laser-heated diamond anvil cells at pressures between 90 and 111 GPa. Synchrotron single-crystal X-ray diffraction (SCXRD) reveals that their crystal structures are built of a previously unobserved anionic single-bonded carbon-nitrogen three-dimensional (3D) framework consisting of CN4 tetrahedra connected via di- or oligo-nitrogen linkers. A crystal-chemical analysis demonstrates that these polycarbonitride compounds have similarities to lanthanide silicon phosphides. Decompression experiments reveal the existence of LaCN3 and CeCN5 compounds over a very large pressure range. Density functional theory (DFT) supports these discoveries and provides further insight into the stability and physical properties of the synthesized compounds.
Collapse
Affiliation(s)
- Andrey Aslandukov
- Bavarian
Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440 Bayreuth, Germany
- Material
Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
| | - Akun Liang
- Centre
for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, EH9 3FD Edinburgh, United Kingdom
| | - Amanda Ehn
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Florian Trybel
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Yuqing Yin
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Alena Aslandukova
- Bavarian
Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440 Bayreuth, Germany
| | - Fariia I. Akbar
- Bavarian
Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440 Bayreuth, Germany
| | - Umbertoluca Ranieri
- Centre
for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, EH9 3FD Edinburgh, United Kingdom
| | - James Spender
- Centre
for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, EH9 3FD Edinburgh, United Kingdom
| | - Ross T. Howie
- Centre
for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, EH9 3FD Edinburgh, United Kingdom
| | | | - Jonathan Wright
- European
Synchrotron Radiation Facility, 38000 Grenoble, France
| | | | | | - Mohamed Mezouar
- European
Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Timofey Fedotenko
- Photon Science,
Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - Igor A. Abrikosov
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Natalia Dubrovinskaia
- Material
Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Leonid Dubrovinsky
- Bavarian
Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440 Bayreuth, Germany
| | - Dominique Laniel
- Centre
for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, EH9 3FD Edinburgh, United Kingdom
| |
Collapse
|
6
|
Ambach SJ, Krach G, Bykova E, Witthaut K, Giordano N, Bykov M, Schnick W. Building Nitridic Networks with Phosphorus and Germanium-from Ge IIP 2N 4 to Ge IVPN 3. Inorg Chem 2024; 63:8502-8509. [PMID: 38657029 DOI: 10.1021/acs.inorgchem.4c01202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nitridophosphates and nitridogermanates attract high interest in current research due to their structural versatility. Herein, the elastic properties of GeP2N4 were investigated by single-crystal X-ray diffraction (XRD) upon compression to 44.4(1) GPa in a diamond anvil cell. Its isothermal bulk modulus was determined to be 82(6) GPa. At 44.4(1) GPa, laser heating resulted in the formation of multiple crystalline phases, one of which was identified as unprecedented germanium nitridophosphate GePN3. Its structure was elucidated from single-crystal XRD data (C2/c (no. 15), a = 8.666(5), b = 8.076(4), c = 4.691(2) Å, β = 101.00(7)°) and is built up from layers of GeN6 octahedra and PN4 tetrahedra. The GeN6 octahedra form double zigzag chains, while the PN4 tetrahedra are found in single zigzag chains. GePN3 can be recovered to ambient conditions with a unit cell volume increase of about 12%. It combines PV and GeIV in a condensed nitridic network for the first time.
Collapse
Affiliation(s)
- Sebastian J Ambach
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| | - Georg Krach
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| | - Elena Bykova
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany
| | - Kristian Witthaut
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| | - Nico Giordano
- Deutsches Elektronen Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Maxim Bykov
- Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany
| | - Wolfgang Schnick
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| |
Collapse
|
7
|
Hussein Z, Kazemiasl N, Hussaini K, Vaquero L, Barkova O, Drozd V, Chariton S, Prakapenka V, Chuvashova I. High-pressure high-temperature synthesis of NdRe 2. Front Chem 2024; 12:1259032. [PMID: 38690011 PMCID: PMC11058645 DOI: 10.3389/fchem.2024.1259032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
In this study, we report the synthesis of a new cubic neodymium-rhenium metallic alloy NdRe2 through the utilization of high pressure and laser heating in a diamond anvil cell. NdRe2 crystallizes in the F d 3 ¯ m space group with a lattice parameter equal to 7.486 (2) Å and Z = 8 at 24 (1) GPa and 2,200 (100) K. It was studied using high-pressure single-crystal X-ray diffraction. The compound crystallizes in the cubic MgCu2 structure type. Its successful synthesis further proves that high-pressure high-temperature conditions can be used to obtain alloys holding a Laves phase structure. Ab initio calculations were done to predict the mechanical properties of the material. We also discuss the usage of extreme conditions to synthesize and study materials present in the nuclear waste.
Collapse
Affiliation(s)
- Zain Hussein
- Department of Physics, Florida International University, Miami, FL, United States
| | - Nazanin Kazemiasl
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Kenan Hussaini
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Lia Vaquero
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Olga Barkova
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Vadym Drozd
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, United States
- Applied Research Center, Florida International University, Miami, FL, United States
| | - Stella Chariton
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, United States
| | - Vitali Prakapenka
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, United States
| | - Irina Chuvashova
- Department of Physics, Florida International University, Miami, FL, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| |
Collapse
|
8
|
Chen H, Bykov M, Batyrev IG, Brüning L, Bykova E, Mahmood MF, Chariton S, Prakapenka VB, Fedotenko T, Liermann HP, Glazyrin K, Steele A, Goncharov AF. High-pressure Synthesis of Cobalt Polynitrides: Unveiling Intriguing Crystal Structures and Nitridation Behavior. Chemistry 2024:e202400536. [PMID: 38527310 DOI: 10.1002/chem.202400536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
In this study, we conduct extensive high-pressure experiments to investigate phase stability in the cobalt-nitrogen system. Through a combination of synthesis in a laser-heated diamond anvil cell, first-principles calculations, Raman spectroscopy, and single-crystal X-ray diffraction, we establish the stability fields of known high-pressure phases, hexagonal NiAs-type CoN, and marcasite-type CoN2 within the pressure range of 50-90 GPa. We synthesize and characterize previously unknown nitrides, Co3N2, Pnma-CoN and two polynitrides, CoN3 and CoN5, within the pressure range of 90-120 GPa. Both polynitrides exhibit novel types of polymeric nitrogen chains and networks. CoN3 feature branched-type nitrogen trimers (N3) and CoN5 show π-bonded nitrogen chain. As the nitrogen content in the cobalt nitride increases, the CoN6 polyhedral frameworks transit from face-sharing (in CoN) to edge-sharing (in CoN2 and CoN3), and finally to isolated (in CoN5). Our study provides insights into the intricate interplay between structure evolution, bonding arrangements, and high-pressure synthesis in polynitrides, expanding the knowledge for the development of advanced energy materials.
Collapse
Affiliation(s)
- Huawei Chen
- Department of Mathematics, Howard University, Washington, DC, 20059, U.S.A
- The Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, 20015, U.S.A
| | - Maxim Bykov
- Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Iskander G Batyrev
- U.S. Army Research Laboratory RDRLWML-B Aberdeen Proving Ground, Maryland, 21005, U.S.A
| | - Lukas Brüning
- Institute of Inorganic Chemistry, University of Cologne, Greinstrasse, 50939, Cologne, Germany
| | - Elena Bykova
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438, Frankfurt am Main, Germany
| | - Mohammad F Mahmood
- Department of Mathematics, Howard University, Washington, DC, 20059, U.S.A
| | - Stella Chariton
- Center for Advanced Radiation Sources, University of Chicago, Argonne, IL 60439, U.S.A
| | - Vitali B Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, Argonne, IL 60439, U.S.A
| | - Timofey Fedotenko
- Deutsches Elektronene-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | | | - Konstantin Glazyrin
- Deutsches Elektronene-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Andrew Steele
- The Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, 20015, U.S.A
| | - Alexander F Goncharov
- The Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, 20015, U.S.A
| |
Collapse
|
9
|
Flosbach NT, Bykov M, Bykova E, Rasche B, Mezouar M, Fedotenko T, Chariton S, Prakapenka VB, Wickleder MS. Stabilization of Pr 4+ in Silicates─High-Pressure Synthesis of PrSi 3O 8 and Pr 2Si 7O 18. Inorg Chem 2024; 63:4875-4882. [PMID: 38412505 DOI: 10.1021/acs.inorgchem.3c03948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The reaction between PrO2 and SiO2 was investigated at various pressure points up to 29 GPa in a diamond anvil cell using laser heating and in situ single-crystal structure analysis. The pressure points at 5 and 10 GPa produced Pr2III(Si2O7), whereas Pr4IIISi3O12 and Pr2IV(O2)O3 were obtained at 15 GPa. Pr4IIISi3O12 can be interpreted as a high-pressure modification of the still unknown orthosilicate Pr4III(SiO4)3. PrIVSi3O8 and Pr2IVSi7O18 that contain praseodymium in its rare + IV oxidation state were identified at 29 GPa. After the pressure was released from the reaction chamber, the Pr(IV) silicates could be recovered, indicating that they are metastable at ambient pressure. Density functional theory calculations of the electronic structure corroborate the oxidation state of praseodymium in both PrIVSi3O8 and Pr2IVSi7O18. Both silicates are the first structurally characterized representatives of Pr4+-containing salts with oxoanions. All three silicates contain condensed networks of [SiO6] octahedra which is unprecedented in the rich chemistry of lanthanoid silicates.
Collapse
Affiliation(s)
- Niko T Flosbach
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Maxim Bykov
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany
- Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Elena Bykova
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| | - Bertold Rasche
- Institute of Inorganic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Mohamed Mezouar
- European Synchrotron Radiation Facility (ESRF), Avenue des Martyrs 71, 38000 Grenoble, France
| | - Timofey Fedotenko
- Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| | - Stella Chariton
- Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, United States
| | - Vitali B Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, United States
| | - Mathias S Wickleder
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| |
Collapse
|
10
|
Aslandukova A, Aslandukov A, Laniel D, Yin Y, Akbar FI, Bykov M, Fedotenko T, Glazyrin K, Pakhomova A, Garbarino G, Bright EL, Wright J, Hanfland M, Chariton S, Prakapenka V, Dubrovinskaia N, Dubrovinsky L. Diverse high-pressure chemistry in Y-NH 3BH 3 and Y-paraffin oil systems. SCIENCE ADVANCES 2024; 10:eadl5416. [PMID: 38478619 PMCID: PMC10936948 DOI: 10.1126/sciadv.adl5416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
The yttrium-hydrogen system has gained attention because of near-ambient temperature superconductivity reports in yttrium hydrides at high pressures. We conducted a study using synchrotron single-crystal x-ray diffraction (SCXRD) at 87 to 171 GPa, resulting in the discovery of known (two YH3 phases) and five previously unknown yttrium hydrides. These were synthesized in diamond anvil cells by laser heating yttrium with hydrogen-rich precursors-ammonia borane or paraffin oil. The arrangements of yttrium atoms in the crystal structures of new phases were determined on the basis of SCXRD, and the hydrogen content estimations based on empirical relations and ab initio calculations revealed the following compounds: Y3H11, Y2H9, Y4H23, Y13H75, and Y4H25. The study also uncovered a carbide (YC2) and two yttrium allotropes. Complex phase diversity, variable hydrogen content in yttrium hydrides, and their metallic nature, as revealed by ab initio calculations, underline the challenges in identifying superconducting phases and understanding electronic transitions in high-pressure synthesized materials.
Collapse
Affiliation(s)
- Alena Aslandukova
- Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Andrey Aslandukov
- Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
| | - Dominique Laniel
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK
| | - Yuqing Yin
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Fariia Iasmin Akbar
- Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Maxim Bykov
- Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne, Germany
| | - Timofey Fedotenko
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Anna Pakhomova
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex, France
| | - Gaston Garbarino
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex, France
| | | | - Jonathan Wright
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex, France
| | - Michael Hanfland
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex, France
| | - Stella Chariton
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA
| | - Vitali Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA
| | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Leonid Dubrovinsky
- Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
11
|
Aslandukov A, Aslandukova A, Laniel D, Khandarkhaeva S, Yin Y, Akbar FI, Chariton S, Prakapenka V, Bright EL, Giacobbe C, Wright J, Comboni D, Hanfland M, Dubrovinskaia N, Dubrovinsky L. Stabilization of N 6 and N 8 anionic units and 2D polynitrogen layers in high-pressure scandium polynitrides. Nat Commun 2024; 15:2244. [PMID: 38472167 PMCID: PMC11636835 DOI: 10.1038/s41467-024-46313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Nitrogen catenation under high pressure leads to the formation of polynitrogen compounds with potentially unique properties. The exploration of the entire spectrum of poly- and oligo-nitrogen moieties is still in its earliest stages. Here, we report on four novel scandium nitrides, Sc2N6, Sc2N8, ScN5, and Sc4N3, synthesized by direct reaction between yttrium and nitrogen at 78-125 GPa and 2500 K in laser-heated diamond anvil cells. High-pressure synchrotron single-crystal X-ray diffraction reveals that in the crystal structures of the nitrogen-rich Sc2N6, Sc2N8, and ScN5 phases nitrogen is catenated forming previously unknown N66- and N86- units and ∞ 2 ( N 5 3 - ) anionic corrugated 2D-polynitrogen layers consisting of fused N12 rings. Density functional theory calculations, confirming the dynamical stability of the synthesized compounds, show that Sc2N6 and Sc2N8 possess an anion-driven metallicity, while ScN5 is an indirect semiconductor. Sc2N6, Sc2N8, and ScN5 solids are promising high-energy-density materials with calculated volumetric energy density, detonation velocity, and detonation pressure higher than those of TNT.
Collapse
Affiliation(s)
- Andrey Aslandukov
- Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440, Bayreuth, Germany.
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany.
| | - Alena Aslandukova
- Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440, Bayreuth, Germany
| | - Dominique Laniel
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, EH9 3FD, Edinburgh, United Kingdom
| | - Saiana Khandarkhaeva
- Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440, Bayreuth, Germany
| | - Yuqing Yin
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden
| | - Fariia I Akbar
- Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440, Bayreuth, Germany
| | - Stella Chariton
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, 60637, USA
| | - Vitali Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, 60637, USA
| | | | | | - Jonathan Wright
- European Synchrotron Radiation Facility, 38000, Grenoble, France
| | - Davide Comboni
- European Synchrotron Radiation Facility, 38000, Grenoble, France
| | - Michael Hanfland
- European Synchrotron Radiation Facility, 38000, Grenoble, France
| | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden
| | - Leonid Dubrovinsky
- Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440, Bayreuth, Germany
| |
Collapse
|
12
|
Laniel D, Trybel F, Aslandukov A, Khandarkhaeva S, Fedotenko T, Yin Y, Miyajima N, Tasnádi F, Ponomareva AV, Jena N, Akbar FI, Winkler B, Néri A, Chariton S, Prakapenka V, Milman V, Schnick W, Rudenko AN, Katsnelson MI, Abrikosov IA, Dubrovinsky L, Dubrovinskaia N. Synthesis of Ultra-Incompressible and Recoverable Carbon Nitrides Featuring CN 4 Tetrahedra. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308030. [PMID: 37822038 PMCID: PMC11475261 DOI: 10.1002/adma.202308030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/02/2023] [Indexed: 10/13/2023]
Abstract
Carbon nitrides featuring three-dimensional frameworks of CN4 tetrahedra are one of the great aspirations of materials science, expected to have a hardness greater than or comparable to diamond. After more than three decades of efforts to synthesize them, no unambiguous evidence of their existence has been delivered. Here, the high-pressure high-temperature synthesis of three carbon-nitrogen compounds, tI14-C3 N4 , hP126-C3 N4 , and tI24-CN2 , in laser-heated diamond anvil cells, is reported. Their structures are solved and refined using synchrotron single-crystal X-ray diffraction. Physical properties investigations show that these strongly covalently bonded materials, ultra-incompressible and superhard, also possess high energy density, piezoelectric, and photoluminescence properties. The novel carbon nitrides are unique among high-pressure materials, as being produced above 100 GPa they are recoverable in air at ambient conditions.
Collapse
Affiliation(s)
- Dominique Laniel
- Centre for Science at Extreme Conditions and School of Physics and AstronomyUniversity of EdinburghEdinburghEH9 3FDUK
- Material Physics and Technology at Extreme ConditionsLaboratory of CrystallographyUniversity of Bayreuth95440BayreuthGermany
| | - Florian Trybel
- Department of PhysicsChemistry and Biology (IFM)Linköping UniversityLinköpingSE‐581 83Sweden
| | - Andrey Aslandukov
- Material Physics and Technology at Extreme ConditionsLaboratory of CrystallographyUniversity of Bayreuth95440BayreuthGermany
- Bayerisches GeoinstitutUniversity of Bayreuth95440BayreuthGermany
| | - Saiana Khandarkhaeva
- Material Physics and Technology at Extreme ConditionsLaboratory of CrystallographyUniversity of Bayreuth95440BayreuthGermany
| | - Timofey Fedotenko
- Photon ScienceDeutsches Elektronen‐SynchrotronNotkestrasse 8522607HamburgGermany
| | - Yuqing Yin
- Material Physics and Technology at Extreme ConditionsLaboratory of CrystallographyUniversity of Bayreuth95440BayreuthGermany
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | | | - Ferenc Tasnádi
- Department of PhysicsChemistry and Biology (IFM)Linköping UniversityLinköpingSE‐581 83Sweden
| | | | - Nityasagar Jena
- Department of PhysicsChemistry and Biology (IFM)Linköping UniversityLinköpingSE‐581 83Sweden
| | | | - Bjoern Winkler
- Institut für GeowissenschaftenAbteilung KristallographieJohann Wolfgang Goethe‐Universität FrankfurtAltenhöferallee 1D‐60438Frankfurt am MainGermany
| | - Adrien Néri
- Bayerisches GeoinstitutUniversity of Bayreuth95440BayreuthGermany
| | - Stella Chariton
- Center for Advanced Radiation SourcesUniversity of ChicagoChicagoIL60637USA
| | - Vitali Prakapenka
- Center for Advanced Radiation SourcesUniversity of ChicagoChicagoIL60637USA
| | | | - Wolfgang Schnick
- Department of ChemistryUniversity of Munich (LMU)Butenandtstrasse 5–1381377MunichGermany
| | - Alexander N. Rudenko
- Radboud UniversityInstitute for Molecules and MaterialsHeijendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Mikhail I. Katsnelson
- Radboud UniversityInstitute for Molecules and MaterialsHeijendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Igor A. Abrikosov
- Department of PhysicsChemistry and Biology (IFM)Linköping UniversityLinköpingSE‐581 83Sweden
| | | | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme ConditionsLaboratory of CrystallographyUniversity of Bayreuth95440BayreuthGermany
- Department of PhysicsChemistry and Biology (IFM)Linköping UniversityLinköpingSE‐581 83Sweden
| |
Collapse
|
13
|
Brüning L, Jena N, Bykova E, Jurzick PL, Flosbach NT, Mezouar M, Hanfland M, Giordano N, Fedotenko T, Winkler B, Abrikosov IA, Bykov M. Stabilization of Guanidinate Anions [CN 3 ] 5- in Calcite-Type SbCN 3. Angew Chem Int Ed Engl 2023; 62:e202311519. [PMID: 37776234 DOI: 10.1002/anie.202311519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
The stabilization of nitrogen-rich phases presents a significant chemical challenge due to the inherent stability of the dinitrogen molecule. This stabilization can be achieved by utilizing strong covalent bonds in complex anions with carbon, such as cyanide CN- and NCN2- carbodiimide, while more nitrogen-rich carbonitrides are hitherto unknown. Following a rational chemical design approach, we synthesized antimony guanidinate SbCN3 at pressures of 32-38 GPa using various synthetic routes in laser-heated diamond anvil cells. SbCN3 , which is isostructural to calcite CaCO3 , can be recovered under ambient conditions. Its structure contains the previously elusive guanidinate anion [CN3 ]5- , marking a fundamental milestone in carbonitride chemistry. The crystal structure of SbCN3 was solved and refined from synchrotron single-crystal X-ray diffraction data and was fully corroborated by theoretical calculations, which also predict that SbCN3 has a direct band gap with the value of 2.20 eV. This study opens a straightforward route to the entire new family of inorganic nitridocarbonates.
Collapse
Affiliation(s)
- Lukas Brüning
- Institute for inorganic Chemistry, University of Cologne, 50939, Cologne, Germany
| | - Nityasagar Jena
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Elena Bykova
- Institute of Geosciences, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Pascal L Jurzick
- Institute for inorganic Chemistry, University of Cologne, 50939, Cologne, Germany
| | - Niko T Flosbach
- Institute for inorganic Chemistry, University of Cologne, 50939, Cologne, Germany
| | - Mohamed Mezouar
- European Synchrotron Radiation Facility, Grenoble Cedex, F-38043, France
| | - Michael Hanfland
- European Synchrotron Radiation Facility, Grenoble Cedex, F-38043, France
| | - Nico Giordano
- Deutsches Elektronen-Synchrotron (DESY), 22607, Hamburg, Germany
| | | | - Björn Winkler
- Institute of Geosciences, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Igor A Abrikosov
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Maxim Bykov
- Institute for inorganic Chemistry, University of Cologne, 50939, Cologne, Germany
| |
Collapse
|
14
|
Aslandukov A, Jurzick PL, Bykov M, Aslandukova A, Chanyshev A, Laniel D, Yin Y, Akbar FI, Khandarkhaeva S, Fedotenko T, Glazyrin K, Chariton S, Prakapenka V, Wilhelm F, Rogalev A, Comboni D, Hanfland M, Dubrovinskaia N, Dubrovinsky L. Stabilization Of The CN 3 5- Anion In Recoverable High-pressure Ln 3 O 2 (CN 3 ) (Ln=La, Eu, Gd, Tb, Ho, Yb) Oxoguanidinates. Angew Chem Int Ed Engl 2023; 62:e202311516. [PMID: 37768278 PMCID: PMC11497228 DOI: 10.1002/anie.202311516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
A series of isostructural Ln3 O2 (CN3 ) (Ln=La, Eu, Gd, Tb, Ho, Yb) oxoguanidinates was synthesized under high-pressure (25-54 GPa) high-temperature (2000-3000 K) conditions in laser-heated diamond anvil cells. The crystal structure of this novel class of compounds was determined via synchrotron single-crystal X-ray diffraction (SCXRD) as well as corroborated by X-ray absorption near edge structure (XANES) measurements and density functional theory (DFT) calculations. The Ln3 O2 (CN3 ) solids are composed of the hitherto unknown CN3 5- guanidinate anion-deprotonated guanidine. Changes in unit cell volumes and compressibility of Ln3 O2 (CN3 ) (Ln=La, Eu, Gd, Tb, Ho, Yb) compounds are found to be dictated by the lanthanide contraction phenomenon. Decompression experiments show that Ln3 O2 (CN3 ) compounds are recoverable to ambient conditions. The stabilization of the CN3 5- guanidinate anion at ambient conditions provides new opportunities in inorganic and organic synthetic chemistry.
Collapse
Affiliation(s)
- Andrey Aslandukov
- Bayerisches GeoinstitutUniversity of BayreuthUniversitätstrasse 3095440BayreuthGermany
- Material Physics and Technology at Extreme ConditionsLaboratory of CrystallographyUniversity of BayreuthUniversitätstrasse 3095440BayreuthGermany
| | - Pascal L. Jurzick
- Institute of Inorganic ChemistryUniversity of CologneGreinstrasse 650939CologneGermany
| | - Maxim Bykov
- Institute of Inorganic ChemistryUniversity of CologneGreinstrasse 650939CologneGermany
| | - Alena Aslandukova
- Bayerisches GeoinstitutUniversity of BayreuthUniversitätstrasse 3095440BayreuthGermany
| | - Artem Chanyshev
- Bayerisches GeoinstitutUniversity of BayreuthUniversitätstrasse 3095440BayreuthGermany
| | - Dominique Laniel
- Centre for Science at Extreme Conditions and School of Physics and AstronomyUniversity of EdinburghEH9 3FDEdinburghUnited Kingdom
| | - Yuqing Yin
- Material Physics and Technology at Extreme ConditionsLaboratory of CrystallographyUniversity of BayreuthUniversitätstrasse 3095440BayreuthGermany
| | - Fariia I. Akbar
- Bayerisches GeoinstitutUniversity of BayreuthUniversitätstrasse 3095440BayreuthGermany
| | - Saiana Khandarkhaeva
- Bayerisches GeoinstitutUniversity of BayreuthUniversitätstrasse 3095440BayreuthGermany
| | - Timofey Fedotenko
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | | | - Stella Chariton
- Center for Advanced Radiation SourcesUniversity of ChicagoChicagoIllinois60637USA
| | - Vitali Prakapenka
- Center for Advanced Radiation SourcesUniversity of ChicagoChicagoIllinois60637USA
| | - Fabrice Wilhelm
- European Synchrotron Radiation Facility BP 22038043Grenoble CedexFrance
| | - Andrei Rogalev
- European Synchrotron Radiation Facility BP 22038043Grenoble CedexFrance
| | - Davide Comboni
- European Synchrotron Radiation Facility BP 22038043Grenoble CedexFrance
| | - Michael Hanfland
- European Synchrotron Radiation Facility BP 22038043Grenoble CedexFrance
| | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme ConditionsLaboratory of CrystallographyUniversity of BayreuthUniversitätstrasse 3095440BayreuthGermany
- Department of PhysicsChemistry and Biology (IFM)Linköping UniversitySE-581 83LinköpingSweden
| | - Leonid Dubrovinsky
- Bayerisches GeoinstitutUniversity of BayreuthUniversitätstrasse 3095440BayreuthGermany
| |
Collapse
|
15
|
Bear JC, Terzoudis N, Cockcroft JK. Single-crystal quality data from polycrystalline samples: finding the needle in the haystack. IUCRJ 2023; 10:720-728. [PMID: 37815488 PMCID: PMC10619455 DOI: 10.1107/s2052252523008163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
Multi-grain crystallography, traditionally performed at synchrotron sources in association with high-pressure studies, has new relevance with respect to laboratory single-crystal X-ray diffraction, in which crystals can be grown rapidly in situ, and a preliminary dataset analysed and solved in a matter of minutes. Subsequently, a full-sphere of IUCr-quality data can then be collected in a few hours. To demonstrate the applicability of laboratory multi-grain crystallography with Cu Kα X-rays, co-crystals of hexafluorobenzene and pyrrole were grown rapidly by cooling a 1:1 liquid mixture in an X-ray capillary on the diffractometer. The software is able to identify a single unit cell from as few as 10% of the diffraction spots from a small number of diffraction frames. Once a unit cell is identified, a full crystal structure solution is rapidly obtained by collecting a small amount of data to a resolution of ca 1 Å. The co-crystal obtained from the 1:1 mixture showed that hexafluorobenzene and pyrrole crystallize in a 3:4 ratio, in contrast to the columnar 1:1 adduct structures typified by hexafluorobenzene and benzene. The generality of our multi-grain approach for samples that are liquid at room temperature (and form a polycrystalline solid mass on cooling) is further demonstrated by investigating and solving the 1:1 co-crystal formed between hexafluorobenzene and pyridine.
Collapse
Affiliation(s)
- Joseph Charles Bear
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey KT1 2EE, United Kingdom
| | - Nikitas Terzoudis
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey KT1 2EE, United Kingdom
| | - Jeremy Karl Cockcroft
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
16
|
Glazyrin K, Aslandukov A, Aslandukova A, Fedotenko T, Khandarkhaeva S, Laniel D, Bykov M, Dubrovinsky L. High-pressure reactions between the pnictogens: the rediscovery of BiN. Front Chem 2023; 11:1257942. [PMID: 37901158 PMCID: PMC10602720 DOI: 10.3389/fchem.2023.1257942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
We explore chemical reactions within pnictogens with an example of bismuth and nitrogen under extreme conditions. Understanding chemical reactions between Bi and N, elements representing the first and the last stable elements of the nitrogen group, and the physical properties of their compounds under ambient and high pressure is far from being complete. Here, we report the high-pressure high-temperature synthesis of orthorhombic Pbcn BiN (S.G. #60) from Bi and N2 precursors at pressures above 40 GPa. Using synchrotron single-crystal X-ray diffraction on the polycrystalline sample, we solved and refined the compound's structure and studied its behavior and compressibility on decompression to ambient pressure. We confirm the stability of Pbcn BiN to pressures as low as 12.5(4) GPa. Below that pressure value, a group-subgroup phase transformation occurs, resulting in the formation of a non-centrosymmetric BiN solid with a space group Pca21 (S.G. #29). We use ab initio calculations to characterize the polymorphs of BiN. They also provide support and explanation for our experimental observations, in particular those corresponding to peculiar Bi-N bond evolution under pressure, resulting in a change in the coordination numbers of Bi and N as a function of pressure within the explored stability field of Pbcn BiN.
Collapse
Affiliation(s)
- K. Glazyrin
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - A. Aslandukov
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth, Germany
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany
| | - A. Aslandukova
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany
| | - T. Fedotenko
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - S. Khandarkhaeva
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany
| | - D. Laniel
- Centre for Science at Extreme Conditions, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - M. Bykov
- Institute of Inorganic Chemistry, University of Cologne, Cologne, Germany
| | - L. Dubrovinsky
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
17
|
Laniel D, Trybel F, Aslandukov A, Spender J, Ranieri U, Fedotenko T, Glazyrin K, Bright EL, Chariton S, Prakapenka VB, Abrikosov IA, Dubrovinsky L, Dubrovinskaia N. Title: Structure determination of ζ-N 2 from single-crystal X-ray diffraction and theoretical suggestion for the formation of amorphous nitrogen. Nat Commun 2023; 14:6207. [PMID: 37798268 PMCID: PMC10556017 DOI: 10.1038/s41467-023-41968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
The allotropy of solid molecular nitrogen is the consequence of a complex interplay between fundamental intermolecular as well as intramolecular interactions. Understanding the underlying physical mechanisms hinges on knowledge of the crystal structures of these molecular phases. That is especially true for ζ-N2, key to shed light on nitrogen's polymerization. Here, we perform single-crystal X-ray diffraction on laser-heated N2 samples at 54, 63, 70 and 86 GPa and solve and refine the hitherto unknown structure of ζ-N2. In its monoclinic unit cell (space group C2/c), 16 N2 molecules are arranged in a configuration similar to that of ε-N2. The structure model provides an explanation for the previously identified Raman and infrared lattice and vibrational modes of ζ-N2. Density functional theory calculations give an insight into the gradual delocalization of electronic density from intramolecular bonds to intermolecular space and suggest a possible pathway towards nitrogen's polymerization.
Collapse
Affiliation(s)
- Dominique Laniel
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, EH9 3FD, Edinburgh, UK.
| | - Florian Trybel
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden.
| | - Andrey Aslandukov
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany
- Bayerisches Geoinstitut, University of Bayreuth, 95440, Bayreuth, Germany
| | - James Spender
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, EH9 3FD, Edinburgh, UK
| | - Umbertoluca Ranieri
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, EH9 3FD, Edinburgh, UK
| | - Timofey Fedotenko
- Photon Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Konstantin Glazyrin
- Photon Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Stella Chariton
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, 60637, USA
| | - Vitali B Prakapenka
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, 60637, USA
| | - Igor A Abrikosov
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden
| | - Leonid Dubrovinsky
- Bayerisches Geoinstitut, University of Bayreuth, 95440, Bayreuth, Germany
| | - Natalia Dubrovinskaia
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany
| |
Collapse
|
18
|
Jurzick PL, Krach G, Brüning L, Schnick W, Bykov M. Synthesis and crystal structure of silicon pernitride SiN 2 at 140 GPa. Acta Crystallogr E Crystallogr Commun 2023; 79:923-925. [PMID: 37817965 PMCID: PMC10561209 DOI: 10.1107/s2056989023008058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023]
Abstract
Silicon pernitride, SiN2, was synthesized from the elements at 140 GPa in a laser-heated diamond anvil cell. Its crystal structure was solved and refined by means of synchrotron-based single-crystal X-ray diffraction data. The title compound crystallizes in the pyrite structure type (space group Pa , No. 205). The Si atom occupies a site with multiplicity 4 (Wyckoff letter b, site symmetry ..), while the N atom is located on a site with multiplicity 8 (Wyckoff letter c, site symmetry .3.). The crystal structure of SiN2 is comprised of slightly distorted [SiN6] octa-hedra inter-connected with each other by sharing vertices. Crystal chemical analysis of bond lengths suggests that Si has a formal oxidation state of +IV, while nitro-gen forms pernitride anions (N-N)4-.
Collapse
Affiliation(s)
- Pascal L Jurzick
- Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne, Germany
| | - Georg Krach
- Department of Chemistry, University of Munich (LMU), Butenandtstrasse 5-13 (D), 81377 Munich, Germany
| | - Lukas Brüning
- Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne, Germany
| | - Wolfgang Schnick
- Department of Chemistry, University of Munich (LMU), Butenandtstrasse 5-13 (D), 81377 Munich, Germany
| | - Maxim Bykov
- Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne, Germany
| |
Collapse
|
19
|
Ibragimova O, Vaquero L, Hussein Z, Drozd V, Chariton S, Prakapenka V, Chuvashova I. The synthesis of novel lanthanum hydroxyborate at extreme conditions. Front Chem 2023; 11:1259000. [PMID: 37841208 PMCID: PMC10568730 DOI: 10.3389/fchem.2023.1259000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
The novel structure of lanthanum hydroxyborate La2B2O5(OH)2 was synthesized by the reaction of partially hydrolyzed lanthanum and boron oxide in a diamond anvil cell under high-pressure/high-temperature (HPHT) conditions of 30 GPa and ∼2,400 K. The single-crystal X-ray structure determination of the lanthanum hydroxyborate revealed: P 3 ¯ c 1 , a = 6.555(2) Å, c = 17.485(8) Å, Z = 6, R1 = 0.056. The three-dimensional structure consists of discrete planar BO3 groups and three crystallographically different La ions: one is surrounded by 9, one by 10, and one by 12 oxygen anions. The band gap was estimated using ab initio calculations to be 4.64 eV at ambient pressure and 5.26 eV at 30 GPa. The current work describes the novel HPHT lanthanum hydroxyborate with potential application as a deep-ultraviolet birefringent material.
Collapse
Affiliation(s)
- Olga Ibragimova
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Lia Vaquero
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Zain Hussein
- Physics Department, Florida International University, Miami, FL, United States
| | - Vadym Drozd
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, United States
| | - Stella Chariton
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, United States
| | - Vitali Prakapenka
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, United States
| | - Irina Chuvashova
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
- Physics Department, Florida International University, Miami, FL, United States
| |
Collapse
|
20
|
Yin Y, Aslandukova A, Jena N, Trybel F, Abrikosov IA, Winkler B, Khandarkhaeva S, Fedotenko T, Bykova E, Laniel D, Bykov M, Aslandukov A, Akbar FI, Glazyrin K, Garbarino G, Giacobbe C, Bright EL, Jia Z, Dubrovinsky L, Dubrovinskaia N. Unraveling the Bonding Complexity of Polyhalogen Anions: High-Pressure Synthesis of Unpredicted Sodium Chlorides Na 2Cl 3 and Na 4Cl 5 and Bromide Na 4Br 5. JACS AU 2023; 3:1634-1641. [PMID: 37388691 PMCID: PMC10302743 DOI: 10.1021/jacsau.3c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 07/01/2023]
Abstract
The field of polyhalogen chemistry, specifically polyhalogen anions (polyhalides), is rapidly evolving. Here, we present the synthesis of three sodium halides with unpredicted chemical compositions and structures (tP10-Na2Cl3, hP18-Na4Cl5, and hP18-Na4Br5), a series of isostructural cubic cP8-AX3 halides (NaCl3, KCl3, NaBr3, and KBr3), and a trigonal potassium chloride (hP24-KCl3). The high-pressure syntheses were realized at 41-80 GPa in diamond anvil cells laser-heated at about 2000 K. Single-crystal synchrotron X-ray diffraction (XRD) provided the first accurate structural data for the symmetric trichloride Cl3- anion in hP24-KCl3 and revealed the existence of two different types of infinite linear polyhalogen chains, [Cl]∞n- and [Br]∞n-, in the structures of cP8-AX3 compounds and in hP18-Na4Cl5 and hP18-Na4Br5. In Na4Cl5 and Na4Br5, we found unusually short, likely pressure-stabilized, contacts between sodium cations. Ab initio calculations support the analysis of structures, bonding, and properties of the studied halogenides.
Collapse
Affiliation(s)
- Yuqing Yin
- Material
Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth 95440, Germany
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Alena Aslandukova
- Bayerisches
Geoinstitut, University of Bayreuth, Bayreuth 95440, Germany
| | - Nityasagar Jena
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-581 83, Sweden
| | - Florian Trybel
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-581 83, Sweden
| | - Igor A. Abrikosov
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-581 83, Sweden
| | - Bjoern Winkler
- Institute
für Geowissenschaften, Frankfurt
University, Altenhöferallee
1, Frankfurt am Main DE-60438, Germany
| | | | - Timofey Fedotenko
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Elena Bykova
- Bayerisches
Geoinstitut, University of Bayreuth, Bayreuth 95440, Germany
- Earth
and Planets Laboratory, Carnegie Institution
for Science, 5241 Broad Branch Road, NW, Washington, District of Columbia 20015, United States
| | - Dominique Laniel
- Centre
for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, U.K.
| | - Maxim Bykov
- Institute
of Inorganic Chemistry, University of Cologne, Greinstrasse 6, Cologne 50939, Germany
| | - Andrey Aslandukov
- Material
Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth 95440, Germany
- Bayerisches
Geoinstitut, University of Bayreuth, Bayreuth 95440, Germany
| | - Fariia I. Akbar
- Material
Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth 95440, Germany
- Bayerisches
Geoinstitut, University of Bayreuth, Bayreuth 95440, Germany
| | - Konstantin Glazyrin
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Gaston Garbarino
- European
Synchrotron Radiation Facility, B.P.220, Grenoble Cedex F-38043, France
| | - Carlotta Giacobbe
- European
Synchrotron Radiation Facility, B.P.220, Grenoble Cedex F-38043, France
| | - Eleanor L. Bright
- European
Synchrotron Radiation Facility, B.P.220, Grenoble Cedex F-38043, France
| | - Zhitai Jia
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Leonid Dubrovinsky
- Bayerisches
Geoinstitut, University of Bayreuth, Bayreuth 95440, Germany
| | - Natalia Dubrovinskaia
- Material
Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth 95440, Germany
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-581 83, Sweden
| |
Collapse
|
21
|
Akbar FI, Aslandukova A, Aslandukov A, Yin Y, Trybel F, Khandarkhaeva S, Fedotenko T, Laniel D, Bykov M, Bykova E, Dubrovinskaia N, Dubrovinsky L. High-pressure synthesis of dysprosium carbides. Front Chem 2023; 11:1210081. [PMID: 37383952 PMCID: PMC10296199 DOI: 10.3389/fchem.2023.1210081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Chemical reactions between dysprosium and carbon were studied in laser-heated diamond anvil cells at pressures of 19, 55, and 58 GPa and temperatures of ∼2500 K. In situ single-crystal synchrotron X-ray diffraction analysis of the reaction products revealed the formation of novel dysprosium carbides, Dy4C3 and Dy3C2, and dysprosium sesquicarbide Dy2C3 previously known only at ambient conditions. The structure of Dy4C3 was found to be closely related to that of dysprosium sesquicarbide Dy2C3 with the Pu2C3-type structure. Ab initio calculations reproduce well crystal structures of all synthesized phases and predict their compressional behavior in agreement with our experimental data. Our work gives evidence that high-pressure synthesis conditions enrich the chemistry of rare earth metal carbides.
Collapse
Affiliation(s)
- Fariia Iasmin Akbar
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth, Germany
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany
| | - Alena Aslandukova
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth, Germany
| | - Andrey Aslandukov
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth, Germany
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany
| | - Yuqing Yin
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth, Germany
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, China
| | - Florian Trybel
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Saiana Khandarkhaeva
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth, Germany
| | | | - Dominique Laniel
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Maxim Bykov
- Institute of Inorganic Chemistry, University of Cologne, Cologne, Germany
| | - Elena Bykova
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany
| | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth, Germany
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | | |
Collapse
|
22
|
Yin Y, Akbar FI, Bykova E, Aslandukova A, Laniel D, Aslandukov A, Bykov M, Hanfland M, Garbarino G, Jia Z, Dubrovinsky L, Dubrovinskaia N. Synthesis of rare-earth metal compounds through enhanced reactivity of alkali halides at high pressures. Commun Chem 2022; 5:122. [PMID: 36697723 PMCID: PMC9814685 DOI: 10.1038/s42004-022-00736-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/19/2022] [Indexed: 01/28/2023] Open
Abstract
Chemical stability of the alkali halides NaCl and KCl has allowed for their use as inert media in high-pressure high-temperature experiments. Here we demonstrate the unexpected reactivity of the halides with metals (Y, Dy, and Re) and iron oxide (FeO) in a laser-heated diamond anvil cell, thus providing a synthetic route for halogen-containing binary and ternary compounds. So far unknown chlorides, Y2Cl and DyCl, and chloride carbides, Y2ClC and Dy2ClC, were synthesized at ~40 GPa and 2000 K and their structures were solved and refined using in situ single-crystal synchrotron X-ray diffraction. Also, FeCl2 with the HP-PdF2-type structure, previously reported at 108 GPa, was synthesized at ~160 GPa and 2100 K. The results of our ab initio calculations fully support experimental findings and reveal the electronic structure and chemical bonding in these compounds.
Collapse
Affiliation(s)
- Yuqing Yin
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany.
- State Key Laboratory of Crystal Materials, Shandong University, 250100, Jinan, China.
| | - Fariia I Akbar
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany
- Bayerisches Geoinstitut, University of Bayreuth, 95440, Bayreuth, Germany
| | - Elena Bykova
- Bayerisches Geoinstitut, University of Bayreuth, 95440, Bayreuth, Germany
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, 20015, USA
| | - Alena Aslandukova
- Bayerisches Geoinstitut, University of Bayreuth, 95440, Bayreuth, Germany
| | - Dominique Laniel
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, EH9 3FD, Edinburgh, UK
| | - Andrey Aslandukov
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany
- Bayerisches Geoinstitut, University of Bayreuth, 95440, Bayreuth, Germany
| | - Maxim Bykov
- Institute of Inorganic Chemistry, University of Cologne, 50939, Cologne, Germany
| | - Michael Hanfland
- European Synchrotron Radiation Facility, F-38043, Grenoble, France
| | - Gaston Garbarino
- European Synchrotron Radiation Facility, F-38043, Grenoble, France
| | - Zhitai Jia
- State Key Laboratory of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Leonid Dubrovinsky
- Bayerisches Geoinstitut, University of Bayreuth, 95440, Bayreuth, Germany
| | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden
| |
Collapse
|