1
|
Suzuki H, Kaneko MK, Kato Y. Roles of Podoplanin in Malignant Progression of Tumor. Cells 2022; 11:575. [PMID: 35159384 PMCID: PMC8834262 DOI: 10.3390/cells11030575] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Podoplanin (PDPN) is a cell-surface mucin-like glycoprotein that plays a critical role in tumor development and normal development of the lung, kidney, and lymphatic vascular systems. PDPN is overexpressed in several tumors and is involved in their malignancy. PDPN induces platelet aggregation through binding to platelet receptor C-type lectin-like receptor 2. Furthermore, PDPN modulates signal transductions that regulate cell proliferation, differentiation, migration, invasion, epithelial-to-mesenchymal transition, and stemness, all of which are crucial for the malignant progression of tumor. In the tumor microenvironment (TME), PDPN expression is upregulated in the tumor stroma, including cancer-associated fibroblasts (CAFs) and immune cells. CAFs play significant roles in the extracellular matrix remodeling and the development of immunosuppressive TME. Additionally, PDPN functions as a co-inhibitory molecule on T cells, indicating its involvement with immune evasion. In this review, we describe the mechanistic basis and diverse roles of PDPN in the malignant progression of tumors and discuss the possibility of the clinical application of PDPN-targeted cancer therapy, including cancer-specific monoclonal antibodies, and chimeric antigen receptor T technologies.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| |
Collapse
|
2
|
Guo M, Zhang H, Lv QW, Huang HB, Shen LJ. Higher plasma C-type lectin-like receptor 2 concentrations for prediction of higher risk of 30-day mortality in isolated severe blunt traumatic brain injury. Clin Chim Acta 2019; 496:1-6. [PMID: 31202718 DOI: 10.1016/j.cca.2019.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Platelet activation is implicated in secondary brain injury following traumatic brain injury (TBI). C-type lectin-like receptor 2 (CLEC-2) is extensively expressed on platelets and participates in platelet activation. We investigate dthe prognostic significance of plasma CLEC-2 in TBI patients. METHODS One hundred and six patients with isolated severe blunt TBI and 106 healthy controls were prospectively investigated. Plasma CLEC-2 concentrations were detected and Glasgow coma scale (GCS) scores were recorded. The relationship between plasma CLEC-2 concentrations and 30-day mortality in addition to overall survival was determined using multivariate models. RESULTS Patients exhibited a substantially higher concentration of plasma CLEC-2 than healthy controls. Among patients, plasma CLEC-2 concentrations were remarkably increased in the GCS scores- and Rotterdam computerized tomography classification- dependent manner. As compared with survivors within posttraumatic 30 days, plasma CLEC-2 concentrations were remarkably raised in non-survivors. Rising plasma CLEC-2 concentration was independently associated with an enhanced risk of 30-day mortality and short overall survival time. Plasma CLEC-2 concentrations had a significantly high area under receiver operating characteristic curve for predicting 30-day mortality. CONCLUSIONS Incremental plasma CLEC-2 concentrations are intimately related to increasing trauma severity, in close association with increased 30-day death, indicating the prognostic role of plasma CLEC-2 in TBI.
Collapse
Affiliation(s)
- Mi Guo
- Department of Neurosurgery, Shengzhou People's Hospital, Shengzhou branch Hospital of The First Affiliated Hospital of Zhejiang University, 666 Dangui Road, Shengzhou 312400, Zhejiang Province, China.
| | - Han Zhang
- Department of Neurosurgery, Shengzhou People's Hospital, Shengzhou branch Hospital of The First Affiliated Hospital of Zhejiang University, 666 Dangui Road, Shengzhou 312400, Zhejiang Province, China
| | - Qing-Wei Lv
- Department of Neurosurgery, Shengzhou People's Hospital, Shengzhou branch Hospital of The First Affiliated Hospital of Zhejiang University, 666 Dangui Road, Shengzhou 312400, Zhejiang Province, China
| | - Hang-Bin Huang
- Department of Neurosurgery, Shengzhou People's Hospital, Shengzhou branch Hospital of The First Affiliated Hospital of Zhejiang University, 666 Dangui Road, Shengzhou 312400, Zhejiang Province, China
| | - Liang-Jun Shen
- Department of Neurosurgery, Shengzhou People's Hospital, Shengzhou branch Hospital of The First Affiliated Hospital of Zhejiang University, 666 Dangui Road, Shengzhou 312400, Zhejiang Province, China
| |
Collapse
|
3
|
A novel decarboxylating amidohydrolase involved in avoiding metabolic dead ends during cyanuric acid catabolism in Pseudomonas sp. strain ADP. PLoS One 2018; 13:e0206949. [PMID: 30399173 PMCID: PMC6219798 DOI: 10.1371/journal.pone.0206949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/21/2018] [Indexed: 11/19/2022] Open
Abstract
Cyanuric acid is a common environmental contaminant and a metabolic intermediate in the catabolism of s-triazine compounds, including atrazine and other herbicides. Cyanuric acid is catabolized via a number of bacterial pathways, including one first identified in Pseudomonas sp. strain ADP, which is encoded by a single, five-gene operon (atzDGEHF) found on a self-transmissible plasmid. The discovery of two of the five genes (atzG and atzH) was reported in 2018 and although the function of atzG was determined, the role of atzH was unclear. Here, we present the first in vitro reconstruction of the complete, five-protein cyanuric acid catabolism pathway, which indicates that AtzH may be an amidase responsible for converting 1,3-dicarboxyurea (the AtzE product) to allophanate (the AtzF substrate). We have solved the AtzH structure (a DUF3225 protein from the NTF2 superfamily) and used it to predict the substrate-binding pocket. Site-directed mutagenesis experiments suggest that two residues (Tyr22 and Arg46) are needed for catalysis. We also show that atzH homologs are commonly found in Proteobacteria associated with homologs of the atzG and atzE genes. The genetic context of these atzG-atzE-atzH clusters imply that they have a role in the catabolism of nitrogenous compounds. Moreover, their presence in many genomes in the absence of homologs of atzD and atzF suggests that the atzG-atzE-atzH cluster may pre-date the evolution of the cyanuric acid catabolism operon.
Collapse
|
4
|
Flierl U, Nero TL, Lim B, Andrews RK, Parker MW, Gardiner EE, Peter K. Targeting of C-type lectin-like receptor 2 or P2Y12 for the prevention of platelet activation by immunotherapeutic CpG oligodeoxynucleotides: comment. J Thromb Haemost 2018; 16:181-185. [PMID: 29052937 DOI: 10.1111/jth.13877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Indexed: 11/30/2022]
Affiliation(s)
- U Flierl
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - T L Nero
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - B Lim
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - R K Andrews
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - M W Parker
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - E E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - K Peter
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Menter DG, Kopetz S, Hawk E, Sood AK, Loree JM, Gresele P, Honn KV. Platelet "first responders" in wound response, cancer, and metastasis. Cancer Metastasis Rev 2017; 36:199-213. [PMID: 28730545 PMCID: PMC5709140 DOI: 10.1007/s10555-017-9682-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Platelets serve as "first responders" during normal wounding and homeostasis. Arising from bone marrow stem cell lineage megakaryocytes, anucleate platelets can influence inflammation and immune regulation. Biophysically, platelets are optimized due to size and discoid morphology to distribute near vessel walls, monitor vascular integrity, and initiate quick responses to vascular lesions. Adhesion receptors linked to a highly reactive filopodia-generating cytoskeleton maximizes their vascular surface contact allowing rapid response capabilities. Functionally, platelets normally initiate rapid clotting, vasoconstriction, inflammation, and wound biology that leads to sterilization, tissue repair, and resolution. Platelets also are among the first to sense, phagocytize, decorate, or react to pathogens in the circulation. These platelet first responder properties are commandeered during chronic inflammation, cancer progression, and metastasis. Leaky or inflammatory reaction blood vessel genesis during carcinogenesis provides opportunities for platelet invasion into tumors. Cancer is thought of as a non-healing or chronic wound that can be actively aided by platelet mitogenic properties to stimulate tumor growth. This growth ultimately outstrips circulatory support leads to angiogenesis and intravasation of tumor cells into the blood stream. Circulating tumor cells reengage additional platelets, which facilitates tumor cell adhesion, arrest and extravasation, and metastasis. This process, along with the hypercoagulable states associated with malignancy, is amplified by IL6 production in tumors that stimulate liver thrombopoietin production and elevates circulating platelet numbers by thrombopoiesis in the bone marrow. These complex interactions and the "first responder" role of platelets during diverse physiologic stresses provide a useful therapeutic target that deserves further exploration.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA.
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - Ernest Hawk
- Office of the Vice President Cancer Prevention & Population Science, M. D. Anderson Cancer Center, Unit 1370, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
| | - Anil K Sood
- Gynocologic Oncology & Reproductive Medicine, M. D. Anderson Cancer Center, Unit 1362, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
- Department of Cancer Biology, M. D. Anderson Cancer Center, Unit 1362, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
- Center for RNA Interference and Non-Coding RNA The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Jonathan M Loree
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Via E. Dal Pozzo, 06126, Perugia, Italy
| | - Kenneth V Honn
- Bioactive Lipids Research Program, Department of Pathology, Wayne State University, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
- Department of Pathology, Wayne State University, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
- Cancer Biology Division, Wayne State University School of Medicine, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
6
|
Nagae M, Morita-Matsumoto K, Kato M, Kaneko MK, Kato Y, Yamaguchi Y. A platform of C-type lectin-like receptor CLEC-2 for binding O-glycosylated podoplanin and nonglycosylated rhodocytin. Structure 2014; 22:1711-1721. [PMID: 25458834 DOI: 10.1016/j.str.2014.09.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/13/2014] [Accepted: 09/17/2014] [Indexed: 11/18/2022]
Abstract
Podoplanin is a transmembrane O-glycoprotein that binds to C-type lectin-like receptor 2 (CLEC-2). The O-glycan-dependent interaction seems to play crucial roles in various biological processes, such as platelet aggregation. Rhodocytin, a snake venom, also binds to CLEC-2 and aggregates platelets in a glycan-independent manner. To elucidate the structural basis of the glycan-dependent and independent interactions, we performed comparative crystallographic studies of podoplanin and rhodocytin in complex with CLEC-2. Both podoplanin and rhodocytin bind to the noncanonical "side" face of CLEC-2. There is a common interaction mode between consecutive acidic residues on the ligands and the same arginine residues on CLEC-2. Other interactions are ligand-specific. Carboxyl groups from the sialic acid residue on podoplanin and from the C terminus of the rhodocytin α subunit interact differently at this "second" binding site on CLEC-2. The unique and versatile binding modes open a way to understand the functional consequences of CLEC-2-ligand interactions.
Collapse
Affiliation(s)
- Masamichi Nagae
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kana Morita-Matsumoto
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masaki Kato
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mika Kato Kaneko
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
7
|
Menter DG, Tucker SC, Kopetz S, Sood AK, Crissman JD, Honn KV. Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Rev 2014; 33:231-69. [PMID: 24696047 PMCID: PMC4186918 DOI: 10.1007/s10555-014-9498-0] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human platelets arise as subcellular fragments of megakaryocytes in bone marrow. The physiologic demand, presence of disease such as cancer, or drug effects can regulate the production circulating platelets. Platelet biology is essential to hemostasis, vascular integrity, angiogenesis, inflammation, innate immunity, wound healing, and cancer biology. The most critical biological platelet response is serving as "First Responders" during the wounding process. The exposure of extracellular matrix proteins and intracellular components occurs after wounding. Numerous platelet receptors recognize matrix proteins that trigger platelet activation, adhesion, aggregation, and stabilization. Once activated, platelets change shape and degranulate to release growth factors and bioactive lipids into the blood stream. This cyclic process recruits and aggregates platelets along with thrombogenesis. This process facilitates wound closure or can recognize circulating pathologic bodies. Cancer cell entry into the blood stream triggers platelet-mediated recognition and is amplified by cell surface receptors, cellular products, extracellular factors, and immune cells. In some cases, these interactions suppress immune recognition and elimination of cancer cells or promote arrest at the endothelium, or entrapment in the microvasculature, and survival. This supports survival and spread of cancer cells and the establishment of secondary lesions to serve as important targets for prevention and therapy.
Collapse
Affiliation(s)
- David G Menter
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
The crystallization of membrane proteins is an essential technique for the determination of atomic models of three-dimensional structures by X-ray crystallography. The compositions of solutions of purified membrane proteins are altered, so as to transiently induce supersaturation, a requirement for crystal nucleation and growth. The establishment of the precise optimal crystallization conditions has to be performed individually by a combination of systematic approaches and trial-and-error. These procedures have become more efficient due to the introduction of laboratory automation. Here we describe the crystallization of the dihaem-containing quinol:fumarate reductase (QFR) membrane protein complex and illustrate key factors important in the screening process.
Collapse
Affiliation(s)
- Florian G Müller
- Department of Structural Biology, Saarland University, Homburg, Germany
| | | |
Collapse
|
9
|
Abstract
The crystallization experiment has one main objective: to obtain diffraction quality crystals. This can be achieved through myriad avenues; here the focus will be on crystallization in support of drug discovery. In drug discovery there are two main paradigms for crystallography: high-throughput, and by any means necessary. Each paradigm requires the investigator to formulate strategies based on different priorities. In the high-throughput environment, the emphasis is on rapid prosecution of a large number of protein targets. In the by any means necessary paradigm the target pool is generally smaller and structural information is absolutely necessary for success. The process of growing diffraction quality protein crystals involves deciding on a crystallization method, initial screening, cryoprotection, initial diffraction analysis, and growth optimization. Furthermore, in structure-based drug design it is necessary to obtain crystal structures of protein-ligand complexes.
Collapse
|
10
|
Watson AA, O’Callaghan CA. Molecular analysis of the interaction of the snake venom rhodocytin with the platelet receptor CLEC-2. Toxins (Basel) 2011; 3:991-1003. [PMID: 22069753 PMCID: PMC3202865 DOI: 10.3390/toxins3080991] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 07/21/2011] [Accepted: 08/08/2011] [Indexed: 01/27/2023] Open
Abstract
The Malayan pit viper, Calloselasma rhodostoma, produces a potent venom toxin, rhodocytin (aggretin) which causes platelet aggregation. Rhodocytin is a ligand for the receptor CLEC-2 on the surface of platelets. The interaction of these two molecules initiates a signaling pathway which results in platelet activation and aggregation. We have previously solved the crystal structures of CLEC-2 and of rhodocytin, and have proposed models by which tetrameric rhodocytin may interact with either two monomers of CLEC-2, or with one or two copies of dimeric CLEC-2. In the current study we use a range of approaches to analyze the molecular interfaces and dynamics involved in the models of the interaction of rhodocytin with either one or two copies of dimeric CLEC-2, and their implications for clustering of CLEC-2 on the platelet surface.
Collapse
Affiliation(s)
- Aleksandra A. Watson
- Department of Biochemistry, University of Cambridge/ 80 Tennis Court Road, Cambridge, CB2 1GA, UK;
| | - Christopher A. O’Callaghan
- Henry Wellcome Building for Molecular Physiology, University of Oxford/ Roosevelt Drive, Oxford, OX3 7BN, UK
- Author to whom correspondence should be addressed; ; Tel.: +44-1865-287789; Fax: +44-1865-287787
| |
Collapse
|
11
|
Watson AA, Christou CM, O'Callaghan CA. Expression, purification and crystallization of the human UL16-binding protein ULBP1. Protein Expr Purif 2011; 79:44-8. [PMID: 21575723 DOI: 10.1016/j.pep.2011.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/27/2011] [Accepted: 04/30/2011] [Indexed: 11/18/2022]
Abstract
UL16-binding proteins (ULBPs) are markers of cellular stress which are upregulated on the surface of virus-infected and tumor cells. Recognition of ULBP1 by the activating receptor NKG2D on the surface of cytotoxic natural killer (NK) and T cells promotes lysis of cells expressing ULBP1 and is an important mechanism of immune surveillance. We report a robust method for the generation of large quantities of crystal-grade recombinant ULBP1 protein. The extracellular portion of human ULBP1 was cloned into a T7 expression vector for expression in Escherichia coli. Unpaired cysteines in the sequence which are predicted not to be involved in the intramolecular disulfide bond formation were mutated to serine. ULBP1 was expressed in E. coli BL21 (DE3) pLysS cells as inclusion bodies. Purified inclusion bodies were solubilized by denaturation in guanidine, and refolded by slow dilution. The refolded protein was purified by size exclusion gel filtration and anion exchange chromatography. Furthermore, we have identified conditions optimal for the crystallization of this protein and have obtained initial diffraction data to 4.6Å from these crystals.
Collapse
Affiliation(s)
- Aleksandra A Watson
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
12
|
Watson AA, Lebedev AA, Hall BA, Fenton-May AE, Vagin AA, Dejnirattisai W, Felce J, Mongkolsapaya J, Palma AS, Liu Y, Feizi T, Screaton GR, Murshudov GN, O'Callaghan CA. Structural flexibility of the macrophage dengue virus receptor CLEC5A: implications for ligand binding and signaling. J Biol Chem 2011; 286:24208-18. [PMID: 21566123 DOI: 10.1074/jbc.m111.226142] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human C-type lectin-like molecule CLEC5A is a critical macrophage receptor for dengue virus. The binding of dengue virus to CLEC5A triggers signaling through the associated adapter molecule DAP12, stimulating proinflammatory cytokine release. We have crystallized an informative ensemble of CLEC5A structural conformers at 1.9-Å resolution and demonstrate how an on-off extension to a β-sheet acts as a binary switch regulating the flexibility of the molecule. This structural information together with molecular dynamics simulations suggests a mechanism whereby extracellular events may be transmitted through the membrane and influence DAP12 signaling. We demonstrate that CLEC5A is homodimeric at the cell surface and binds to dengue virus serotypes 1-4. We used blotting experiments, surface analyses, glycan microarray, and docking studies to investigate the ligand binding potential of CLEC5A with particular respect to dengue virus. This study provides a rational foundation for understanding the dengue virus-macrophage interaction and the role of CLEC5A in dengue virus-induced lethal disease.
Collapse
Affiliation(s)
- Aleksandra A Watson
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Incorporation of podoplanin into HIV released from HEK-293T cells, but not PBMC, is required for efficient binding to the attachment factor CLEC-2. Retrovirology 2010; 7:47. [PMID: 20482880 PMCID: PMC2885308 DOI: 10.1186/1742-4690-7-47] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 05/19/2010] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Platelets are associated with HIV in the blood of infected individuals and might modulate viral dissemination, particularly if the virus is directly transmitted into the bloodstream. The C-type lectin DC-SIGN and the novel HIV attachment factor CLEC-2 are expressed by platelets and facilitate HIV transmission from platelets to T-cells. Here, we studied the molecular mechanisms behind CLEC-2-mediated HIV-1 transmission. RESULTS Binding studies with soluble proteins indicated that CLEC-2, in contrast to DC-SIGN, does not recognize the viral envelope protein, but a cellular factor expressed on kidney-derived 293T cells. Subsequent analyses revealed that the cellular mucin-like membranous glycoprotein podoplanin, a CLEC-2 ligand, was expressed on 293T cells and incorporated into virions released from these cells. Knock-down of podoplanin in 293T cells by shRNA showed that virion incorporation of podoplanin was required for efficient CLEC-2-dependent HIV-1 interactions with cell lines and platelets. Flow cytometry revealed no evidence for podoplanin expression on viable T-cells and peripheral blood mononuclear cells (PBMC). Podoplanin was also not detected on HIV-1 infected T-cells. However, apoptotic bystander cells in HIV-1 infected cultures reacted with anti-podoplanin antibodies, and similar results were obtained upon induction of apoptosis in a cell line and in PBMCs suggesting an unexpected link between apoptosis and podoplanin expression. Despite the absence of detectable podoplanin expression, HIV-1 produced in PBMC was transmitted to T-cells in a CLEC-2-dependent manner, indicating that T-cells might express an as yet unidentified CLEC-2 ligand. CONCLUSIONS Virion incorporation of podoplanin mediates CLEC-2 interactions of HIV-1 derived from 293T cells, while incorporation of a different cellular factor seems to be responsible for CLEC-2-dependent capture of PBMC-derived viruses. Furthermore, evidence was obtained that podoplanin expression is connected to apoptosis, a finding that deserves further investigation.
Collapse
|
14
|
Watson AA, Christou CM, James JR, Fenton-May AE, Moncayo GE, Mistry AR, Davis SJ, Gilbert RJC, Chakera A, O'Callaghan CA. The platelet receptor CLEC-2 is active as a dimer. Biochemistry 2009; 48:10988-96. [PMID: 19824697 DOI: 10.1021/bi901427d] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The platelet receptor CLEC-2 binds to the snake venom toxin rhodocytin and the tumor cell surface protein podoplanin. Binding of either of these ligands promotes phosphorylation of a single tyrosine residue in the YXXL motif in the intracellular domain of CLEC-2. Phosphorylation of this tyrosine initiates binding of spleen tyrosine kinase (Syk) and triggers further downstream signaling events and ultimately potent platelet activation and aggregation. However, it is unclear how a single YXXL motif can interact efficiently with Syk, which usually recognizes two tandem YXXL repeats presented as an immunoreceptor tyrosine-based activation motif (ITAM). Using bioluminescence resonance energy transfer, coimmunopreciptitation, recombinant protein expression and analytical gel filtration chromatography, surface plasmon resonance, Western blotting, multiangle light scattering (MALS), and analytical ultracentrifugation, we show that CLEC-2 exists as a non-disulfide-linked homodimer which could allow each Syk molecule to interact with two YXXL motifs, one from each CLEC-2 monomer.
Collapse
Affiliation(s)
- Aleksandra A Watson
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
LI YT, WU WB, HONG Y, WANG WZ, YANG JW, XIE JH, WU XZ. Purification of hCLEC-2 Recombinant Protein in Engineering Bacteria and Preparation and Identification of Its Antibody. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2009.00042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
O’Callaghan CA. Thrombomodulation via CLEC-2 targeting. Curr Opin Pharmacol 2009; 9:90-5. [DOI: 10.1016/j.coph.2008.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 12/22/2022]
|
17
|
Watson AA, Eble JA, O'Callaghan CA. Crystal structure of rhodocytin, a ligand for the platelet-activating receptor CLEC-2. Protein Sci 2008; 17:1611-6. [PMID: 18583525 DOI: 10.1110/ps.035568.108] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Binding of the snake venom protein rhodocytin to CLEC-2, a receptor on the surface of human platelets, initiates a signaling cascade leading to platelet activation and aggregation. We have previously solved the structure of CLEC-2. The 2.4 A resolution crystal structure of rhodocytin presented here demonstrates that it is the first snake venom or other C-type lectin-like protein to assemble as a non-disulfide linked (alphabeta)(2) tetramer. Rhodocytin is highly adapted for interaction with CLEC-2 and displays a concave binding surface, which is highly complementary to the experimentally determined binding interface on CLEC-2. Using computational dynamic methods, surface electrostatic charge and hydrophobicity analyses, and protein-protein docking predictions, we propose that the (alphabeta)(2) rhodocytin tetramer induces clustering of CLEC-2 receptors on the platelet surface, which will trigger major signaling events resulting in platelet activation and aggregation.
Collapse
Affiliation(s)
- Aleksandra A Watson
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, United Kingdom
| | | | | |
Collapse
|
18
|
Christou CM, Pearce AC, Watson AA, Mistry AR, Pollitt AY, Fenton-May AE, Johnson LA, Jackson DG, Watson SP, O'Callaghan CA. Renal cells activate the platelet receptor CLEC-2 through podoplanin. Biochem J 2008; 411:133-40. [PMID: 18215137 PMCID: PMC2749330 DOI: 10.1042/bj20071216] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have recently shown that the C-type lectin-like receptor, CLEC-2, is expressed on platelets and that it mediates powerful platelet aggregation by the snake venom toxin rhodocytin. In addition, we have provided indirect evidence for an endogenous ligand for CLEC-2 in renal cells expressing HIV-1. This putative ligand facilitates transmission of HIV through its incorporation into the viral envelope and binding to CLEC-2 on platelets. The aim of the present study was to identify the ligand on these cells which binds to CLEC-2 on platelets. Recombinant CLEC-2 exhibits specific binding to HEK-293T (human embryonic kidney) cells in which the HIV can be grown. Furthermore, HEK-293T cells activate both platelets and CLEC-2-transfected DT-40 B-cells. The transmembrane protein podoplanin was identified on HEK-293T cells and was demonstrated to mediate both binding of HEK-293T cells to CLEC-2 and HEK-293T cell activation of CLEC-2-transfected DT-40 B-cells. Podoplanin is expressed on renal cells (podocytes). Furthermore, a direct interaction between CLEC-2 and podoplanin was confirmed using surface plasmon resonance and was shown to be independent of glycosylation of CLEC-2. The interaction has an affinity of 24.5+/-3.7 microM. The present study identifies podoplanin as a ligand for CLEC-2 on renal cells.
Collapse
Affiliation(s)
- Charita M. Christou
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford. OX3 7BN, UK
| | - Andrew C. Pearce
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Aleksandra A. Watson
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford. OX3 7BN, UK
| | - Anita R. Mistry
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford. OX3 7BN, UK
| | - Alice Y. Pollitt
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Angharad E. Fenton-May
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford. OX3 7BN, UK
| | - Louise A. Johnson
- The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - David G. Jackson
- The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Steve P. Watson
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Chris A. O'Callaghan
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford. OX3 7BN, UK
| |
Collapse
|
19
|
Structural analysis of bacteriophage-encoded peptidoglycan hydrolase domain KMV36C: crystallization and preliminary X-ray diffraction. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:263-5. [PMID: 18391422 DOI: 10.1107/s1744309108004569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/15/2008] [Indexed: 11/11/2022]
Abstract
The C-terminus of gp36 of bacteriophage varphiKMV (KMV36C) functions as a particle-associated muramidase, presumably as part of the injection needle of the phiKMV genome during infection. Crystals of KMV36C were obtained by hanging-drop vapour diffusion and diffracted to a resolution of 1.6 A. The crystals belong to the cubic space group P432, with unit-cell parameters a = b = c = 102.52 A. KMV36C shows 30% sequence identity to T4 lysozyme (PDB code 1l56).
Collapse
|
20
|
Watson AA, Brown J, Harlos K, Eble JA, Walter TS, O'Callaghan CA. The crystal structure and mutational binding analysis of the extracellular domain of the platelet-activating receptor CLEC-2. J Biol Chem 2006; 282:3165-72. [PMID: 17132623 DOI: 10.1074/jbc.m610383200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human C-type lectin-like molecule CLEC-2 is expressed on the surface of platelets and signaling through CLEC-2 causes platelet activation and aggregation. CLEC-2 is a receptor for the platelet-aggregating snake venom protein rhodocytin. It is also a newly identified co-receptor for human immunodeficiency virus type 1 (HIV-1). An endogenous ligand has not yet been identified. We have solved the crystal structure of the extracellular domain of CLEC-2 to 1.6-A resolution, and identified the key structural features involved in ligand binding. A semi-helical loop region and flanking residues dominate the surface that is available for ligand binding. The precise distribution of hydrophobic and electrostatic features in this loop will determine the nature of any endogenous ligand with which it can interact. Major ligand-induced conformational change in CLEC-2 is unlikely as its overall fold is compact and robust. However, ligand binding could induce a tilt of a 3-10 helical portion of the long loop region. Mutational analysis and surface plasmon resonance binding studies support these observations. This study provides a framework for understanding the effects of rhodocytin venom binding on CLEC-2 and for understanding the nature of likely endogenous ligands and will provide a basis for rational design of drugs to block ligand binding.
Collapse
Affiliation(s)
- Aleksandra A Watson
- Henry Wellcome Building for Molecular Physiology, Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | | | | | | | | | | |
Collapse
|