1
|
Bell EL, Rosetto G, Ingraham MA, Ramirez KJ, Lincoln C, Clarke RW, Gado JE, Lilly JL, Kucharzyk KH, Erickson E, Beckham GT. Natural diversity screening, assay development, and characterization of nylon-6 enzymatic depolymerization. Nat Commun 2024; 15:1217. [PMID: 38336849 PMCID: PMC10858056 DOI: 10.1038/s41467-024-45523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Successes in biocatalytic polyester recycling have raised the possibility of deconstructing alternative polymers enzymatically, with polyamide (PA) being a logical target due to the array of amide-cleaving enzymes present in nature. Here, we screen 40 potential natural and engineered nylon-hydrolyzing enzymes (nylonases), using mass spectrometry to quantify eight compounds resulting from enzymatic nylon-6 (PA6) hydrolysis. Comparative time-course reactions incubated at 40-70 °C showcase enzyme-dependent variations in product distributions and extent of PA6 film depolymerization, with significant nylon deconstruction activity appearing rare. The most active nylonase, a NylCK variant we rationally thermostabilized (an N-terminal nucleophile (Ntn) hydrolase, NylCK-TS, Tm = 87.4 °C, 16.4 °C higher than the wild-type), hydrolyzes 0.67 wt% of a PA6 film. Reactions fail to restart after fresh enzyme addition, indicating that substrate-based limitations, such as restricted enzyme access to hydrolysable bonds, prohibit more extensive deconstruction. Overall, this study expands our understanding of nylonase activity distribution, indicates that Ntn hydrolases may have the greatest potential for further development, and identifies key targets for progressing PA6 enzymatic depolymerization, including improving enzyme activity, product selectivity, and enhancing polymer accessibility.
Collapse
Affiliation(s)
- Elizabeth L Bell
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- BOTTLE Consortium, Golden, CO, 80401, USA
| | - Gloria Rosetto
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Morgan A Ingraham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- BOTTLE Consortium, Golden, CO, 80401, USA
| | - Kelsey J Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- BOTTLE Consortium, Golden, CO, 80401, USA
| | - Clarissa Lincoln
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- BOTTLE Consortium, Golden, CO, 80401, USA
| | - Ryan W Clarke
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- BOTTLE Consortium, Golden, CO, 80401, USA
| | - Japheth E Gado
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- BOTTLE Consortium, Golden, CO, 80401, USA
| | - Jacob L Lilly
- Battelle Memorial Institute, Columbus, OH, 43201, USA
| | | | - Erika Erickson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- BOTTLE Consortium, Golden, CO, 80401, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
- BOTTLE Consortium, Golden, CO, 80401, USA.
| |
Collapse
|
2
|
Danso D, Chow J, Streit WR. Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation. Appl Environ Microbiol 2019; 85:e01095-19. [PMID: 31324632 PMCID: PMC6752018 DOI: 10.1128/aem.01095-19] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Plastics are widely used in the global economy, and each year, at least 350 to 400 million tons are being produced. Due to poor recycling and low circular use, millions of tons accumulate annually in terrestrial or marine environments. Today it has become clear that plastic causes adverse effects in all ecosystems and that microplastics are of particular concern to our health. Therefore, recent microbial research has addressed the question of if and to what extent microorganisms can degrade plastics in the environment. This review summarizes current knowledge on microbial plastic degradation. Enzymes available act mainly on the high-molecular-weight polymers of polyethylene terephthalate (PET) and ester-based polyurethane (PUR). Unfortunately, the best PUR- and PET-active enzymes and microorganisms known still have moderate turnover rates. While many reports describing microbial communities degrading chemical additives have been published, no enzymes acting on the high-molecular-weight polymers polystyrene, polyamide, polyvinylchloride, polypropylene, ether-based polyurethane, and polyethylene are known. Together, these polymers comprise more than 80% of annual plastic production. Thus, further research is needed to significantly increase the diversity of enzymes and microorganisms acting on these polymers. This can be achieved by tapping into the global metagenomes of noncultivated microorganisms and dark matter proteins. Only then can novel biocatalysts and organisms be delivered that allow rapid degradation, recycling, or value-added use of the vast majority of most human-made polymers.
Collapse
Affiliation(s)
- Dominik Danso
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Jennifer Chow
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
6
|
Kawashima Y, Yasuhira K, Shibata N, Matsuura Y, Tanaka Y, Taniguchi M, Miyoshi Y, Takeo M, Kato DI, Higuchi Y, Negoro S. Enzymatic synthesis of nylon-6 units in organic solvents containing low concentrations of water. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Ohki T, Shibata N, Higuchi Y, Kawashima Y, Takeo M, Kato DI, Negoro S. Two alternative modes for optimizing nylon-6 byproduct hydrolytic activity from a carboxylesterase with a beta-lactamase fold: X-ray crystallographic analysis of directly evolved 6-aminohexanoate-dimer hydrolase. Protein Sci 2009; 18:1662-73. [PMID: 19521995 DOI: 10.1002/pro.185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Promiscuous 6-aminohexanoate-linear dimer (Ald)-hydrolytic activity originally obtained in a carboxylesterase with a beta-lactamase fold was enhanced about 80-fold by directed evolution using error-prone PCR and DNA shuffling. Kinetic studies of the mutant enzyme (Hyb-S4M94) demonstrated that the enzyme had acquired an increased affinity (K(m) = 15 mM) and turnover (k(cat) = 3.1 s(-1)) for Ald, and that a catalytic center suitable for nylon-6 byproduct hydrolysis had been generated. Construction of various mutant enzymes revealed that the enhanced activity in the newly evolved enzyme is due to the substitutions R187S/F264C/D370Y. Crystal structures of Hyb-S4M94 with bound substrate suggested that catalytic function for Ald was improved by hydrogen-bonding/hydrophobic interactions between the Ald--COOH and Tyr370, a hydrogen-bonding network from Ser187 to Ald--NH(3) (+), and interaction between Ald--NH(3) (+) and Gln27-O(epsilon) derived from another subunit in the homo-dimeric structure. In wild-type Ald-hydrolase (NylB), Ald-hydrolytic activity is thought to be optimized by the substitutions G181D/H266N, which improve an electrostatic interaction with Ald--NH(3) (+) (Kawashima et al., FEBS J 2009; 276:2547-2556). We propose here that there exist at least two alternative modes for optimizing the Ald-hydrolytic activity of a carboxylesterase with a beta-lactamase fold.
Collapse
Affiliation(s)
- Taku Ohki
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, Hyogo 671-2280, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Negoro S, Ohki T, Shibata N, Sasa K, Hayashi H, Nakano H, Yasuhira K, Kato DI, Takeo M, Higuchi Y. Nylon-oligomer Degrading Enzyme/Substrate Complex: Catalytic Mechanism of 6-Aminohexanoate-dimer Hydrolase. J Mol Biol 2007; 370:142-56. [DOI: 10.1016/j.jmb.2007.04.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2006] [Revised: 04/05/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
|
9
|
Ohki T, Wakitani Y, Takeo M, Yasuhira K, Shibata N, Higuchi Y, Negoro S. Mutational analysis of 6-aminohexanoate-dimer hydrolase: Relationship between nylon oligomer hydrolytic and esterolytic activities. FEBS Lett 2006; 580:5054-8. [PMID: 16949580 DOI: 10.1016/j.febslet.2006.08.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 08/10/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
Carboxylesterase (EII') from Arthrobacter sp. KI72 has 88% homology to 6-aminohexanoate-dimer hydrolase (EII) and possesses ca. 0.5% of the level of 6-aminohexanoate-linear dimer (Ald)-hydrolytic activity of EII. To study relationship between Ald-hydrolytic and esterolytic activities, random mutations were introduced into the gene for Hyb-24 (an EII/EII' hybrid with the majority of the sequence deriving for EII' and possessing an EII'-like level of Ald-hydrolytic activity). Either a G181D or a D370Y substitution in Hyb-24 increased the Ald-hydrolytic activity ca. 10-fold, and a G181D/D370Y double substitution increased activity ca. 100-fold. On the basis of kinetic studies and the three-dimensional structure of the enzyme, we suggest that binding of Ald is improved by these mutations. D370Y increased esterolytic activity for glycerylbutyrate ca. 30-50-fold, whereas G181D decreased the activity to 30% of the parental enzyme.
Collapse
Affiliation(s)
- Taku Ohki
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | | | | | | | | | | | | |
Collapse
|