1
|
Tanaka N, Nakajima M, Aramasa H, Nakai H, Taguchi H, Tsuzuki W, Komba S. Synthesis of three deoxy-sophorose derivatives for evaluating the requirement of hydroxy groups at position 3 and/or 3' of sophorose by 1,2-β-oligoglucan phosphorylases. Carbohydr Res 2018; 468:13-22. [PMID: 30121414 DOI: 10.1016/j.carres.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Sophorose (Sop2) is known as a powerful inducer of cellulases in Trichoderma reesei, and in recent years 1,2-β-D-oligoglucan phosphorylase (SOGP) has been found to use Sop2 in synthetic reactions. From the structure of the complex of SOGP with Sop2, it was predicted that both the 3-hydroxy group at the reducing end glucose moiety of Sop2 and the 3'-hydroxy group at the non-reducing end glucose moiety of Sop2 were important for substrate recognition. In this study, three kinds of 3- and/or 3'-deoxy-Sop2 derivatives were synthesized to evaluate this mechanism. The deoxygenation of the 3-hydroxy group of D-glucopyranose derivative was performed by radical reduction using a toluoyl group as a leaving group. The utilization of a toluoyl group that plays two roles (a leaving group for the deoxygenation and a protecting group for a hydroxy group) resulted in efficient syntheses of the three target compounds. The NMR spectra of the two final compounds (3-deoxy- and 3,3'-dideoxy-Sop2) suggested that the glucose moiety of the reducing end of Sop2 can easily take on a furanose structure (five-membered ring structure) by deoxygenation of the 3-hydroxy group of Sop2. In addition, the ratio of the five- and six-membered ring structures changed depending on the temperature. The SOGPs exhibited remarkably lower specific activity for 3'-deoxy- and 3,3'-dideoxy-Sop2, indicating that the 3'-hydroxy group of Sop2 is important for substrate recognition by SOGPs.
Collapse
Affiliation(s)
- Nobukiyo Tanaka
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Food Component Analysis Unit, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Masahiro Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroki Aramasa
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Hiroyuki Nakai
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Hayao Taguchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Wakako Tsuzuki
- Food Component Analysis Unit, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Shiro Komba
- Food Component Analysis Unit, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| |
Collapse
|
2
|
Nakajima M, Yoshida R, Miyanaga A, Abe K, Takahashi Y, Sugimoto N, Toyoizumi H, Nakai H, Kitaoka M, Taguchi H. Functional and Structural Analysis of a β-Glucosidase Involved in β-1,2-Glucan Metabolism in Listeria innocua. PLoS One 2016; 11:e0148870. [PMID: 26886583 PMCID: PMC4757417 DOI: 10.1371/journal.pone.0148870] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 01/25/2016] [Indexed: 11/18/2022] Open
Abstract
Despite the presence of β-1,2-glucan in nature, few β-1,2-glucan degrading enzymes have been reported to date. Recently, the Lin1839 protein from Listeria innocua was identified as a 1,2-β-oligoglucan phosphorylase. Since the adjacent lin1840 gene in the gene cluster encodes a putative glycoside hydrolase family 3 β-glucosidase, we hypothesized that Lin1840 is also involved in β-1,2-glucan dissimilation. Here we report the functional and structural analysis of Lin1840. A recombinant Lin1840 protein (Lin1840r) showed the highest hydrolytic activity toward sophorose (Glc-β-1,2-Glc) among β-1,2-glucooligosaccharides, suggesting that Lin1840 is a β-glucosidase involved in sophorose degradation. The enzyme also rapidly hydrolyzed laminaribiose (β-1,3), but not cellobiose (β-1,4) or gentiobiose (β-1,6) among β-linked gluco-disaccharides. We determined the crystal structures of Lin1840r in complexes with sophorose and laminaribiose as productive binding forms. In these structures, Arg572 forms many hydrogen bonds with sophorose and laminaribiose at subsite +1, which seems to be a key factor for substrate selectivity. The opposite side of subsite +1 from Arg572 is connected to a large empty space appearing to be subsite +2 for the binding of sophorotriose (Glc-β-1,2-Glc-β-1,2-Glc) in spite of the higher Km value for sophorotriose than that for sophorose. The conformations of sophorose and laminaribiose are almost the same on the Arg572 side but differ on the subsite +2 side that provides no interaction with a substrate. Therefore, Lin1840r is unable to distinguish between sophorose and laminaribiose as substrates. These results provide the first mechanistic insights into β-1,2-glucooligosaccharide recognition by β-glucosidase.
Collapse
Affiliation(s)
- Masahiro Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
- * E-mail:
| | - Ryuta Yoshida
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Koichi Abe
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Yuta Takahashi
- Graduate School of Science & Technology, Niigata University, Nishi-ku, Niigata, Japan
| | - Naohisa Sugimoto
- Graduate School of Science & Technology, Niigata University, Nishi-ku, Niigata, Japan
| | - Hiroyuki Toyoizumi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Hiroyuki Nakai
- Graduate School of Science & Technology, Niigata University, Nishi-ku, Niigata, Japan
| | - Motomitsu Kitaoka
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Hayao Taguchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|