1
|
Robertson H, Gresham IJ, Nelson ARJ, Prescott SW, Webber GB, Wanless EJ. Illuminating the nanostructure of diffuse interfaces: Recent advances and future directions in reflectometry techniques. Adv Colloid Interface Sci 2024; 331:103238. [PMID: 38917595 DOI: 10.1016/j.cis.2024.103238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Diffuse soft matter interfaces take many forms, from end-tethered polymer brushes or adsorbed surfactants to self-assembled layers of lipids. These interfaces play crucial roles across a multitude of fields, including materials science, biophysics, and nanotechnology. Understanding the nanostructure and properties of these interfaces is fundamental for optimising their performance and designing novel functional materials. In recent years, reflectometry techniques, in particular neutron reflectometry, have emerged as powerful tools for elucidating the intricate nanostructure of soft matter interfaces with remarkable precision and depth. This review provides an overview of selected recent developments in reflectometry and their applications for illuminating the nanostructure of diffuse interfaces. We explore various principles and methods of neutron and X-ray reflectometry, as well as ellipsometry, and discuss advances in their experimental setups and data analysis approaches. Improvements to experimental neutron reflectometry methods have enabled greater time resolution in kinetic measurements and elucidation of diffuse structure under shear or confinement, while innovation in analysis protocols has significantly reduced data processing times, facilitated co-refinement of reflectometry data from multiple instruments and provided greater-than-ever confidence in proposed structural models. Furthermore, we highlight some significant research findings enabled by these techniques, revealing the organisation, dynamics, and interfacial phenomena at the nanoscale. We also discuss future directions and potential advancements in reflectometry techniques. By shedding light on the nanostructure of diffuse interfaces, reflectometry techniques enable the rational design and tailoring of interfaces with enhanced properties and functionalities.
Collapse
Affiliation(s)
- Hayden Robertson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Soft Matter at Interfaces, Technical University of Darmstadt, Darmstadt D-64289, Germany
| | - Isaac J Gresham
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew R J Nelson
- Australian Centre for Neutron Scattering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Stuart W Prescott
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Grant B Webber
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Erica J Wanless
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
2
|
Pradeepkumar A, Cortie D, Smyth E, Le Brun AP, Iacopi F. Epitaxial graphene growth on cubic silicon carbide on silicon with high temperature neutron reflectometry: an operando study. RSC Adv 2024; 14:3232-3240. [PMID: 38249665 PMCID: PMC10797600 DOI: 10.1039/d3ra08289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
The growth of graphene on silicon carbide on silicon offers a very attractive route towards novel wafer-scale photonic and electronic devices that are easy to fabricate and can be integrated in silicon manufacturing. Using a Ni/Cu catalyst for the epitaxial growth of graphene has been successful in the mitigation of the very defective nature of the underlying silicon carbide on silicon, leading to a consistent graphene coverage over large scales. A more detailed understanding of this growth mechanism is warranted in order to further optimise the catalyst composition, preferably via the use of operando characterization measurements. Here, we report in situ neutron reflectometry measurements of (Ni, Cu)/SiC films on silicon wafers, annealed from room temperature to 1100 °C, which initiates graphene formation at the buried (Ni, Cu)/SiC interface. Detailed modelling of the high temperature neutron reflectometry and corresponding scattering length density profiles yield insights into the distinct physical mechanisms within the different temperature regimes. The initially smooth solid metallic layers undergo intermixing and roughening transitions at relatively low temperatures below 500 °C, and then metal silicides begin to form above 600 °C from interfacial reactions with the SiC, releasing atomic carbon. At the highest temperature range of 600-1100 °C, the low neutron scattering length density at high temperature is consistent with a silicon-rich, liquid surface phase corresponding to molten nickel silicides and copper. This liquid catalyst layer promotes the liquid-phase epitaxial growth of a graphene layer by precipitating the excess carbon available at the SiC/metal interface.
Collapse
Affiliation(s)
- Aiswarya Pradeepkumar
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney Sydney New South Wales 2007 Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney New South Wales 2007 Australia
| | - David Cortie
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization New Illawarra Road Lucas Heights New South Wales 2234 Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies Melbourne Victoria 3800 Australia
| | - Erin Smyth
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization New Illawarra Road Lucas Heights New South Wales 2234 Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization New Illawarra Road Lucas Heights New South Wales 2234 Australia
| | - Francesca Iacopi
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney Sydney New South Wales 2007 Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney New South Wales 2007 Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies Melbourne Victoria 3800 Australia
| |
Collapse
|
3
|
Gilbert J, Ermilova I, Fornasier M, Skoda M, Fragneto G, Swenson J, Nylander T. On the interactions between RNA and titrateable lipid layers: implications for RNA delivery with lipid nanoparticles. NANOSCALE 2024; 16:777-794. [PMID: 38088740 DOI: 10.1039/d3nr03308b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Characterising the interaction between cationic ionisable lipids (CIL) and nucleic acids (NAs) is key to understanding the process of RNA lipid nanoparticle (LNP) formation and release of NAs from LNPs. Here, we have used different surface techniques to reveal the effect of pH and NA type on the interaction with a model system of DOPC and the CIL DLin-MC3-DMA (MC3). At only 5% MC3, differences in the structure and dynamics of the lipid layer were observed. Both pH and %MC3 were shown to affect the absorption behaviour of erythropoietin mRNA, polyadenylic acid (polyA) and polyuridylic acid (polyU). The adsorbed amount of all studied NAs was found to increase with decreasing pH and increasing %MC3 but with different effects on the lipid layer, which could be linked to the NA secondary structure. For polyA at pH 6, adsorption to the surface of the layer was observed, whereas for other conditions and NAs, penetration of the NA into the layer resulted in the formation of a multilayer structure. By comparison to simulations excluding the secondary structure, differences in adsorption behaviours between polyA and polyU could be observed, indicating that the NA's secondary structure also affected the MC3-NA interactions.
Collapse
Affiliation(s)
- Jennifer Gilbert
- Division of Physical Chemistry, Department of Chemistry, Naturvetarvägen 14, Lund University, 22362 Lund, Sweden.
- NanoLund, Lund University, Professorsgatan 1, 223 63 Lund, Sweden
| | - Inna Ermilova
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Marco Fornasier
- Division of Physical Chemistry, Department of Chemistry, Naturvetarvägen 14, Lund University, 22362 Lund, Sweden.
| | - Maximilian Skoda
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0QX, UK
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France
- European Spallation Source ERIC, P.O. Box 176, SE-221 00 Lund, Sweden
| | - Jan Swenson
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Tommy Nylander
- Division of Physical Chemistry, Department of Chemistry, Naturvetarvägen 14, Lund University, 22362 Lund, Sweden.
- NanoLund, Lund University, Professorsgatan 1, 223 63 Lund, Sweden
- Lund Institute of Advanced Neutron and X-Ray Science, Scheelevägen 19, 223 70 Lund, Sweden
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
4
|
Hu X, Liao M, Ding K, Wang J, Xu H, Tao K, Zhou F, Lu JR. Neutron reflection and scattering in characterising peptide assemblies. Adv Colloid Interface Sci 2023; 322:103033. [PMID: 37931380 DOI: 10.1016/j.cis.2023.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Self-assemblies of de novo designed short peptides at interface and in bulk solution provide potential platforms for developing applications in many medical and technological areas. However, characterising how bioinspired supramolecular nanostructures evolve with dynamic self-assembling processes and respond to different stimuli remains challenging. Neutron scattering technologies including small angle neutron scattering (SANS) and neutron reflection (NR) can be advantageous and complementary to other state-of-the-art techniques in tracing structural changes under different conditions. With more neutron sources now available, SANS and NR are becoming increasingly popular in studying self-assembling processes of diverse peptide and protein systems, but the difficulty in experimental manipulation and data analysis can deter beginners. This review will introduce the basic theory, general experimental setup and data analysis of SANS and NR, followed by provision of their applications in characterising interfacial and solution self-assemblies of representative peptides and proteins. SANS and NR are remarkably effective in determining the morphological features self-assembled short peptides, especially size and shape transitions as a result of either sequence changes or in response to environmental stimuli, demonstrating the unique capability of NR and SANS in unravelling the interactive processes. These examples highlight the potential of NR and SANS in supporting the development of novel short peptides and proteins as biopharmaceutical candidates in the fight against many diseases and infections that share common features of membrane interactive processes.
Collapse
Affiliation(s)
- Xuzhi Hu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK.; Lanzhou Institute of Chemical Physics, Tianshui Middle Road, Lanzhou 730000, Gansu, China
| | - Mingrui Liao
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ke Ding
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jiqian Wang
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou 311215, China
| | - Feng Zhou
- Lanzhou Institute of Chemical Physics, Tianshui Middle Road, Lanzhou 730000, Gansu, China
| | - Jian R Lu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK..
| |
Collapse
|
5
|
McCluskey AR, Caruana AJ, Kinane CJ, Armstrong AJ, Arnold T, Cooper JFK, Cortie DL, Hughes AV, Moulin JF, Nelson ARJ, Potrzebowski W, Starostin V. Advice on describing Bayesian analysis of neutron and X-ray reflectometry. J Appl Crystallogr 2023; 56:12-17. [PMID: 36777146 PMCID: PMC9901928 DOI: 10.1107/s1600576722011426] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 01/18/2023] Open
Abstract
As a result of the availability of modern software and hardware, Bayesian analysis is becoming more popular in neutron and X-ray reflectometry analysis. The understandability and replicability of these analyses may be harmed by inconsistencies in how the probability distributions central to Bayesian methods are represented in the literature. Herein advice is provided on how to report the results of Bayesian analysis as applied to neutron and X-ray reflectometry. This includes the clear reporting of initial starting conditions, the prior probabilities, the results of any analysis and the posterior probabilities that are the Bayesian equivalent of the error bar, to enable replicability and improve understanding. It is believed that this advice, grounded in the authors' experience working in the field, will enable greater analytical reproducibility in the work of the reflectometry community, and improve the quality and usability of results.
Collapse
Affiliation(s)
| | - Andrew J. Caruana
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Christy J. Kinane
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Alexander J. Armstrong
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Thomas Arnold
- European Spallation Source ERIC, PO Box 176, Lund, SE-22100, Sweden
| | - Joshaniel F. K. Cooper
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - David L. Cortie
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia
| | - Arwel V. Hughes
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Jean-Francois Moulin
- German Engineering Material Science at Heinz Maier-Leibnitz Zentrum, Helmholtz-Zentrum Hereon, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Andrew R. J. Nelson
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia
| | | | - Vladimir Starostin
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|