1
|
Jin M, Yu M, Feng X, Li Y, Zhang M. Characterization and comparative genomic analysis of a marine Bacillus phage reveal a novel viral genus. Microbiol Spectr 2024; 12:e0003724. [PMID: 39162547 PMCID: PMC11448403 DOI: 10.1128/spectrum.00037-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Bacillus pumilus exhibits substantial economic significance, with its metabolism, adaptability, and ecological functions regulated by its bacteriophages. Here, we isolated and characterized a novel temperate phage vB_BpuM-ZY1 from B. pumilus derived from mangrove sediments by mitomycin C induction. Phage vB_BpuM-ZY1 is a typical myophage, which has an icosahedral head with a diameter of 43.34 ± 2.14 nm and a long contractible tail with a length of 238.58 ± 5.18 nm. Genomic analysis indicated that vB_BpuM-ZY1 encodes genes for lysogeny control, and its life cycle may be intricately regulated by multiple mechanisms. vB_BpuM-ZY1 was predicted to employ P2-like 5'-extended-cos packaging strategy. In addition, genome-wide phylogenetic tree and proteome tree analyses indicated that vB_BpuM-ZY1 belongs to the Peduoviridae family but forms a separate branch at a deeper taxonomic level. Particularly, the comparative genomic analysis showed that vB_BpuM-ZY1 has less than 70% intergenomic similarities with its most similar phages. Thus, we propose that vB_BpuM-ZY1 is a novel Bacillus phage belonging to a new genus under the Peduoviridae family. The protein-sharing network analysis identified 44 vB_BpuM-ZY1-related phages. Interestingly, these evolutionarily related myophages infect a broad range of hosts across different phyla, which may be explained by the high structural variations of the host recognition domain in their central spike proteins. Collectively, our study will contribute to our understanding of Bacillus phage diversity and Bacillus-phage interactions, as well as provide essential knowledge for the industrial application of B. pumilus. IMPORTANCE Although recent metagenomics research has obtained a wealth of phage genetic information, much of it is considered "dark matter" because of the lack of similarity with known sequences in the database. Therefore, the isolation and characterization of novel phages will help to interpret the vast unknown viral metagenome data and improve our understanding of phage diversity and phage-host interactions. Bacillus pumilus shows high economic relevance due to its wide applications in biotechnology, industry, biopharma, and environmental sectors. Since phages influence the abundance, metabolism, evolution, fitness, and ecological functions of bacteria through complex interactions, the significance of isolation and characterization of novel phages infecting B. pumilus is apparent. In this study, we isolated and characterized a B. pumilus phage belonging to a novel viral genus, which provides essential knowledge for phage biology as well as the industrial application of B. pumilus.
Collapse
Affiliation(s)
- Min Jin
- />State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Meishun Yu
- />State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xuejin Feng
- />State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yinfang Li
- />State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Menghui Zhang
- />State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Beauvois SG, Flaugnatti N, Ilbert M, Boyer M, Gavello-Fernandez E, Fronzes R, Jurėnas D, Journet L. The tip protein PAAR is required for the function of the type VI secretion system. Microbiol Spectr 2023; 11:e0147823. [PMID: 37800964 PMCID: PMC10715212 DOI: 10.1128/spectrum.01478-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/09/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE The type VI secretion system (T6SS) is a bacterial contractile injection system involved in bacterial competition by the delivery of antibacterial toxins. The T6SS consists of an envelope-spanning complex that recruits the baseplate, allowing the polymerization of a contractile tail structure. The tail is a tube wrapped by a sheath and topped by the tip of the system, the VgrG spike/PAAR complex. Effectors loaded onto the puncturing tip or into the tube are propelled in the target cells upon sheath contraction. The PAAR protein tips and sharpens the VgrG spike. However, the importance and the function of this protein remain unclear. Here, we provide evidence for association of PAAR at the tip of the VgrG spike. We also found that the PAAR protein is a T6SS critical component required for baseplate and sheath assembly.
Collapse
Affiliation(s)
- Solène G. Beauvois
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| | - Nicolas Flaugnatti
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| | - Marianne Ilbert
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7281, Marseille, France
| | - Marie Boyer
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| | - Esther Gavello-Fernandez
- Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac, France
- CNRS UMR 5234 Microbiologie Fondamentale et Pathogénicité, Bordeaux, France
| | - Rémi Fronzes
- Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac, France
- CNRS UMR 5234 Microbiologie Fondamentale et Pathogénicité, Bordeaux, France
| | - Dukas Jurėnas
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| | - Laure Journet
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| |
Collapse
|
3
|
Miller JM, Knyazhanskaya ES, Buth SA, Prokhorov NS, Leiman PG. Function of the bacteriophage P2 baseplate central spike Apex domain in the infection process. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.529910. [PMID: 36865152 PMCID: PMC9980179 DOI: 10.1101/2023.02.25.529910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
The contractile tail of bacteriophage P2 functions to drive the tail tube across the outer membrane of its host bacterium, a prerequisite event for subsequent translocation of phage genomic DNA into the host cell. The tube is equipped with a spike-shaped protein (product of P2 gene V , gpV or Spike) that contains a membrane-attacking Apex domain carrying a centrally positioned Fe ion. The ion is enclosed in a histidine cage that is formed by three symmetry-related copies of a conserved HxH (histidine, any residue, histidine) sequence motif. Here, we used solution biophysics and X-ray crystallography to characterize the structure and properties of Spike mutants in which the Apex domain was either deleted or its histidine cage was either destroyed or replaced with a hydrophobic core. We found that the Apex domain is not required for the folding of full-length gpV or its middle intertwined β-helical domain. Furthermore, despite its high conservation, the Apex domain is dispensable for infection in laboratory conditions. Collectively, our results show that the diameter of the Spike but not the nature of its Apex domain determines the efficiency of infection, which further strengthens the earlier hypothesis of a drill bit-like function of the Spike in host envelope disruption.
Collapse
|
4
|
Cunliffe T, Parker AL, Jaramillo A. Pseudotyping Bacteriophage P2 Tail Fibers to Extend the Host Range for Biomedical Applications. ACS Synth Biol 2022; 11:3207-3215. [PMID: 36084285 PMCID: PMC9594776 DOI: 10.1021/acssynbio.1c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Bacteriophages (phages) represent powerful potential treatments against antibiotic-resistant bacterial infections. Antibiotic-resistant bacteria represent a significant threat to global health, with an estimated 70% of infection-causing bacteria being resistant to one or more antibiotics. Developing novel antibiotics against the limited number of cellular targets is expensive and time-consuming, and bacteria can rapidly develop resistance. While bacterial resistance to phage can evolve, bacterial resistance to phage does not appear to spread through lateral gene transfer, and phage may similarly adapt through mutation to recover infectivity. Phages have been identified for all known bacteria, allowing the strain-selective killing of pathogenic bacteria. Here, we re-engineered the Escherichia coli phage P2 to alter its tropism toward pathogenic bacteria. Chimeric tail fibers formed between P2 and S16 genes were designed and generated through two approaches: homology- and literature-based. By presenting chimeric P2:S16 fibers on the P2 particle, our data suggests that the resultant phages were effectively detargeted from the native P2 cellular target, lipopolysaccharide, and were instead able to infect via the proteinaceous receptor, OmpC, the natural S16 receptor. Our work provides evidence that pseudotyping P2 is feasible and can be used to extend the host range of P2 to alternative receptors. Extension of this work could produce alternative chimeric tail fibers to target pathogenic bacterial threats. Our engineering of P2 allows adsorption through a heterologous outer-membrane protein without culturing in its native host, thus providing a potential means of engineering designer phages against pathogenic bacteria from knowledge of their surface proteome.
Collapse
Affiliation(s)
- Tabitha
G. Cunliffe
- Division
of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14
4XN, U.K.,School
of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.
| | - Alan L. Parker
- Division
of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14
4XN, U.K.,Systems
Immunity University Research Institute, School of Medicine, Cardiff University, Heath Park, Cardiff CF14
4XN, U.K.,. Phone: +44 2922 510 231
| | - Alfonso Jaramillo
- School
of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.,De
Novo Synthetic Biology Laboratory, I2SysBio, CSIC-University of Valencia, Parc Científic Universitat de València, Calle Catedrático Agustín
Escardino, 9, 46980 Paterna, Spain,. Phone: +34 963 543 056
| |
Collapse
|
5
|
Tail proteins of phage SU10 reorganize into the nozzle for genome delivery. Nat Commun 2022; 13:5622. [PMID: 36153309 PMCID: PMC9509320 DOI: 10.1038/s41467-022-33305-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/12/2022] [Indexed: 12/23/2022] Open
Abstract
Escherichia coli phage SU10 belongs to the genus Kuravirus from the class Caudoviricetes of phages with short non-contractile tails. In contrast to other short-tailed phages, the tails of Kuraviruses elongate upon cell attachment. Here we show that the virion of SU10 has a prolate head, containing genome and ejection proteins, and a tail, which is formed of portal, adaptor, nozzle, and tail needle proteins and decorated with long and short fibers. The binding of the long tail fibers to the receptors in the outer bacterial membrane induces the straightening of nozzle proteins and rotation of short tail fibers. After the re-arrangement, the nozzle proteins and short tail fibers alternate to form a nozzle that extends the tail by 28 nm. Subsequently, the tail needle detaches from the nozzle proteins and five types of ejection proteins are released from the SU10 head. The nozzle with the putative extension formed by the ejection proteins enables the delivery of the SU10 genome into the bacterial cytoplasm. It is likely that this mechanism of genome delivery, involving the formation of the tail nozzle, is employed by all Kuraviruses. E. coli phage SU10 has a short non-contractile tail. Here, the authors show that after cell binding, nozzle proteins and tail fibers of SU10 change conformation to form a nozzle that enables the delivery of the phage DNA into the bacterial cytoplasm.
Collapse
|
6
|
Sakai K, Iwazaki T, Yamashita E, Nakagawa A, Sakuraba F, Enomoto A, Inagaki M, Takeda S. Observation of unexpected molecular binding activity for Mu phage tail fibre chaperones. J Biochem 2019; 166:529-535. [PMID: 31504613 DOI: 10.1093/jb/mvz068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023] Open
Abstract
In the history of viral research, one of the important biological features of bacteriophage Mu is the ability to expand its host range. For extending the host range, the Mu phage encodes two alternate tail fibre genes. Classical amber mutation experiments and genome sequence analysis of Mu phage suggested that gene products (gp) of geneS (gpS = gp49) and gene S' (gpS' = gp52) are tail fibres and that gene products of geneU (gpU = gp50) and geneU' (gpU' = gp51) work for tail fibre assembly or tail fibre chaperones. Depending on the gene orientation, a pair of genes 49-50 or 52-51 is expressed for producing different tail fibres that enable Mu phage to recognize different host cell surface. Since several fibrous proteins including some phage tail fibres employ their specific chaperone to facilitate folding and prevent aggregation, we expected that gp50 or gp51 would be a specific chaperone for gp49 and gp52, respectively. However, heterologous overexpression results for gp49 or gp52 (tail fibre subunit) together with gp51 and gp50, respectively, were also effective in producing soluble Mu tail fibres. Moreover, we successfully purified non-native gp49-gp51 and gp52-gp50 complexes. These facts showed that gp50 and gp51 were fungible and functional for both gp49 and gp52 each other.
Collapse
Affiliation(s)
- Kohei Sakai
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Takuma Iwazaki
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Fumiya Sakuraba
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Atsushi Enomoto
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Minoru Inagaki
- Department of Life Science, Faculty of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan
| | - Shigeki Takeda
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| |
Collapse
|
7
|
Zhao Y, Chwastyk M, Cieplak M. Structural entanglements in protein complexes. J Chem Phys 2018; 146:225102. [PMID: 29166058 DOI: 10.1063/1.4985221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We consider multi-chain protein native structures and propose a criterion that determines whether two chains in the system are entangled or not. The criterion is based on the behavior observed by pulling at both termini of each chain simultaneously in the two chains. We have identified about 900 entangled systems in the Protein Data Bank and provided a more detailed analysis for several of them. We argue that entanglement enhances the thermodynamic stability of the system but it may have other functions: burying the hydrophobic residues at the interface and increasing the DNA or RNA binding area. We also study the folding and stretching properties of the knotted dimeric proteins MJ0366, YibK, and bacteriophytochrome. These proteins have been studied theoretically in their monomeric versions so far. The dimers are seen to separate on stretching through the tensile mechanism and the characteristic unraveling force depends on the pulling direction.
Collapse
Affiliation(s)
- Yani Zhao
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland
| | - Mateusz Chwastyk
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland
| | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland
| |
Collapse
|
8
|
Inaba H, Ueno T. Artificial bio-nanomachines based on protein needles derived from bacteriophage T4. Biophys Rev 2017; 10:641-658. [PMID: 29147941 DOI: 10.1007/s12551-017-0336-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/07/2017] [Indexed: 12/17/2022] Open
Abstract
Bacteriophage T4 is a natural bio-nanomachine which achieves efficient infection of host cells via cooperative motion of specific three-dimensional protein architectures. The relationships between the protein structures and their dynamic functions have recently been clarified. In this review we summarize the design principles for fabrication of nanomachines using the component proteins of bacteriophage T4 based on these recent advances. We focus on the protein needle known as gp5, which is located at the center of the baseplate at the end of the contractile tail of bacteriophage T4. This protein needle plays a critical role in directly puncturing host cells, and analysis has revealed that it contains a common motif used for cell puncture in other known injection systems, such as T6SS. Our artificial needle based on the β-helical domain of gp5 retains the ability to penetrate cells and can be engineered to deliver various cargos into living cells. Thus, the unique components of bacteriophage T4 and other natural nanomachines have great potential for use as molecular scaffolds in efforts to fabricate new bio-nanomachines.
Collapse
Affiliation(s)
- Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
9
|
Zeman M, Mašlaňová I, Indráková A, Šiborová M, Mikulášek K, Bendíčková K, Plevka P, Vrbovská V, Zdráhal Z, Doškař J, Pantůček R. Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene. Sci Rep 2017; 7:46319. [PMID: 28406168 PMCID: PMC5390265 DOI: 10.1038/srep46319] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/14/2017] [Indexed: 02/03/2023] Open
Abstract
Staphylococcus sciuri is a bacterial pathogen associated with infections in animals and humans, and represents a reservoir for the mecA gene encoding methicillin-resistance in staphylococci. No S. sciuri siphophages were known. Here the identification and characterization of two temperate S. sciuri phages from the Siphoviridae family designated ϕ575 and ϕ879 are presented. The phages have icosahedral heads and flexible noncontractile tails that end with a tail spike. The genomes of the phages are 42,160 and 41,448 bp long and encode 58 and 55 ORFs, respectively, arranged in functional modules. Their head-tail morphogenesis modules are similar to those of Staphylococcus aureus ϕ13-like serogroup F phages, suggesting their common evolutionary origin. The genome of phage ϕ575 harbours genes for staphylokinase and phospholipase that might enhance the virulence of the bacterial hosts. In addition both of the phages package a homologue of the mecA gene, which is a requirement for its lateral transfer. Phage ϕ879 transduces tetracycline and aminoglycoside pSTS7-like resistance plasmids from its host to other S. sciuri strains and to S. aureus. Furthermore, both of the phages efficiently adsorb to numerous staphylococcal species, indicating that they may contribute to interspecies horizontal gene transfer.
Collapse
Affiliation(s)
- M Zeman
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - I Mašlaňová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - A Indráková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - M Šiborová
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - K Mikulášek
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - K Bendíčková
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - P Plevka
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - V Vrbovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.,Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Z Zdráhal
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - J Doškař
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - R Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
10
|
Characterization of Pseudomonas aeruginosa Phage C11 and Identification of Host Genes Required for Virion Maturation. Sci Rep 2016; 6:39130. [PMID: 28000703 PMCID: PMC5175280 DOI: 10.1038/srep39130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022] Open
Abstract
The underlying mechanisms of phage-host interactions largely remained to be elucidated. In this work, Pseudomonas aeruginosa phage C11 was first characterized as a Myoviridae virus having a linear dsDNA molecule of 94109 bp with 1173 bp identical terminal direct repeats (TDR). Then the mutants resistant to phage C11 were screened in a Tn5G transposon mutant library of P. aeruginosa PAK, including two mutants with decreased adsorption rates (DAR) and five mutants with wild-type adsorption rates (WAR). When the WAR mutants were incubated with phage C11, their growth rates were significantly inhibited; the replication of the phage genomic DNA was detected in all the WAR mutants with the real-time quantitative PCR analysis; and the synthesized phage genomic DNA was processed into monomers for packaging evidenced by the southern blot analysis. Moreover, with strain PAK as indicator, small quantities of phage C11 were synthesized in the WAR mutants. Taken together, these data suggested the identified genes of the WAR mutants are necessary for efficient synthesis of the infectious phage particles. Finally, the WAR mutants were detected sensitive to two other Pseudomonas phages closely related with C11, further implying the evolved diversity and complexity of the phage-host interactions in both sides.
Collapse
|
11
|
Amarillas L, Chaidez C, González-Robles A, Lugo-Melchor Y, León-Félix J. Characterization of novel bacteriophage phiC119 capable of lysing multidrug-resistant Shiga toxin-producing Escherichia coli O157:H7. PeerJ 2016; 4:e2423. [PMID: 27672499 PMCID: PMC5028729 DOI: 10.7717/peerj.2423] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/09/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Shiga toxin-producing Escherichia coli (STEC) is one of the most common and widely distributed foodborne pathogens that has been frequently implicated in gastrointestinal and urinary tract infections. Moreover, high rates of multiple antibiotic-resistant E. coli strains have been reported worldwide. Due to the emergence of antibiotic-resistant strains, bacteriophages are considered an attractive alternative to biocontrol pathogenic bacteria. Characterization is a preliminary step towards designing a phage for biocontrol. METHODS In this study, we describe the characterization of a bacteriophage designated phiC119, which can infect and lyse several multidrug-resistant STEC strains and some Salmonella strains. The phage genome was screened to detect the stx-genes using PCR, morphological analysis, host range was determined, and genome sequencing were carried out, as well as an analysis of the cohesive ends and identification of the type of genetic material through enzymatic digestion of the genome. RESULTS Analysis of the bacteriophage particles by transmission electron microscopy showed that it had an icosahedral head and a long tail, characteristic of the family Siphoviridae. The phage exhibits broad host range against multidrug-resistant and highly virulent E. coli isolates. One-step growth experiments revealed that the phiC119 phage presented a large burst size (210 PFU/cell) and a latent period of 20 min. Based on genomic analysis, the phage contains a linear double-stranded DNA genome with a size of 47,319 bp. The phage encodes 75 putative proteins, but lysogeny and virulence genes were not found in the phiC119 genome. CONCLUSION These results suggest that phage phiC119 may be a good biological control agent. However, further studies are required to ensure its control of STEC and to confirm the safety of phage use.
Collapse
Affiliation(s)
- Luis Amarillas
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, A. C., Culiacán, Sinaloa, México; Laboratorio de Genética, Instituto de Investigación Lightbourn, A. C., Cd. Jiménez, Chihuahua, México
| | - Cristóbal Chaidez
- Inocuidad Alimentaria, Centro de Investigación en Alimentación y Desarrollo, A. C. , Culiacán, Sinaloa , México
| | - Arturo González-Robles
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional , Ciudad de México , México
| | - Yadira Lugo-Melchor
- Laboratorio de Biología Molecular de la Unidad de Servicios Analíticos y Metrológicos, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C. , Guadalajara, Jalisco , México
| | - Josefina León-Félix
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, A. C. , Culiacán, Sinaloa , México
| |
Collapse
|
12
|
Rigard M, Bröms JE, Mosnier A, Hologne M, Martin A, Lindgren L, Punginelli C, Lays C, Walker O, Charbit A, Telouk P, Conlan W, Terradot L, Sjöstedt A, Henry T. Francisella tularensis IglG Belongs to a Novel Family of PAAR-Like T6SS Proteins and Harbors a Unique N-terminal Extension Required for Virulence. PLoS Pathog 2016; 12:e1005821. [PMID: 27602570 PMCID: PMC5014421 DOI: 10.1371/journal.ppat.1005821] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/20/2016] [Indexed: 12/12/2022] Open
Abstract
The virulence of Francisella tularensis, the etiological agent of tularemia, relies on an atypical type VI secretion system (T6SS) encoded by a genomic island termed the Francisella Pathogenicity Island (FPI). While the importance of the FPI in F. tularensis virulence is clearly established, the precise role of most of the FPI-encoded proteins remains to be deciphered. In this study, using highly virulent F. tularensis strains and the closely related species F. novicida, IglG was characterized as a protein featuring a unique α-helical N-terminal extension and a domain of unknown function (DUF4280), present in more than 250 bacterial species. Three dimensional modeling of IglG and of the DUF4280 consensus protein sequence indicates that these proteins adopt a PAAR-like fold, suggesting they could cap the T6SS in a similar way as the recently described PAAR proteins. The newly identified PAAR-like motif is characterized by four conserved cysteine residues, also present in IglG, which may bind a metal atom. We demonstrate that IglG binds metal ions and that each individual cysteine is required for T6SS-dependent secretion of IglG and of the Hcp homologue, IglC and for the F. novicida intracellular life cycle. In contrast, the Francisella-specific N-terminal α-helical extension is not required for IglG secretion, but is critical for F. novicida virulence and for the interaction of IglG with another FPI-encoded protein, IglF. Altogether, our data suggest that IglG is a PAAR-like protein acting as a bi-modal protein that may connect the tip of the Francisella T6SS with a putative T6SS effector, IglF. Francisella tularensis is a highly pathogenic bacterium causing tularemia. Its ability to cause disease is linked to its ability to replicate in the macrophage cytosol. The intracellular life cycle of Francisella is controlled by a type VI secretion system (T6SS), which is thought to inject effectors into the host cell to allow bacterial escape into the host cytosol. The molecular mechanisms behind this process are still largely unclear. In this work, we identify IglG as a protein with two important domains, one conserved in proteins from more than 250 bacterial species (DUF4280, renamed here as PAAR-like domain) and one specific for the Francisella genus. Using protein sequence analysis and three-dimensional structure predictions, comparative modeling and biochemistry approaches, our data demonstrate that IglG is a metal-binding protein that based on its PAAR-like domain might cap the VgrG spike of the T6SS and act as a membrane-puncturing protein. Furthermore, we identified that the Francisella-specific domain is directly involved in forming a protein complex with another virulence protein, IglF. This work, in addition to enhancing the molecular understanding of the Francisella T6SS, defines the features of the conserved DUF4280, a novel PAAR-like domain involved in type VI secretion (T6S) of many bacterial species.
Collapse
Affiliation(s)
- Mélanie Rigard
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jeanette E. Bröms
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Amandine Mosnier
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Maggy Hologne
- Institut des Sciences Analytiques, CNRS, UMR 5280, Université de Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, Villeurbanne, France
| | - Amandine Martin
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Lena Lindgren
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Claire Punginelli
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Claire Lays
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Olivier Walker
- Institut des Sciences Analytiques, CNRS, UMR 5280, Université de Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, Villeurbanne, France
| | - Alain Charbit
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France
- Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| | - Philippe Telouk
- University of Lyon, Lyon, France
- Laboratoire de Geologie de Lyon; Ecole Normale Supérieure de Lyon, Lyon, France
| | - Wayne Conlan
- National Research Council Canada, Human Health Therapeutics Portfolio, Ottawa, Ontario, Canada
| | - Laurent Terradot
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
- * E-mail: (LT); (AS); (TH)
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- * E-mail: (LT); (AS); (TH)
| | - Thomas Henry
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail: (LT); (AS); (TH)
| |
Collapse
|
13
|
Casjens SR, Grose JH. Contributions of P2- and P22-like prophages to understanding the enormous diversity and abundance of tailed bacteriophages. Virology 2016; 496:255-276. [PMID: 27372181 DOI: 10.1016/j.virol.2016.05.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 11/24/2022]
Abstract
We identified 9371 tailed phage prophages of 20 known types in reported complete genome sequences of 3298 bacteria in the Salmonella genus. These include 4758 P2 type and 744 P22 type prophages. The latter prophage types were found in the genome sequences of 127 and 24 bacterial host genera, increasing the known host ranges of phages in these groups by 114 and 20 genera, respectively. These prophage nucleotide sequences displayed much more diversity than was previously known from the 48 P2 and 24 P22 type authentic phages whose genomes have been sequenced. More detailed analysis of these prophage sequences indicated that major capsid protein (MCP) gene exchange between tailed phage clusters or types is extremely rare and that P22 prophage-encoded tailspikes correspond perfectly with their hosts' surface polysaccharide structure; thus, MCP and tailspike sequences accurately predict tailed phage type (and thus lifestyle) and host cell surface polysaccharide structure, respectively.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, University of Utah, Salt Lake City, UT 84112, United States; Department of Biology, University of Utah, Salt Lake City, UT 84112, United States.
| | - Julianne H Grose
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT 84602, United States.
| |
Collapse
|
14
|
Christie GE, Calendar R. Bacteriophage P2. BACTERIOPHAGE 2016; 6:e1145782. [PMID: 27144088 DOI: 10.1080/21597081.2016.1145782] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
Abstract
P2 is the original member of a highly successful family of temperate phages that are frequently found in the genomes of gram-negative bacteria. This article focuses on the organization of the P2 genome and reviews current knowledge about the function of each open reading frame.
Collapse
Affiliation(s)
- Gail E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine , Richmond, VA, USA
| | - Richard Calendar
- Department of Molecular and Cell Biology, University of California , Berkeley, CA, USA
| |
Collapse
|
15
|
Brunet YR, Zoued A, Boyer F, Douzi B, Cascales E. The Type VI Secretion TssEFGK-VgrG Phage-Like Baseplate Is Recruited to the TssJLM Membrane Complex via Multiple Contacts and Serves As Assembly Platform for Tail Tube/Sheath Polymerization. PLoS Genet 2015; 11:e1005545. [PMID: 26460929 PMCID: PMC4604203 DOI: 10.1371/journal.pgen.1005545] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 08/30/2015] [Indexed: 12/21/2022] Open
Abstract
The Type VI secretion system (T6SS) is a widespread weapon dedicated to the delivery of toxin proteins into eukaryotic and prokaryotic cells. The 13 T6SS subunits assemble a cytoplasmic contractile structure anchored to the cell envelope by a membrane-spanning complex. This structure is evolutionarily, structurally and functionally related to the tail of contractile bacteriophages. In bacteriophages, the tail assembles onto a protein complex, referred to as the baseplate, that not only serves as a platform during assembly of the tube and sheath, but also triggers the contraction of the sheath. Although progress has been made in understanding T6SS assembly and function, the composition of the T6SS baseplate remains mostly unknown. Here, we report that six T6SS proteins–TssA, TssE, TssF, TssG, TssK and VgrG–are required for proper assembly of the T6SS tail tube, and a complex between VgrG, TssE,-F and-G could be isolated. In addition, we demonstrate that TssF and TssG share limited sequence homologies with known phage components, and we report the interaction network between these subunits and other baseplate and tail components. In agreement with the baseplate being the assembly platform for the tail, fluorescence microscopy analyses of functional GFP-TssF and TssK-GFP fusion proteins show that these proteins assemble stable and static clusters on which the sheath polymerizes. Finally, we show that recruitment of the baseplate to the apparatus requires initial positioning of the membrane complex and contacts between TssG and the inner membrane TssM protein. In the environment, bacteria compete for privileged access to nutrients or to a particular niche. Bacteria have therefore evolved mechanisms to eliminate competitors. Among them, the Type VI secretion system (T6SS) is a contractile machine functionally comparable to a crossbow: an inner tube is wrapped by a contractile structure. Upon contraction of this outer sheath, the inner tube is propelled towards the target cell and delivers anti-bacterial effectors. The tubular structure assembles on a protein complex called the baseplate. Here we define the composition of the baseplate, demonstrating that it is composed of five subunits: TssE, TssF, TssG, TssK and VgrG. We further detail the role of the TssF and TssG proteins by defining their localizations and identifying their partners. We show that, in addition to TssE and VgrG that have been shown to share homologies with the bacteriophage gp25 and gp27-gp5 proteins, the TssF and TssG proteins also have homologies with bacteriophage components. Finally, we show that this baseplate is recruited to the TssJLM membrane complex prior to the assembly of the contractile tail structure. This study allows a better understanding of the early events of the assembly pathway of this molecular weapon.
Collapse
Affiliation(s)
- Yannick R. Brunet
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS–UMR 7255, Marseille, France
| | - Abdelrahim Zoued
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS–UMR 7255, Marseille, France
| | - Frédéric Boyer
- Laboratoire d’Ecologie Alpine, Université Joseph Fourier, Grenoble, France
| | - Badreddine Douzi
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS–UMR 7255, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, CNRS–UMR 7257, Marseille, France
| | - Eric Cascales
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS–UMR 7255, Marseille, France
- * E-mail:
| |
Collapse
|
16
|
Uchida K, Leiman PG, Arisaka F, Kanamaru S. Structure and properties of the C-terminal β-helical domain of VgrG protein from Escherichia coli O157. ACTA ACUST UNITED AC 2013; 155:173-82. [DOI: 10.1093/jb/mvt109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Nadzirin N, Willett P, Artymiuk PJ, Firdaus-Raih M. IMAAAGINE: a webserver for searching hypothetical 3D amino acid side chain arrangements in the Protein Data Bank. Nucleic Acids Res 2013; 41:W432-40. [PMID: 23716645 PMCID: PMC3692123 DOI: 10.1093/nar/gkt431] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We describe a server that allows the interrogation of the Protein Data Bank for hypothetical 3D side chain patterns that are not limited to known patterns from existing 3D structures. A minimal side chain description allows a variety of side chain orientations to exist within the pattern, and generic side chain types such as acid, base and hydroxyl-containing can be additionally deployed in the search query. Moreover, only a subset of distances between the side chains need be specified. We illustrate these capabilities in case studies involving arginine stacks, serine-acid group arrangements and multiple catalytic triad-like configurations. The IMAAAGINE server can be accessed at http://mfrlab.org/grafss/imaaagine/.
Collapse
Affiliation(s)
- Nurul Nadzirin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | | | | | | |
Collapse
|
18
|
Harada K, Yamashita E, Nakagawa A, Miyafusa T, Tsumoto K, Ueno T, Toyama Y, Takeda S. Crystal structure of the C-terminal domain of Mu phage central spike and functions of bound calcium ion. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:284-91. [PMID: 22922659 DOI: 10.1016/j.bbapap.2012.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/30/2012] [Accepted: 08/16/2012] [Indexed: 11/16/2022]
Abstract
Bacteriophage Mu, which has a contractile tail, is one of the most famous genus of Myoviridae. It has a wide host range and is thought to contribute to horizontal gene transfer. The Myoviridae infection process is initiated by adhesion to the host surface. The phage then penetrates the host cell membrane using its tail to inject its genetic material into the host. In this penetration process, Myoviridae phages are proposed to puncture the membrane of the host cell using a central spike located beneath its baseplate. The central spike of the Mu phage is thought to be composed of gene 45 product (gp45), which has a significant sequence homology with the central spike of P2 phage (gpV). We determined the crystal structure of shortened Mu gp45Δ1-91 (Arg92-Gln197) at 1.5Å resolution and showed that Mu gp45 is a needlelike structure that punctures the membrane. The apex of Mu gp45 and that of P2 gpV contained iron, chloride, and calcium ions. Although the C-terminal domain of Mu gp45 was sufficient for binding to the E. coli membrane, a mutant D188A, in which the Asp amino acid residue that coordinates the calcium ion was replaced by Ala, did not exhibit a propensity to bind to the membrane. Therefore, we concluded that calcium ion played an important role in interaction with the host cell membrane.
Collapse
Affiliation(s)
- Kenichi Harada
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kropinski AM, Van den Bossche A, Lavigne R, Noben JP, Babinger P, Schmitt R. Genome and proteome analysis of 7-7-1, a flagellotropic phage infecting Agrobacterium sp H13-3. Virol J 2012; 9:102. [PMID: 22650361 PMCID: PMC3517404 DOI: 10.1186/1743-422x-9-102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/04/2012] [Indexed: 11/16/2022] Open
Abstract
Background The flagellotropic phage 7-7-1 infects motile cells of Agrobacterium sp H13-3 by attaching to and traveling along the rotating flagellar filament to the secondary receptor at the base, where it injects its DNA into the host cell. Here we describe the complete genomic sequence of 69,391 base pairs of this unusual bacteriophage. Methods The sequence of the 7-7-1 genome was determined by pyro(454)sequencing to a coverage of 378-fold. It was annotated using MyRAST and a variety of internet resources. The structural proteome was analyzed by SDS-PAGE coupled electrospray ionization-tandem mass spectrometry (MS/MS). Results Sequence annotation and a structural proteome analysis revealed 127 open reading frames, 84 of which are unique. In six cases 7-7-1 proteins showed sequence similarity to proteins from the virulent Burkholderia myovirus BcepB1A. Unique features of the 7-7-1 genome are the physical separation of the genes encoding the small (orf100) and large (orf112) subunits of the DNA packaging complex and the apparent lack of a holin-lysin cassette. Proteomic analysis revealed the presence of 24 structural proteins, five of which were identified as baseplate (orf7), putative tail fibre (orf102), portal (orf113), major capsid (orf115) and tail sheath (orf126) proteins. In the latter case, the N-terminus was removed during capsid maturation, probably by a putative prohead protease (orf114).
Collapse
Affiliation(s)
- Andrew M Kropinski
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, ON, NIG 3W4, Canada.
| | | | | | | | | | | |
Collapse
|
20
|
Structure of the receptor-binding carboxy-terminal domain of bacteriophage T7 tail fibers. Proc Natl Acad Sci U S A 2012; 109:9390-5. [PMID: 22645347 DOI: 10.1073/pnas.1119719109] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The six bacteriophage T7 tail fibers, homo-trimers of gene product 17, are thought to be responsible for the first specific, albeit reversible, attachment to Escherichia coli lipopolysaccharide. The protein trimer forms kinked fibers comprised of an amino-terminal tail-attachment domain, a slender shaft, and a carboxyl-terminal domain composed of several nodules. Previously, we expressed, purified, and crystallized a carboxyl-terminal fragment comprising residues 371-553. Here, we report the structure of this protein trimer, solved using anomalous diffraction and refined at 2 Å resolution. Amino acids 371-447 form a tapered pyramid with a triangular cross-section composed of interlocked β-sheets from each of the three chains. The triangular pyramid domain has three α-helices at its narrow end, which are connected to a carboxyl-terminal three-blade β-propeller tip domain by flexible loops. The monomers of this tip domain each contain an eight-stranded β-sandwich. The exact topology of the β-sandwich fold is novel, but similar to that of knob domains of other viral fibers and the phage Sf6 needle. Several host-range change mutants have been mapped to loops located on the top of this tip domain, suggesting that this surface of the tip domain interacts with receptors on the cell surface.
Collapse
|
21
|
Phage Pierces the Host Cell Membrane with the Iron-Loaded Spike. Structure 2012; 20:326-39. [DOI: 10.1016/j.str.2011.12.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/02/2011] [Accepted: 12/04/2011] [Indexed: 11/23/2022]
|