1
|
Glover H, Saßmannshausen T, Bertrand Q, Trabuco M, Slavov C, Bacchin A, Andres F, Kondo Y, Stipp R, Wranik M, Khusainov G, Carrillo M, Kekilli D, Nan J, Gonzalez A, Cheng R, Neidhart W, Weinert T, Leonarski F, Dworkowski F, Kepa M, Wachtveitl J, Hennig M, Standfuss J. Photoswitch dissociation from a G protein-coupled receptor resolved by time-resolved serial crystallography. Nat Commun 2024; 15:10837. [PMID: 39738009 DOI: 10.1038/s41467-024-55109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans. The binding and dissociation of ligands tunes the inherent conformational flexibility of these important drug targets towards distinct functional states. Here we show how to trigger and resolve protein-ligand interaction dynamics within the human adenosine A2A receptor. For this, we designed seven photochemical affinity switches derived from the anti-Parkinson's drug istradefylline. In a rational approach based on UV/Vis spectroscopy, time-resolved absorption spectroscopy, differential scanning fluorimetry and cryo-crystallography, we identified compounds suitable for time-resolved serial crystallography. Our analysis of millisecond-scale dynamics revealed how trans-to-cis isomerization shifts selected istradefylline derivatives within the binding pocket. Depending on the chemical nature of the ligand, interactions between extracellular loops 2 and 3, acting as a lid on the binding pocket, are disrupted and rearrangement of the orthosteric binding pocket is invoked upon ligand dissociation. This innovative approach provides insights into GPCR dynamics at the atomic level, offering potential for developing novel pharmaceuticals.
Collapse
Affiliation(s)
- Hannah Glover
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Torben Saßmannshausen
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
| | | | | | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
- Department of Chemistry, University of South Florida, Tampa, USA
| | | | - Fabio Andres
- leadXpro AG, Park Innovaare, Villigen PSI, Switzerland
| | - Yasushi Kondo
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Robin Stipp
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | | | | | | | - Demet Kekilli
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Jie Nan
- MaxIV Laboratory, Lund University, Lund, Sweden
| | | | - Robert Cheng
- leadXpro AG, Park Innovaare, Villigen PSI, Switzerland
| | | | | | | | | | - Michal Kepa
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
| | | | | |
Collapse
|
2
|
Dunge A, Phan C, Uwangue O, Bjelcic M, Gunnarsson J, Wehlander G, Käck H, Brändén G. Exploring serial crystallography for drug discovery. IUCRJ 2024; 11:831-842. [PMID: 39072424 PMCID: PMC11364032 DOI: 10.1107/s2052252524006134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/24/2024] [Indexed: 07/30/2024]
Abstract
Structure-based drug design is highly dependent on the availability of structures of the protein of interest in complex with lead compounds. Ideally, this information can be used to guide the chemical optimization of a compound into a pharmaceutical drug candidate. A limitation of the main structural method used today - conventional X-ray crystallography - is that it only provides structural information about the protein complex in its frozen state. Serial crystallography is a relatively new approach that offers the possibility to study protein structures at room temperature (RT). Here, we explore the use of serial crystallography to determine the structures of the pharmaceutical target, soluble epoxide hydrolase. We introduce a new method to screen for optimal microcrystallization conditions suitable for use in serial crystallography and present a number of RT ligand-bound structures of our target protein. From a comparison between the RT structural data and previously published cryo-temperature structures, we describe an example of a temperature-dependent difference in the ligand-binding mode and observe that flexible loops are better resolved at RT. Finally, we discuss the current limitations and potential future advances of serial crystallography for use within pharmaceutical drug discovery.
Collapse
Affiliation(s)
- A. Dunge
- Department of Chemistry and Molecular BiologyUniversity of GothenburgBox 462SE-405 30GothenburgSweden
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&DAstraZenecaPepparedsleden 1SE-431 83GothenburgSweden
| | - C. Phan
- Department of Chemistry and Molecular BiologyUniversity of GothenburgBox 462SE-405 30GothenburgSweden
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&DAstraZenecaPepparedsleden 1SE-431 83GothenburgSweden
| | - O. Uwangue
- Department of Chemistry and Molecular BiologyUniversity of GothenburgBox 462SE-405 30GothenburgSweden
| | - M. Bjelcic
- Department of Chemistry and Molecular BiologyUniversity of GothenburgBox 462SE-405 30GothenburgSweden
- MAX IV LaboratoryLund UniversityPO Box 118SE-221 00LundSweden
| | - J. Gunnarsson
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&DAstraZenecaPepparedsleden 1SE-431 83GothenburgSweden
| | - G. Wehlander
- Department of Chemistry and Molecular BiologyUniversity of GothenburgBox 462SE-405 30GothenburgSweden
| | - H. Käck
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&DAstraZenecaPepparedsleden 1SE-431 83GothenburgSweden
| | - G. Brändén
- Department of Chemistry and Molecular BiologyUniversity of GothenburgBox 462SE-405 30GothenburgSweden
| |
Collapse
|
3
|
Bhowmick A, Simon PS, Bogacz I, Hussein R, Zhang M, Makita H, Ibrahim M, Chatterjee R, Doyle MD, Cheah MH, Chernev P, Fuller FD, Fransson T, Alonso-Mori R, Brewster AS, Sauter NK, Bergmann U, Dobbek H, Zouni A, Messinger J, Kern J, Yachandra VK, Yano J. Going around the Kok cycle of the water oxidation reaction with femtosecond X-ray crystallography. IUCRJ 2023; 10:642-655. [PMID: 37870936 PMCID: PMC10619448 DOI: 10.1107/s2052252523008928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
The water oxidation reaction in photosystem II (PS II) produces most of the molecular oxygen in the atmosphere, which sustains life on Earth, and in this process releases four electrons and four protons that drive the downstream process of CO2 fixation in the photosynthetic apparatus. The catalytic center of PS II is an oxygen-bridged Mn4Ca complex (Mn4CaO5) which is progressively oxidized upon the absorption of light by the chlorophyll of the PS II reaction center, and the accumulation of four oxidative equivalents in the catalytic center results in the oxidation of two waters to dioxygen in the last step. The recent emergence of X-ray free-electron lasers (XFELs) with intense femtosecond X-ray pulses has opened up opportunities to visualize this reaction in PS II as it proceeds through the catalytic cycle. In this review, we summarize our recent studies of the catalytic reaction in PS II by following the structural changes along the reaction pathway via room-temperature X-ray crystallography using XFELs. The evolution of the electron density changes at the Mn complex reveals notable structural changes, including the insertion of OX from a new water molecule, which disappears on completion of the reaction, implicating it in the O-O bond formation reaction. We were also able to follow the structural dynamics of the protein coordinating with the catalytic complex and of channels within the protein that are important for substrate and product transport, revealing well orchestrated conformational changes in response to the electronic changes at the Mn4Ca cluster.
Collapse
Affiliation(s)
- Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Philipp S. Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rana Hussein
- Department of Biology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Miao Zhang
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mohamed Ibrahim
- Department of Biology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Margaret D. Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mun Hon Cheah
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala SE 75120, Sweden
| | - Petko Chernev
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala SE 75120, Sweden
| | - Franklin D. Fuller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Thomas Fransson
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Uwe Bergmann
- Department of Physics, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Holger Dobbek
- Department of Biology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Athina Zouni
- Department of Biology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala SE 75120, Sweden
- Department of Chemistry, Umeå University, Umeå SE 90187, Sweden
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Bjelčić M, Sigfridsson Clauss KGV, Aurelius O, Milas M, Nan J, Ursby T. Anaerobic fixed-target serial crystallography using sandwiched silicon nitride membranes. Acta Crystallogr D Struct Biol 2023; 79:1018-1025. [PMID: 37860963 PMCID: PMC10619425 DOI: 10.1107/s205979832300880x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
In recent years, the emergence of serial crystallography, initially pioneered at X-ray free-electron lasers (XFELs), has sparked a growing interest in collecting macromolecular crystallographic data at room temperature. Various fixed-target serial crystallography techniques have been developed, ranging from commercially available chips to in-house designs implemented at different synchrotron facilities. Nevertheless, there is currently no commercially available chip (known to the authors) specifically designed for the direct handling of oxygen-sensitive samples. This study presents a methodology employing silicon nitride chips arranged in a `sandwich' configuration, enabling reliable room-temperature data collection from oxygen-sensitive samples. The method involves the utilization of a custom-made 3D-printed assembling tool and a MX sample holder. To validate the effectiveness of the proposed method, deoxyhemoglobin and methemoglobin samples were investigated using the BioMAX X-ray macromolecular crystallography beamline, the Balder X-ray absorption spectroscopy beamline and UV-Vis absorption spectroscopy.
Collapse
Affiliation(s)
- Monika Bjelčić
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | | | - Oskar Aurelius
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Mirko Milas
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Jie Nan
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Thomas Ursby
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
- LINXS Institute of Advanced Neutron and X-ray Science, Lund, Sweden
| |
Collapse
|
5
|
Leonarski F, Nan J, Matej Z, Bertrand Q, Furrer A, Gorgisyan I, Bjelčić M, Kepa M, Glover H, Hinger V, Eriksson T, Cehovin A, Eguiraun M, Gasparotto P, Mozzanica A, Weinert T, Gonzalez A, Standfuss J, Wang M, Ursby T, Dworkowski F. Kilohertz serial crystallography with the JUNGFRAU detector at a fourth-generation synchrotron source. IUCRJ 2023; 10:729-737. [PMID: 37830774 PMCID: PMC10619449 DOI: 10.1107/s2052252523008618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
Serial and time-resolved macromolecular crystallography are on the rise. However, beam time at X-ray free-electron lasers is limited and most third-generation synchrotron-based macromolecular crystallography beamlines do not offer the necessary infrastructure yet. Here, a new setup is demonstrated, based on the JUNGFRAU detector and Jungfraujoch data-acquisition system, that enables collection of kilohertz serial crystallography data at fourth-generation synchrotrons. More importantly, it is shown that this setup is capable of collecting multiple-time-point time-resolved protein dynamics at kilohertz rates, allowing the probing of microsecond to second dynamics at synchrotrons in a fraction of the time needed previously. A high-quality complete X-ray dataset was obtained within 1 min from lysozyme microcrystals, and the dynamics of the light-driven sodium-pump membrane protein KR2 with a time resolution of 1 ms could be demonstrated. To make the setup more accessible for researchers, downstream data handling and analysis will be automated to allow on-the-fly spot finding and indexing, as well as data processing.
Collapse
Affiliation(s)
- Filip Leonarski
- Photon Science Division, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Jie Nan
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Zdenek Matej
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Quentin Bertrand
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Antonia Furrer
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | | | - Monika Bjelčić
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Michal Kepa
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Hannah Glover
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Viktoria Hinger
- Photon Science Division, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Thomas Eriksson
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | | | - Mikel Eguiraun
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Piero Gasparotto
- Scientific Computing, Theory and Data, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Aldo Mozzanica
- Photon Science Division, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Tobias Weinert
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Ana Gonzalez
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Jörg Standfuss
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Meitian Wang
- Photon Science Division, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Thomas Ursby
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Florian Dworkowski
- Photon Science Division, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| |
Collapse
|
6
|
Vakili M, Bielecki J, Knoška J, Otte F, Han H, Kloos M, Schubert R, Delmas E, Mills G, de Wijn R, Letrun R, Dold S, Bean R, Round A, Kim Y, Lima FA, Dörner K, Valerio J, Heymann M, Mancuso AP, Schulz J. 3D printed devices and infrastructure for liquid sample delivery at the European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:331-346. [PMID: 35254295 PMCID: PMC8900844 DOI: 10.1107/s1600577521013370] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The Sample Environment and Characterization (SEC) group of the European X-ray Free-Electron Laser (EuXFEL) develops sample delivery systems for the various scientific instruments, including systems for the injection of liquid samples that enable serial femtosecond X-ray crystallography (SFX) and single-particle imaging (SPI) experiments, among others. For rapid prototyping of various device types and materials, sub-micrometre precision 3D printers are used to address the specific experimental conditions of SFX and SPI by providing a large number of devices with reliable performance. This work presents the current pool of 3D printed liquid sample delivery devices, based on the two-photon polymerization (2PP) technique. These devices encompass gas dynamic virtual nozzles (GDVNs), mixing-GDVNs, high-viscosity extruders (HVEs) and electrospray conical capillary tips (CCTs) with highly reproducible geometric features that are suitable for time-resolved SFX and SPI experiments at XFEL facilities. Liquid sample injection setups and infrastructure on the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument are described, this being the instrument which is designated for biological structure determination at the EuXFEL.
Collapse
Affiliation(s)
| | | | - Juraj Knoška
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Florian Otte
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Physics, TU Dortmund, Otto-Hahn-Straße 4, 44221 Dortmund, Germany
| | - Huijong Han
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Marco Kloos
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Elisa Delmas
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Grant Mills
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Romain Letrun
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Simon Dold
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Richard Bean
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Adam Round
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- School of Chemical and Physical Sciences, Keele University, Staffordshire ST5 5AZ, United Kingdom
| | - Yoonhee Kim
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - Joana Valerio
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Michael Heymann
- Institute for Biomaterials and Biomolecular Systems (IBBS), University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Adrian P. Mancuso
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne 3086, Australia
| | | |
Collapse
|
7
|
Abstract
Serial crystallography (SX) is an emerging X-ray crystallographic method for determining macromolecule structures. It can address concerns regarding the limitations of data collected by conventional crystallography techniques, which require cryogenic-temperature environments and allow crystals to accumulate radiation damage. Time-resolved SX studies using the pump-probe methodology provide useful information for understanding macromolecular mechanisms and structure fluctuation dynamics. This Special Issue deals with the serial crystallography approach using an X-ray free electron laser (XFEL) and synchrotron X-ray source, and reviews recent SX research involving synchrotron use. These reports provide insights into future serial crystallography research trends and approaches.
Collapse
|