1
|
Siva S, Meenatchi V, Bodkhe GA, Kim M. Unravelling the interaction of ethyl cinnamate in 2-hydroxypropyl and methyl-β-cyclodextrin by spectroscopic and theoretical evaluation for enhanced antibacterial activities. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125521. [PMID: 39647264 DOI: 10.1016/j.saa.2024.125521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024]
Abstract
Essential oil components are the most common agents used to inhibit pathogens. Ethyl cinnamate (ECIN) is a hydrophobic essential oil component with well-known antibacterial properties but is poorly soluble in water, which limits its applications. In this study, inclusion complexes (ICs) were prepared by encapsulating ECIN in β-cyclodextrin (βCD), 2-hydroxypropyl-βCD, or methyl-βCD using an ultrasonication method to enhance water solubility and thermal and antibacterial properties. UV-Vis absorption and fluorescence spectral results indicated strong non-covalent interactions between ECIN and βCD derivatives in aqueous solution, and double reciprocal profiles revealed a guest:host stoichiometry of 1:1. Fourier-transform infrared and proton nuclear magnetic resonance spectroscopy investigations revealed that the phenyl ring of ECIN is located deeply in the CD nanocavities. X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, photoluminescence, and field emission scanning electron microscopy were performed to obtain crystalline, optical, and morphological information on solid ECIN-CDs. Thermogravimetric/differential thermal studies confirmed the improved stability of ECIN in solid CD-ICs by detecting an increase in the degradation temperature of ECIN from 50-140 °C to 310-410 °C. Further, the geometrical and frontier molecular orbital structures of the ECIN-CDs were theoretically evaluated using parametric method-3. Finally, antibacterial assays conducted against the foodborne pathogens Staphylococcus aureus and Escherichia coli and revealed that encapsulated ECIN had a greater inhibitory effect, which suggested the devised nanocarriers promote the solubilization of essential oil components in aqueous solutions.
Collapse
Affiliation(s)
- Subramanian Siva
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - Venkatasamy Meenatchi
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea; Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai 600077, India
| | - Gajanan A Bodkhe
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.
| |
Collapse
|
2
|
Meenatchi V, Kim S, Won SY, Buvaneswari K, Han SS. Synthesis, nonlinear optical activity, solvents effect, β-cyclodextrin effect, and cytotoxic activity on skin fibroblast and breast cancer cell lines of a new chalcone derivative of nabumetone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125148. [PMID: 39303338 DOI: 10.1016/j.saa.2024.125148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
The use of small organic molecules, such as chalcones, for efficient applications as organic luminescent materials has attracted increasing attention owing to their interesting optical, photophysical, and biological properties. In this study, a new chalcone, 1-(4-isopropylphenyl)-5-(6-methoxynaphthalen-2-yl)pent-1-en-3-one (INM), was synthesized via base condensation between nabumetone and cuminaldehyde. INM was subsequently identified and characterized by FT-IR, NMR spectroscopy (1H and 13C), mass spectrometry, elemental analysis, X-ray diffraction, thermogravimetric analysis, and FESEM studies. Investigation of the solvent effect revealed that the π → π* transition involved a bathochromic shift from hexane to water and a large Stokes-shifted, twisted intramolecular charge-transfer emission in water. Diffuse reflectance spectral studies confirmed the formation of transparent INM chalcones with excellent crystallinity, and photoluminescence studies substantiated the low recombination rate of electrons and holes. Tauc plot analysis with the Kubelka-Munk algorithm revealed higher direct (3.57 eV) and indirect (3.41 eV) bandgap energies of INM. Density functional theory calculations at B3LYP/6-31G(d,p) revealed that INM had promising nonlinear optical activity (β ≈ 30.504 × 10-30 compared to a reference material, urea. Cell biocompatibility was evaluated after culturing skin fibroblasts and breast cancer cells with INM using the MTT assay and fluorescence microscopy of the live/dead cell assay. It was observed that INM exhibited good NIH/3T3 cell adhesion and proliferation and the weak inhibiting ability of MDA-MB231.
Collapse
Affiliation(s)
- Venkatasamy Meenatchi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea; Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai 600077, India.
| | - Seongmin Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea
| | - So Yeon Won
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea
| | - K Buvaneswari
- KCG College of Technology, KCG Nagar, Rajiv Gandhi Salai, Karapakkam, Chennai 600 097, Tamil Nadu, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea.
| |
Collapse
|
3
|
Meenatchi V, Narayanan KB, Sood A, Han SS. Formation of amygdalin/β-cyclodextrin derivatives inclusion complexes for anticancer activity assessment in human cervical carcinoma HeLa cell line. Int J Pharm 2024; 662:124293. [PMID: 38823468 DOI: 10.1016/j.ijpharm.2024.124293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Nanoencapsulation has gained considerable attention because of its unique features and advantages in anticancer drug delivery. Amygdalin (AMY) is an anticancer compound, showing limitations in its applications by low stability. Herein, the inclusion complexes (ICs) of AMY with β-cyclodextrin (βCD), and its derivatives such as 2-hydroxypropyl-βCD (HPβCD) and methyl-βCD (MβCD) were fabricated. The fabricated AMY/CD-ICs were thoroughly evaluated using Fourier-transform infrared spectroscopy, powder X-ray diffraction, thermogravimetric/differential thermal analysis, proton nuclear magnetic resonance, ultraviolet-visible diffuse reflectance spectroscopy, and photoluminescence techniques. Double reciprocal profile study of the absorption and fluorescence spectra revealed that the AMY formed the ICs with βCD derivatives at a guest/host stoichiometric ratio of 1/1. The thermal stability of AMY was enhanced as the IC formation aid observed by the shift of thermal degradation temperature of AMY from the range of ∼ 220-250 °C to > 295 °C. Theoretical analyses of the energetic, electronic, and global reactivity parameters of the AMY/CD-ICs were evaluated using the PM3 method. Further assessment of the dissolution diagrams of AMY/CD-ICs revealed a burst release profile. In addition, cell toxicity was evaluated using the MTT assay, and the results showed that AMY/CD-ICs had significantly more efficacious in inhibiting HeLa cancer cells than AMY. These results proved that the IC formations with CDs significantly enhanced the anticancer activity of AMY.
Collapse
Affiliation(s)
- Venkatasamy Meenatchi
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea; Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India.
| | - Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.
| |
Collapse
|
4
|
Meenatchi V, Zo SM, Won SY, Nam JW, Cheng L, Han SS. Cuminaldehyde-3-hydroxy-2-napthoichydrazone: Synthesis, effect of solvents, nonlinear optical activity, antioxidant activity, antimicrobial activity, and DFT analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123071. [PMID: 37390714 DOI: 10.1016/j.saa.2023.123071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/27/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Hydrazones derived from essential oil components have attracted considerable interest because of their antimicrobial, antioxidant, and nonlinear optical applications. In the present work, a new essential oil component derivative (EOCD), cuminaldehyde-3-hydroxy-2-napthoichydrazone (CHNH), was synthesized. EOCD was characterized by Fourier transform infrared spectroscopy, mass spectrometry, nuclear magnetic resonance (1H and 13C) spectroscopy, elemental analysis, ultraviolet-visible absorption spectroscopy, and field-emission scanning electron microscopy. Thermogravimetric analysis and X-ray diffraction showed a higher stability, phase-pure, and non-existent isomorphic phase transition in EOCD. Solvent studies indicated that the normal emission band was caused by the locally excited state and the large Stokes shifted emission originated because of the twisted intramolecular charge transfer. The EOCD possessed higher direct and indirect band gap energies of 3.05 eV and 2.90 eV respectively, as determined by the Kubelka-Munk algorithm. The outcomes of frontier molecular orbitals, global reactivity descriptors, Mulliken, and molecular electrostatic potential surface by density functional theory calculations revealed high intramolecular charge transfer, good realistic stability, and high reactiveness of EOCD. The hydrazone EOCD exhibited higher hyperpolarizability (18.248 × 10-30 esu) in comparison to urea. Antioxidant test results indicated that EOCD showed significant antioxidant activity (p < 0.05), as determined by the DPPH radical scavenging assay. The newly synthesized EOCD showed no antifungal activity against Aspergillus flavus. Additionally, the EOCD showed good antibacterial activity against Escherichia coli and Bacillus subtilis.
Collapse
Affiliation(s)
- Venkatasamy Meenatchi
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.
| | - Sun Mi Zo
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.
| | - So Yeon Won
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.
| | - Liang Cheng
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.
| |
Collapse
|
5
|
ELİK M. Theoretical analysis of OLED performances of some aromatic nitrogen-containing ligands. Turk J Chem 2023; 47:689-698. [PMID: 38174063 PMCID: PMC10760589 DOI: 10.55730/1300-0527.3571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 08/25/2023] [Accepted: 05/24/2023] [Indexed: 01/05/2024] Open
Abstract
It is well-known that tris(8-hydroxyquinoline) aluminum (Alq3) complex and N,N'diphenyl-N,N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'-diamine compound (TPD) are widely used as electron transfer material (ETL) and hole transfer material (HTL) in organic light emitting diode (OLED) structure, respectively. Considering the reference materials, in the present work, the OLED performances of some cyclic aromatic structures such as 4,4'azopyridine [AZPY], 4,4'-bipyridine [BIPY], 1,2-bis[4'-(4-methylphenyl)2,2':6'2″-terpyridin6-yl]ethyne (BISTERPY), 5,5'-diamino-2,2'-bipyridine (DABP), dipyrido[3,2-a:2',3'c]phenazine (DPP), 4,7-phenanthroline (PHEN) including nitrogen atom have been theoretically analyzed. It is important to note that B3LYP/6-31G(d) and B3LYP/TZP levels of the theory were taken into account for the calculations about monomeric and dimeric structures, respectively. Additionally, the calculations of the mentioned monomeric form were performed at B3LYP-D3/6-31G, CAM-B3LYP/6-31G and ωB97X-D/6-31G(d) levels. For a detailed theoretical analysis, the reorganization energies (λe and λh), adiabatic and vertical ionization potentials and electron affinities, the effective transfer integrals (Ve and Vh), and the charge transfer rates (We and Wh) of all compounds were computed by means of computational chemistry tools. In the light of calculated parameters, it is determined that these mentioned aromatic cyclic structures will be used in which layers of OLED structure. The results obtained in this study will be helpful in the design and applications of new molecules as OLED materials in the future.
Collapse
Affiliation(s)
- Mustafa ELİK
- Department of Mathematics and Science Education, Faculty of Education, Sivas Cumhuriyet University, Sivas,
Turkiye
| |
Collapse
|
6
|
Meenatchi V, Cheng L, Soo Han S. Twisted intramolecular charge transfer, nonlinear optical, antibacterial activity, and DFT analysis of ultrasound processed (E)-N'-(4-isopropylbenzylidene)nicotinohydrazide. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
7
|
Meenatchi V, Soo Han S. Synthesis, conformational study and DFT analysis of novel nonlinear optically active 2r,6c-diaryl-3t-methylpiperidin-4-one N-(2′-furoyl)hydrazones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Synthesis, spectroscopic characterization, optical, second harmonic generation and DFT analysis of 4-isopropylbenzaldehyde derived hydrazone. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Meenatchi V, Siva S, Cheng L. Synthesis, crystal growth, spectroscopic characterization, Hirshfeld surface analysis and DFT investigations of novel nonlinear optically active 4-benzoylpyridine-derived hydrazone. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|