1
|
Guest TW, Bean R, Kammering R, van Riessen G, Mancuso AP, Abbey B. A phenomenological model of the X-ray pulse statistics of a high-repetition-rate X-ray free-electron laser. IUCRJ 2023; 10:708-719. [PMID: 37782462 PMCID: PMC10619450 DOI: 10.1107/s2052252523008242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Many coherent imaging applications that utilize ultrafast X-ray free-electron laser (XFEL) radiation pulses are highly sensitive to fluctuations in the shot-to-shot statistical properties of the source. Understanding and modelling these fluctuations are key to successful experiment planning and necessary to maximize the potential of XFEL facilities. Current models of XFEL radiation and their shot-to-shot statistics are based on theoretical descriptions of the source and are limited in their ability to capture the shot-to-shot intensity fluctuations observed experimentally. The lack of accurate temporal statistics in simulations that utilize these models is a significant barrier to optimizing and interpreting data from XFEL coherent diffraction experiments. Presented here is a phenomenological model of XFEL radiation that is capable of capturing the shot-to-shot statistics observed experimentally using a simple time-dependent approximation of the pulse wavefront. The model is applied to reproduce non-stationary shot-to-shot intensity fluctuations observed at the European XFEL, whilst accurately representing the single-shot properties predicted by FEL theory. Compared with previous models, this approach provides a simple, robust and computationally inexpensive method of generating statistical representations of XFEL radiation.
Collapse
Affiliation(s)
- Trey W. Guest
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Mathematical and Physical Sciences, School of Engineering, Computing and Mathematical Sciences, La Trobe University, Bundoora, VIC 3086, Australia
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Richard Bean
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Raimund Kammering
- Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | - Grant van Riessen
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Mathematical and Physical Sciences, School of Engineering, Computing and Mathematical Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Adrian P. Mancuso
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Brian Abbey
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Mathematical and Physical Sciences, School of Engineering, Computing and Mathematical Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
2
|
Gao Z, Fan J, Tong Y, Zhang J, He B, Nie Y, Luan H, Lu D, Zhang D, Yuan X, Wang Y, Liu Z, Jiang H. Single-pulse characterization of the focal spot size of X-ray free-electron lasers using coherent diffraction imaging. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:505-513. [PMID: 36947163 PMCID: PMC10161889 DOI: 10.1107/s1600577523000887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/31/2023] [Indexed: 05/06/2023]
Abstract
The characterization of X-ray focal spots is of great significance for the diagnosis and performance optimization of focusing systems. X-ray free-electron lasers (XFELs) are the latest generation of X-ray sources with ultrahigh brilliance, ultrashort pulse duration and nearly full transverse coherence. Because each XFEL pulse is unique and has an ultrahigh peak intensity, it is difficult to characterize its focal spot size individually with full power. Herein, a method for characterizing the spot size at the focus position is proposed based on coherent diffraction imaging. A numerical simulation was conducted to verify the feasibility of the proposed method. The focal spot size of the Coherent Scattering and Imaging endstation at the Shanghai Soft X-ray Free Electron Laser Facility was characterized using the method. The full width at half-maxima of the focal spot intensity and spot size in the horizontal and vertical directions were calculated to be 2.10 ± 0.24 µm and 2.00 ± 0.20 µm, respectively. An ablation imprint on the silicon frame was used to validate the results of the proposed method.
Collapse
Affiliation(s)
- Zichen Gao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China
| | - Jiadong Fan
- Center of Transformative Science, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China
| | - Yajun Tong
- Center of Transformative Science, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China
| | - Jianhua Zhang
- Center of Transformative Science, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China
| | - Bo He
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China
| | - Yonggan Nie
- Center of Transformative Science, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China
| | - Hui Luan
- Center of Transformative Science, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China
| | - Donghao Lu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China
| | - Difei Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China
| | - Xinye Yuan
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China
| | - Yueran Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China
| | - Zhi Liu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China
| | - Huaidong Jiang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, People's Republic of China
| |
Collapse
|
3
|
Cheng W, Xu Y, Yang C, Su H, Liu Q. Monitoring surface dynamics of electrodes during electrocatalysis using in situ synchrotron FTIR spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:340-346. [PMID: 36891847 PMCID: PMC10000798 DOI: 10.1107/s1600577523000796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Monitoring the surface dynamics of catalysts under working conditions is important for a deep understanding of the underlying electrochemical mechanisms towards efficient energy conversion and storage. Fourier transform infrared (FTIR) spectroscopy with high surface sensitivity has been considered as a powerful tool for detecting surface adsorbates, but it faces a great challenge when being adopted in surface dynamics investigations during electrocatalysis due to the complication and influence of aqueous environments. This work reports a well designed FTIR cell with tunable micrometre-scale water film over the surface of working electrodes and dual electrolyte/gas channels for in situ synchrotron FTIR tests. By coupling with a facile single-reflection infrared mode, a general in situ synchrotron radiation FTIR (SR-FTIR) spectroscopic method is developed for tracking the surface dynamics of catalysts during the electrocatalytic process. As an example, in situ formed key *OOH is clearly observed on the surface of commercial benchmark IrO2 catalysts during the electrochemical oxygen evolution process based on the developed in situ SR-FTIR spectroscopic method, which demonstrates its universality and feasibility in surface dynamics studies of electrocatalysts under working conditions.
Collapse
Affiliation(s)
- Weiren Cheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Yanzhi Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| | - Chenyu Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| | - Hui Su
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| |
Collapse
|
4
|
Cho DH, Shen Z, Ihm Y, Wi DH, Jung C, Nam D, Kim S, Park SY, Kim KS, Sung D, Lee H, Shin JY, Hwang J, Lee SY, Lee SY, Han SW, Noh DY, Loh ND, Song C. High-Throughput 3D Ensemble Characterization of Individual Core-Shell Nanoparticles with X-ray Free Electron Laser Single-Particle Imaging. ACS NANO 2021; 15:4066-4076. [PMID: 33506675 DOI: 10.1021/acsnano.0c07961] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The structures as building blocks for designing functional nanomaterials have fueled the development of versatile nanoprobes to understand local structures of noncrystalline specimens. Progress in analyzing structures of individual specimens with atomic scale accuracy has been notable recently. In most cases, however, only a limited number of specimens are inspected lacking statistics to represent the systems with structural inhomogeneity. Here, by employing single-particle imaging with X-ray free electron lasers and algorithms for multiple-model 3D imaging, we succeeded in investigating several thousand specimens in a couple of hours and identified intrinsic heterogeneities with 3D structures. Quantitative analysis has unveiled 3D morphology, facet indices, and elastic strain. The 3D elastic energy distribution is further corroborated by molecular dynamics simulations to gain mechanical insight at the atomic level. This work establishes a route to high-throughput characterization of individual specimens in large ensembles, hence overcoming statistical deficiency while providing quantitative information at the nanoscale.
Collapse
Affiliation(s)
- Do Hyung Cho
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Zhou Shen
- Department of Physics, National University of Singapore, Singapore 117551
| | - Yungok Ihm
- Department of Chemistry, POSTECH, Pohang 37673, Korea
| | - Dae Han Wi
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
| | - Chulho Jung
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Daewoong Nam
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Sangsoo Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Sang-Youn Park
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Kyung Sook Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Daeho Sung
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Heemin Lee
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Jae-Yong Shin
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Junha Hwang
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Sung Yun Lee
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Su Yong Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Sang Woo Han
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
| | - Do Young Noh
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - N Duane Loh
- Department of Physics, National University of Singapore, Singapore 117551
- Department of Biological Sciences, National University of Singapore, Singapore 117557
| | - Changyong Song
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
- Asia Pacific Center for Theoretical Physics (APCTP), POSTECH, Pohang 37673, Korea
| |
Collapse
|