1
|
Luo C, Akhtar M, Min W, Bai X, Ma T, Liu C. Domain of unknown function (DUF) proteins in plants: function and perspective. PROTOPLASMA 2024; 261:397-410. [PMID: 38158398 DOI: 10.1007/s00709-023-01917-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Domains of unknown function (DUFs), which are deposited in the protein family database (Pfam), are protein domains with conserved amino acid sequences and uncharacterized functions. Proteins with the same DUF were classified as DUF families. Although DUF families are generally not essential for the survival of plants, they play roles in plant development and adaptation. Characterizing the functions of DUFs is important for deciphering biological puzzles. DUFs were generally studied through forward and reverse genetics. Some novelty approaches, especially the determination of crystal structures and interaction partners of the DUFs, should attract more attention. This review described the identification of DUF genes by genome-wide and transcriptome-wide analyses, summarized the function of DUF-containing proteins, and addressed the prospects for future studies in DUFs in plants.
Collapse
Affiliation(s)
- Chengke Luo
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Maryam Akhtar
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Weifang Min
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Xiaorong Bai
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Tianli Ma
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Caixia Liu
- School of Agriculture, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
2
|
Ishida K, Nakamura A, Kojima S. Crystal structure of the AlbEF complex involved in subtilosin A biosynthesis. Structure 2022; 30:1637-1646.e3. [DOI: 10.1016/j.str.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/12/2022] [Accepted: 09/30/2022] [Indexed: 12/05/2022]
|
3
|
Russell AH, Truman AW. Genome mining strategies for ribosomally synthesised and post-translationally modified peptides. Comput Struct Biotechnol J 2020; 18:1838-1851. [PMID: 32728407 PMCID: PMC7369419 DOI: 10.1016/j.csbj.2020.06.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/14/2023] Open
Abstract
Genome mining is a computational method for the automatic detection and annotation of biosynthetic gene clusters (BGCs) from genomic data. This approach has been increasingly utilised in natural product (NP) discovery due to the large amount of sequencing data that is now available. Ribosomally synthesised and post-translationally modified peptides (RiPPs) are a class of structurally complex NP with diverse bioactivities. RiPPs have recently been shown to occupy a much larger expanse of genomic and chemical space than previously appreciated, indicating that annotation of RiPP BGCs in genomes may have been overlooked in the past. This review provides an overview of the genome mining tools that have been specifically developed to aid in the discovery of RiPP BGCs, which have been built from an increasing knowledgebase of RiPP structures and biosynthesis. Given these recent advances, the application of targeted genome mining has great potential to accelerate the discovery of important molecules such as antimicrobial and anticancer agents whilst increasing our understanding about how these compounds are biosynthesised in nature.
Collapse
Affiliation(s)
- Alicia H Russell
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
4
|
Crnkovic CM, Braesel J, Krunic A, Eustáquio AS, Orjala J. Scytodecamide from the Cultured Scytonema sp. UIC 10036 Expands the Chemical and Genetic Diversity of Cyanobactins. Chembiochem 2019; 21:845-852. [PMID: 31769581 DOI: 10.1002/cbic.201900511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/25/2019] [Indexed: 12/17/2022]
Abstract
Cyanobactins are a large family of cyanobacterial ribosomally synthesized and post-translationally modified peptides (RiPPs) often associated with biological activities, such as cytotoxicity, antiviral, and antimalarial activities. They are traditionally described as cyclic molecules containing heterocyclized amino acids. However, this definition has been recently challenged by the discovery of short, linear cyanobactins containing three to five amino acids as well as cyanobactins containing no heterocyclized residues. Herein we report the discovery of scytodecamide (1) from the freshwater cyanobacterium Scytonema sp. UIC 10036. Structural elucidation based on mass spectrometry, 1D and 2D NMR spectroscopy, and Marfey's method revealed 1 to be a linear decapeptide with an N-terminal N-methylation and a C-terminal amidation. The genome of Scytonema sp. UIC 10036 was sequenced, and bioinformatic analysis revealed a cyanobactin-like biosynthetic gene cluster consistent with the structure of 1. The discovery of 1 as a novel linear peptide containing an N-terminal N-methylation and a C-terminal amidation expands the chemical and genetic diversity of the cyanobactin family of compounds.
Collapse
Affiliation(s)
- Camila M Crnkovic
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA.,CAPES Foundation, Ministry of Education of Brazil, 70040-020, Brasília, Federal District, Brazil
| | - Jana Braesel
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Aleksej Krunic
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Alessandra S Eustáquio
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jimmy Orjala
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
5
|
Structural determinants for peptide-bond formation by asparaginyl ligases. Proc Natl Acad Sci U S A 2019; 116:11737-11746. [PMID: 31123145 DOI: 10.1073/pnas.1818568116] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Asparaginyl endopeptidases (AEPs) are cysteine proteases which break Asx (Asn/Asp)-Xaa bonds in acidic conditions. Despite sharing a conserved overall structure with AEPs, certain plant enzymes such as butelase 1 act as a peptide asparaginyl ligase (PAL) and catalyze Asx-Xaa bond formation in near-neutral conditions. PALs also serve as macrocyclases in the biosynthesis of cyclic peptides. Here, we address the question of how a PAL can function as a ligase rather than a protease. Based on sequence homology of butelase 1, we identified AEPs and PALs from the cyclic peptide-producing plants Viola yedoensis (Vy) and Viola canadensis (Vc) of the Violaceae family. Using a crystal structure of a PAL obtained at 2.4-Å resolution coupled to mutagenesis studies, we discovered ligase-activity determinants flanking the S1 site, namely LAD1 and LAD2 located around the S2 and S1' sites, respectively, which modulate ligase activity by controlling the accessibility of water or amine nucleophile to the S-ester intermediate. Recombinantly expressed VyPAL1-3, predicted to be PALs, were confirmed to be ligases by functional studies. In addition, mutagenesis studies on VyPAL1-3, VyAEP1, and VcAEP supported our prediction that LAD1 and LAD2 are important for ligase activity. In particular, mutagenesis targeting LAD2 selectively enhanced the ligase activity of VyPAL3 and converted the protease VcAEP into a ligase. The definition of structural determinants required for ligation activity of the asparaginyl ligases presented here will facilitate genomic identification of PALs and engineering of AEPs into PALs.
Collapse
|
6
|
Ge Y, Czekster CM, Miller OK, Botting CH, Schwarz-Linek U, Naismith JH. Insights into the Mechanism of the Cyanobactin Heterocyclase Enzyme. Biochemistry 2019; 58:2125-2132. [PMID: 30912640 PMCID: PMC6497369 DOI: 10.1021/acs.biochem.9b00084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Cyanobactin
heterocyclases share the same catalytic domain (YcaO)
as heterocyclases/cyclodehydratases from other ribosomal peptide (RiPPs)
biosynthetic pathways. These enzymes process multiple residues (Cys/Thr/Ser)
within the same substrate. The processing of cysteine residues proceeds
with a known order. We show the order of reaction for threonines is
different and depends in part on a leader peptide within the substrate.
In contrast to other YcaO domains, which have been reported to exclusively
break down ATP into ADP and inorganic phosphate, cyanobactin heterocyclases
have been observed to produce AMP and inorganic pyrophosphate during
catalysis. We dissect the nucleotide profiles associated with heterocyclization
and propose a unifying mechanism, where the γ-phosphate of ATP
is transferred in a kinase mechanism to the substrate to yield a phosphorylated
intermediate common to all YcaO domains. In cyanobactin heterocyclases,
this phosphorylated intermediate, in a proportion of turnovers, reacts
with ADP to yield AMP and pyrophosphate.
Collapse
Affiliation(s)
- Ying Ge
- Biomedical Sciences Research Complex , University of St Andrews , St Andrews, Fife KY16 9ST , United Kingdom
| | - Clarissa Melo Czekster
- Biomedical Sciences Research Complex , University of St Andrews , St Andrews, Fife KY16 9ST , United Kingdom
| | - Ona K Miller
- Biomedical Sciences Research Complex , University of St Andrews , St Andrews, Fife KY16 9ST , United Kingdom
| | - Catherine H Botting
- Biomedical Sciences Research Complex , University of St Andrews , St Andrews, Fife KY16 9ST , United Kingdom
| | - Ulrich Schwarz-Linek
- Biomedical Sciences Research Complex , University of St Andrews , St Andrews, Fife KY16 9ST , United Kingdom
| | - James H Naismith
- Research Complex at Harwell , Didcot, Oxon OX11 0FA , United Kingdom.,Division of Structural Biology , University of Oxford , Oxford OX3 7BN , United Kingdom.,Rosalind Franklin Institute , Harwell, Didcot, Oxon OX11 0FA , United Kingdom
| |
Collapse
|
7
|
Sikandar A, Koehnke J. The role of protein–protein interactions in the biosynthesis of ribosomally synthesized and post-translationally modified peptides. Nat Prod Rep 2019; 36:1576-1588. [DOI: 10.1039/c8np00064f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review covers the role of protein–protein complexes in the biosynthesis of selected ribosomally synthesized and post-translationally modified peptide (RiPP) classes.
Collapse
Affiliation(s)
- Asfandyar Sikandar
- Workgroup Structural Biology of Biosynthetic Enzymes
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- Saarland University
- 66123 Saarbrücken
| | - Jesko Koehnke
- Workgroup Structural Biology of Biosynthetic Enzymes
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- Saarland University
- 66123 Saarbrücken
| |
Collapse
|
8
|
Abstract
Cyclic peptides are an emerging class of therapeutics that can modulate targets not amenable to traditional small molecule intervention (e.g., protein-protein interactions). However, N-to-C macrocyclization of peptides is a challenging and often a low yielding chemical transformation. Several macrocyclases from cyanobactin biosynthetic clusters have been used to catalyze this reaction.This chapter provides practical guidance to the processes of heterologous expression and purification of these enzymes as well as performing in vitro biochemical reactions. Finally, approaches to recover the final product from an enzymatic reaction mixture are also discussed.
Collapse
Affiliation(s)
- Wael E Houssen
- Marine Biodiscovery Centre, Chemistry Department, University of Aberdeen, Aberdeen, UK.,Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.,Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Gu W, Dong SH, Sarkar S, Nair SK, Schmidt EW. The Biochemistry and Structural Biology of Cyanobactin Pathways: Enabling Combinatorial Biosynthesis. Methods Enzymol 2018; 604:113-163. [PMID: 29779651 DOI: 10.1016/bs.mie.2018.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyanobactin biosynthetic enzymes have exceptional versatility in the synthesis of natural and unnatural products. Cyanobactins are ribosomally synthesized and posttranslationally modified peptides synthesized by multistep pathways involving a broad suite of enzymes, including heterocyclases/cyclodehydratases, macrocyclases, proteases, prenyltransferases, methyltransferases, and others. Here, we describe the enzymology and structural biology of cyanobactin biosynthetic enzymes, aiming at the twin goals of understanding biochemical mechanisms and biosynthetic plasticity. We highlight how this common suite of enzymes may be utilized to generate a large array or structurally and chemically diverse compounds.
Collapse
Affiliation(s)
- Wenjia Gu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Shi-Hui Dong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Snigdha Sarkar
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
10
|
Morita M, Schmidt EW. Parallel lives of symbionts and hosts: chemical mutualism in marine animals. Nat Prod Rep 2018; 35:357-378. [PMID: 29441375 PMCID: PMC6025756 DOI: 10.1039/c7np00053g] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to 2018 Symbiotic microbes interact with animals, often by producing natural products (specialized metabolites; secondary metabolites) that exert a biological role. A major goal is to determine which microbes produce biologically important compounds, a deceptively challenging task that often rests on correlative results, rather than hypothesis testing. Here, we examine the challenges and successes from the perspective of marine animal-bacterial mutualisms. These animals have historically provided a useful model because of their technical accessibility. By comparing biological systems, we suggest a common framework for establishing chemical interactions between animals and microbes.
Collapse
Affiliation(s)
- Maho Morita
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA 84112.
| | | |
Collapse
|
11
|
Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Chem Rev 2017; 117:5389-5456. [PMID: 28256131 DOI: 10.1021/acs.chemrev.6b00623] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With advances in sequencing technology, uncharacterized proteins and domains of unknown function (DUFs) are rapidly accumulating in sequence databases and offer an opportunity to discover new protein chemistry and reaction mechanisms. The focus of this review, the formerly enigmatic YcaO superfamily (DUF181), has been found to catalyze a unique phosphorylation of a ribosomal peptide backbone amide upon attack by different nucleophiles. Established nucleophiles are the side chains of Cys, Ser, and Thr which gives rise to azoline/azole biosynthesis in ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products. However, much remains unknown about the potential for YcaO proteins to collaborate with other nucleophiles. Recent work suggests potential in forming thioamides, macroamidines, and possibly additional post-translational modifications. This review covers all knowledge through mid-2016 regarding the biosynthetic gene clusters (BGCs), natural products, functions, mechanisms, and applications of YcaO proteins and outlines likely future research directions for this protein superfamily.
Collapse
Affiliation(s)
| | | | - Greg Mann
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom
| | - James H Naismith
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom.,State Key Laboratory of Biotherapy, Sichuan University , Sichuan, China
| | | |
Collapse
|
12
|
Bent AF, Mann G, Houssen WE, Mykhaylyk V, Duman R, Thomas L, Jaspars M, Wagner A, Naismith JH. Structure of the cyanobactin oxidase ThcOx from Cyanothece sp. PCC 7425, the first structure to be solved at Diamond Light Source beamline I23 by means of S-SAD. Acta Crystallogr D Struct Biol 2016; 72:1174-1180. [PMID: 27841750 PMCID: PMC5108345 DOI: 10.1107/s2059798316015850] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/07/2016] [Indexed: 11/10/2022] Open
Abstract
Determination of protein crystal structures requires that the phases are derived independently of the observed measurement of diffraction intensities. Many techniques have been developed to obtain phases, including heavy-atom substitution, molecular replacement and substitution during protein expression of the amino acid methionine with selenomethionine. Although the use of selenium-containing methionine has transformed the experimental determination of phases it is not always possible, either because the variant protein cannot be produced or does not crystallize. Phasing of structures by measuring the anomalous diffraction from S atoms could in theory be almost universal since almost all proteins contain methionine or cysteine. Indeed, many structures have been solved by the so-called native sulfur single-wavelength anomalous diffraction (S-SAD) phasing method. However, the anomalous effect is weak at the wavelengths where data are normally recorded (between 1 and 2 Å) and this limits the potential of this method to well diffracting crystals. Longer wavelengths increase the strength of the anomalous signal but at the cost of increasing air absorption and scatter, which degrade the precision of the anomalous measurement, consequently hindering phase determination. A new instrument, the long-wavelength beamline I23 at Diamond Light Source, was designed to work at significantly longer wavelengths compared with standard synchrotron beamlines in order to open up the native S-SAD method to projects of increasing complexity. Here, the first novel structure, that of the oxidase domain involved in the production of the natural product patellamide, solved on this beamline is reported using data collected to a resolution of 3.15 Å at a wavelength of 3.1 Å. The oxidase is an example of a protein that does not crystallize as the selenium variant and for which no suitable homology model for molecular replacement was available. Initial attempts collecting anomalous diffraction data for native sulfur phasing on a standard macromolecular crystallography beamline using a wavelength of 1.77 Å did not yield a structure. The new beamline thus has the potential to facilitate structure determination by native S-SAD phasing for what would previously have been regarded as very challenging cases with modestly diffracting crystals and low sulfur content.
Collapse
Affiliation(s)
- Andrew F. Bent
- BSRC, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, Scotland
| | - Greg Mann
- BSRC, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, Scotland
| | - Wael E. Houssen
- Marine Biodiscovery Center, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Vitaliy Mykhaylyk
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Ramona Duman
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Louise Thomas
- Marine Biodiscovery Center, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
| | - Marcel Jaspars
- Marine Biodiscovery Center, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
| | - Armin Wagner
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - James H. Naismith
- BSRC, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, Scotland
- State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
13
|
Martins J, Vasconcelos V. Cyanobactins from Cyanobacteria: Current Genetic and Chemical State of Knowledge. Mar Drugs 2015; 13:6910-46. [PMID: 26580631 PMCID: PMC4663559 DOI: 10.3390/md13116910] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/22/2015] [Accepted: 10/30/2015] [Indexed: 11/28/2022] Open
Abstract
Cyanobacteria are considered to be one of the most promising sources of new, natural products. Apart from non-ribosomal peptides and polyketides, ribosomally synthesized and post-translationally modified peptides (RiPPs) are one of the leading groups of bioactive compounds produced by cyanobacteria. Among these, cyanobactins have sparked attention due to their interesting bioactivities and for their potential to be prospective candidates in the development of drugs. It is assumed that the primary source of cyanobactins is cyanobacteria, although these compounds have also been isolated from marine animals such as ascidians, sponges and mollusks. The aim of this review is to update the current knowledge of cyanobactins, recognized as being produced by cyanobacteria, and to emphasize their genetic clusters and chemical structures as well as their bioactivities, ecological roles and biotechnological potential.
Collapse
Affiliation(s)
- Joana Martins
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
| | - Vitor Vasconcelos
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
| |
Collapse
|
14
|
Koehnke J, Bent AF, Houssen WE, Mann G, Jaspars M, Naismith JH. The structural biology of patellamide biosynthesis. Curr Opin Struct Biol 2014; 29:112-121. [PMID: 25460274 DOI: 10.1016/j.sbi.2014.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 10/22/2014] [Accepted: 10/29/2014] [Indexed: 11/27/2022]
Abstract
The biosynthetic pathways for patellamide and related natural products have recently been studied by structural biology. These pathways produce molecules that have a complex framework and exhibit a diverse array of activity due to the variability of the amino acids that are found in them. As these molecules are difficult to synthesize chemically, exploitation of their properties has been modest. The patellamide pathway involves amino acid heterocyclization, peptide cleavage, peptide macrocyclization, heterocycle oxidation and epimerization; closely related products are also prenylated. Enzyme activities have been identified for all these transformations except epimerization, which may be spontaneous. This review highlights the recent structural and mechanistic work on amino acid heterocyclization, peptide cleavage and peptide macrocyclization. This work should help in using the enzymes to produce novel analogs of the natural products enabling an exploitation of their properties.
Collapse
Affiliation(s)
- Jesko Koehnke
- BSRC, North Haugh, The University, St Andrews, KY16 9ST
| | - Andrew F Bent
- BSRC, North Haugh, The University, St Andrews, KY16 9ST
| | - Wael E Houssen
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen, AB24 3UE.,Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD
| | - Greg Mann
- BSRC, North Haugh, The University, St Andrews, KY16 9ST
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen, AB24 3UE
| | | |
Collapse
|