1
|
Henning RW, Kosheleva I, Šrajer V, Kim IS, Zoellner E, Ranganathan R. BioCARS: Synchrotron facility for probing structural dynamics of biological macromolecules. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:014301. [PMID: 38304444 PMCID: PMC10834067 DOI: 10.1063/4.0000238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
A major goal in biomedical science is to move beyond static images of proteins and other biological macromolecules to the internal dynamics underlying their function. This level of study is necessary to understand how these molecules work and to engineer new functions and modulators of function. Stemming from a visionary commitment to this problem by Keith Moffat decades ago, a community of structural biologists has now enabled a set of x-ray scattering technologies for observing intramolecular dynamics in biological macromolecules at atomic resolution and over the broad range of timescales over which motions are functionally relevant. Many of these techniques are provided by BioCARS, a cutting-edge synchrotron radiation facility built under Moffat leadership and located at the Advanced Photon Source at Argonne National Laboratory. BioCARS enables experimental studies of molecular dynamics with time resolutions spanning from 100 ps to seconds and provides both time-resolved x-ray crystallography and small- and wide-angle x-ray scattering. Structural changes can be initiated by several methods-UV/Vis pumping with tunable picosecond and nanosecond laser pulses, substrate diffusion, and global perturbations, such as electric field and temperature jumps. Studies of dynamics typically involve subtle perturbations to molecular structures, requiring specialized computational techniques for data processing and interpretation. In this review, we present the challenges in experimental macromolecular dynamics and describe the current state of experimental capabilities at this facility. As Moffat imagined years ago, BioCARS is now positioned to catalyze the scientific community to make fundamental advances in understanding proteins and other complex biological macromolecules.
Collapse
Affiliation(s)
- Robert W. Henning
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Irina Kosheleva
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Vukica Šrajer
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - In-Sik Kim
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Eric Zoellner
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Rama Ranganathan
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
2
|
Erfani A, Schieferstein JM, Reichert P, Narasimhan CN, Pastuskovas C, Parab V, Simmons D, Yang X, Shanker A, Hammond P, Doyle PS. Crystalline Antibody-Laden Alginate Particles: A Platform for Enabling High Concentration Subcutaneous Delivery of Antibodies. Adv Healthc Mater 2023; 12:e2202370. [PMID: 36745878 PMCID: PMC11469019 DOI: 10.1002/adhm.202202370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/30/2023] [Indexed: 02/08/2023]
Abstract
Subcutaneous (SC) administration is a desired route for monoclonal antibodies (mAbs). However, formulating mAbs for small injection volumes at high concentrations with suitable stability and injectability is a significant challenge. Here, this work presents a platform technology that combines the stability of crystalline antibodies with injectability and tunability of soft hydrogel particles. Composite alginate hydrogel particles are generated via a gentle centrifugal encapsulation process which avoids use of chemical reactions or an external organic phase. Crystalline suspension of anti-programmed cell death protein 1 (PD-1) antibody (pembrolizumab) is utilized as a model therapeutic antibody. Crystalline forms of the mAb encapsuled in the hydrogel particles lead to stable, high concentration, and injectable formulations. Formulation concentrations as high as 315 mg mL-1 antibody are achieved with encapsulation efficiencies in the range of 89-97%, with no perceivable increase in the number of antibody aggregates. Bioanalytical studies confirm superior maintained quality of the antibody in comparison with formulation approaches involving organic phases and chemical reactions. This work illustrates tuning the alginate particles' disintegration by using partially oxide alginates. Crystalline mAb-laden particles are evaluated for their biocompatibility using cell-based in vitro assays. Furthermore, the pharmacokinetics (PK) of the subcutaneously delivered human anti-PD-1 mAb in crystalline antibody-laden alginate hydrogel particles in Wistar rats is evaluated.
Collapse
Affiliation(s)
- Amir Erfani
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02142USA
| | | | | | | | | | | | | | - Xiaoyu Yang
- Merck Research LaboratoriesKenilworthNJ07033USA
| | - Apoorv Shanker
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02142USA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Paula Hammond
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02142USA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Patrick S. Doyle
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02142USA
- Harvard Medical School Initiative for RNA MedicineBostonMA02215USA
| |
Collapse
|
3
|
Saha S, Özden C, Samkutty A, Russi S, Cohen A, Stratton MM, Perry SL. Polymer-based microfluidic device for on-chip counter-diffusive crystallization and in situ X-ray crystallography at room temperature. LAB ON A CHIP 2023; 23:2075-2090. [PMID: 36942575 PMCID: PMC10631519 DOI: 10.1039/d2lc01194h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Proteins are long chains of amino acid residues that perform a myriad of functions in living organisms, including enzymatic reactions, signalling, and maintaining structural integrity. Protein function is determined directly by the protein structure. X-ray crystallography is the primary technique for determining the 3D structure of proteins, and facilitates understanding the effects of protein structure on function. The first step towards structure determination is crystallizing the protein of interest. We have developed a centrifugally-actuated microfluidic device that incorporates the fluid handling and metering necessary for protein crystallization. Liquid handling takes advantage of surface forces to control fluid flow and enable metering, without the need for any fluidic or pump connections. Our approach requires only the simple steps of pipetting the crystallization reagents into the device followed by either spinning or shaking to set up counter-diffusive protein crystallization trials. The use of thin, UV-curable polymers with a high level of X-ray transparency allows for in situ X-ray crystallography, eliminating the manual handling of fragile protein crystals and streamlining the process of protein structure analysis. We demonstrate the utility of our device using hen egg white lysozyme as a model system, followed by the crystallization and in situ, room temperature structural analysis of the hub domain of calcium-calmodulin dependent kinase II (CaMKIIβ).
Collapse
Affiliation(s)
- Sarthak Saha
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA.
| | - Can Özden
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA 01003, USA
| | - Alfred Samkutty
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA 01003, USA
| | - Silvia Russi
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aina Cohen
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA 01003, USA
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA.
| |
Collapse
|
4
|
Gilbile D, Shelby ML, Lyubimov AY, Wierman JL, Monteiro DCF, Cohen AE, Russi S, Coleman MA, Frank M, Kuhl TL. Plug-and-play polymer microfluidic chips for hydrated, room temperature, fixed-target serial crystallography. LAB ON A CHIP 2021; 21:4831-4845. [PMID: 34821226 PMCID: PMC8915944 DOI: 10.1039/d1lc00810b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The practice of serial X-ray crystallography (SX) depends on efficient, continuous delivery of hydrated protein crystals while minimizing background scattering. Of the two major types of sample delivery devices, fixed-target devices offer several advantages over widely adopted jet injectors, including: lower sample consumption, clog-free delivery, and the ability to control on-chip crystal density to improve hit rates. Here we present our development of versatile, inexpensive, and robust polymer microfluidic chips for routine and reliable room temperature serial measurements at both synchrotrons and X-ray free electron lasers (XFELs). Our design includes highly X-ray-transparent enclosing thin film layers tuned to minimize scatter background, adaptable sample flow layers tuned to match crystal size, and a large sample area compatible with both raster scanning and rotation based serial data collection. The optically transparent chips can be used both for in situ protein crystallization (to eliminate crystal handling) or crystal slurry loading, with prepared samples stable for weeks in a humidified environment and for several hours in ambient conditions. Serial oscillation crystallography, using a multi-crystal rotational data collection approach, at a microfocus synchrotron beamline (SSRL, beamline 12-1) was used to benchmark the performance of the chips. High-resolution structures (1.3-2.7 Å) were collected from five different proteins - hen egg white lysozyme, thaumatin, bovine liver catalase, concanavalin-A (type VI), and SARS-CoV-2 nonstructural protein NSP5. Overall, our modular fabrication approach enables precise control over the cross-section of materials in the X-ray beam path and facilitates chip adaption to different sample and beamline requirements for user-friendly, straightforward diffraction measurements at room temperature.
Collapse
Affiliation(s)
- Deepshika Gilbile
- Department of Chemical Engineering, University of California at Davis, Davis, CA 95616, USA.
| | - Megan L Shelby
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Artem Y Lyubimov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Diana C F Monteiro
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, New York 14203, USA
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Matthew A Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Matthias Frank
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Tonya L Kuhl
- Department of Chemical Engineering, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
5
|
Sui S, Mulichak A, Kulathila R, McGee J, Filiatreault D, Saha S, Cohen A, Song J, Hung H, Selway J, Kirby C, Shrestha OK, Weihofen W, Fodor M, Xu M, Chopra R, Perry SL. A capillary-based microfluidic device enables primary high-throughput room-temperature crystallographic screening. J Appl Crystallogr 2021; 54:1034-1046. [PMID: 34429718 PMCID: PMC8366422 DOI: 10.1107/s1600576721004155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/18/2021] [Indexed: 11/10/2022] Open
Abstract
A novel capillary-based microfluidic strategy to accelerate the process of small-molecule-compound screening by room-temperature X-ray crystallography using protein crystals is reported. The ultra-thin microfluidic devices are composed of a UV-curable polymer, patterned by cleanroom photolithography, and have nine capillary channels per chip. The chip was designed for ease of sample manipulation, sample stability and minimal X-ray background. 3D-printed frames and cassettes conforming to SBS standards are used to house the capillary chips, providing additional mechanical stability and compatibility with automated liquid- and sample-handling robotics. These devices enable an innovative in situ crystal-soaking screening workflow, akin to high-throughput compound screening, such that quantitative electron density maps sufficient to determine weak binding events are efficiently obtained. This work paves the way for adopting a room-temperature microfluidics-based sample delivery method at synchrotron sources to facilitate high-throughput protein-crystallography-based screening of compounds at high concentration with the aim of discovering novel binding events in an automated manner.
Collapse
Affiliation(s)
- Shuo Sui
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Anne Mulichak
- IMCA-CAT, Argonne National Laboratory, Lemont, IL, USA
| | | | - Joshua McGee
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - Sarthak Saha
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Aina Cohen
- Macromolecular Crystallography Group, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA, USA
| | - Jinhu Song
- Macromolecular Crystallography Group, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA, USA
| | | | - Jonathan Selway
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Christina Kirby
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Om K. Shrestha
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Michelle Fodor
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Mei Xu
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Rajiv Chopra
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Sarah L. Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
6
|
Abstract
X-ray crystallography enables detailed structural studies of proteins to understand and modulate their function. Conducting crystallographic experiments at cryogenic temperatures has practical benefits but potentially limits the identification of functionally important alternative protein conformations that can be revealed only at room temperature (RT). This review discusses practical aspects of preparing, acquiring, and analyzing X-ray crystallography data at RT to demystify preconceived impracticalities that freeze progress of routine RT data collection at synchrotron sources. Examples are presented as conceptual and experimental templates to enable the design of RT-inspired studies; they illustrate the diversity and utility of gaining novel insights into protein conformational landscapes. An integrative view of protein conformational dynamics enables opportunities to advance basic and biomedical research.
Collapse
|
7
|
Maeki M, Ito S, Takeda R, Ueno G, Ishida A, Tani H, Yamamoto M, Tokeshi M. Room-temperature crystallography using a microfluidic protein crystal array device and its application to protein-ligand complex structure analysis. Chem Sci 2020; 11:9072-9087. [PMID: 34094189 PMCID: PMC8162031 DOI: 10.1039/d0sc02117b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Room-temperature (RT) protein crystallography provides significant information to elucidate protein function under physiological conditions. In particular, contrary to typical binding assays, X-ray crystal structure analysis of a protein–ligand complex can determine the three-dimensional (3D) configuration of its binding site. This allows the development of effective drugs by structure-based and fragment-based (FBDD) drug design. However, RT crystallography and RT crystallography-based protein–ligand complex analyses require the preparation and measurement of numerous crystals to avoid the X-ray radiation damage. Thus, for the application of RT crystallography to protein–ligand complex analysis, the simultaneous preparation of protein–ligand complex crystals and sequential X-ray diffraction measurement remain challenging. Here, we report an RT crystallography technique using a microfluidic protein crystal array device for protein–ligand complex structure analysis. We demonstrate the microfluidic sorting of protein crystals into microwells without any complicated procedures and apparatus, whereby the sorted protein crystals are fixed into microwells and sequentially measured to collect X-ray diffraction data. This is followed by automatic data processing to calculate the 3D protein structure. The microfluidic device allows the high-throughput preparation of the protein–ligand complex solely by the replacement of the microchannel content with the required ligand solution. We determined eight trypsin–ligand complex structures for the proof of concept experiment and found differences in the ligand coordination of the corresponding RT and conventional cryogenic structures. This methodology can be applied to easily obtain more natural structures. Moreover, drug development by FBDD could be more effective using the proposed methodology. Room temperature protein crystallography and its application to protein–ligand complex structure analysis was demonstrated using a microfluidic protein crystal array device.![]()
Collapse
Affiliation(s)
- Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan +81-11-706-6745 +81-11-706-6745 +81-11-706-6744.,RIKEN SPring-8 Center 1-1-1 Kouto, Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Sho Ito
- Graduate School of Life Science, University of Hyogo 3-2-1 Kouto, Kamigori Ako Hyogo 678-1297 Japan.,ROD (Single Crystal Analysis) Group, Application Laboratories, Rigaku Corporation 3-9-12 Matubara-cho Akishima Tokyo 196-8666 Japan
| | - Reo Takeda
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan
| | - Go Ueno
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Akihiko Ishida
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan +81-11-706-6745 +81-11-706-6745 +81-11-706-6744
| | - Hirofumi Tani
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan +81-11-706-6745 +81-11-706-6745 +81-11-706-6744
| | - Masaki Yamamoto
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo-cho Sayo-gun Hyogo 679-5148 Japan.,Graduate School of Life Science, University of Hyogo 3-2-1 Kouto, Kamigori Ako Hyogo 678-1297 Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan +81-11-706-6745 +81-11-706-6745 +81-11-706-6744
| |
Collapse
|
8
|
Song K, Li G, Zu X, Du Z, Liu L, Hu Z. The Fabrication and Application Mechanism of Microfluidic Systems for High Throughput Biomedical Screening: A Review. MICROMACHINES 2020; 11:E297. [PMID: 32168977 PMCID: PMC7143183 DOI: 10.3390/mi11030297] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/01/2020] [Accepted: 03/10/2020] [Indexed: 01/15/2023]
Abstract
Microfluidic systems have been widely explored based on microfluidic technology, and it has been widely used for biomedical screening. The key parts are the fabrication of the base scaffold, the construction of the matrix environment in the 3D system, and the application mechanism. In recent years, a variety of new materials have emerged, meanwhile, some new technologies have been developed. In this review, we highlight the properties of high throughput and the biomedical application of the microfluidic chip and focus on the recent progress of the fabrication and application mechanism. The emergence of various biocompatible materials has provided more available raw materials for microfluidic chips. The material is not confined to polydimethylsiloxane (PDMS) and the extracellular microenvironment is not limited by a natural matrix. The mechanism is also developed in diverse ways, including its special physical structure and external field effects, such as dielectrophoresis, magnetophoresis, and acoustophoresis. Furthermore, the cell/organ-based microfluidic system provides a new platform for drug screening due to imitating the anatomic and physiologic properties in vivo. Although microfluidic technology is currently mostly in the laboratory stage, it has great potential for commercial applications in the future.
Collapse
Affiliation(s)
- Kena Song
- College of Medical Technology and Engineering, Henan University of Science and Technology, He’nan 471023, China; (K.S.); (X.Z.); (Z.D.)
| | - Guoqiang Li
- College of Physics, Chongqing University, Chongqing 401331, China; (G.L.); (L.L.)
| | - Xiangyang Zu
- College of Medical Technology and Engineering, Henan University of Science and Technology, He’nan 471023, China; (K.S.); (X.Z.); (Z.D.)
| | - Zhe Du
- College of Medical Technology and Engineering, Henan University of Science and Technology, He’nan 471023, China; (K.S.); (X.Z.); (Z.D.)
| | - Liyu Liu
- College of Physics, Chongqing University, Chongqing 401331, China; (G.L.); (L.L.)
| | - Zhigang Hu
- College of Medical Technology and Engineering, Henan University of Science and Technology, He’nan 471023, China; (K.S.); (X.Z.); (Z.D.)
| |
Collapse
|
9
|
Abstract
Classically, phenotype is what is observed, and genotype is the genetic makeup. Statistical studies aim to project phenotypic likelihoods of genotypic patterns. The traditional genotype-to-phenotype theory embraces the view that the encoded protein shape together with gene expression level largely determines the resulting phenotypic trait. Here, we point out that the molecular biology revolution at the turn of the century explained that the gene encodes not one but ensembles of conformations, which in turn spell all possible gene-associated phenotypes. The significance of a dynamic ensemble view is in understanding the linkage between genetic change and the gained observable physical or biochemical characteristics. Thus, despite the transformative shift in our understanding of the basis of protein structure and function, the literature still commonly relates to the classical genotype-phenotype paradigm. This is important because an ensemble view clarifies how even seemingly small genetic alterations can lead to pleiotropic traits in adaptive evolution and in disease, why cellular pathways can be modified in monogenic and polygenic traits, and how the environment may tweak protein function.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| |
Collapse
|
10
|
Grünbein ML, Nass Kovacs G. Sample delivery for serial crystallography at free-electron lasers and synchrotrons. Acta Crystallogr D Struct Biol 2019; 75:178-191. [PMID: 30821706 PMCID: PMC6400261 DOI: 10.1107/s205979831801567x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022] Open
Abstract
The high peak brilliance and femtosecond pulse duration of X-ray free-electron lasers (XFELs) provide new scientific opportunities for experiments in physics, chemistry and biology. In structural biology, one of the major applications is serial femtosecond crystallography. The intense XFEL pulse results in the destruction of any exposed microcrystal, making serial data collection mandatory. This requires a high-throughput serial approach to sample delivery. To this end, a number of such sample-delivery techniques have been developed, some of which have been ported to synchrotron sources, where they allow convenient low-dose data collection at room temperature. Here, the current sample-delivery techniques used at XFEL and synchrotron sources are reviewed, with an emphasis on liquid injection and high-viscosity extrusion, including their application for time-resolved experiments. The challenges associated with sample delivery at megahertz repetition-rate XFELs are also outlined.
Collapse
Affiliation(s)
- Marie Luise Grünbein
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Gabriela Nass Kovacs
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Methods for Determining and Understanding Serpin Structure and Function: X-Ray Crystallography. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2018; 1826:9-39. [PMID: 30194591 DOI: 10.1007/978-1-4939-8645-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Deciphering the X-ray crystal structures of serine protease inhibitors (serpins) and serpin complexes has been an integral part of understanding serpin function and inhibitory mechanisms. In addition, high-resolution structural information of serpins derived from the three domains of life (bacteria, archaea, and eukaryotic) and viruses has provided valuable insights into the hereditary and evolutionary history of this unique superfamily of proteins. This chapter will provide an overview of the predominant biophysical method that has yielded this information, X-ray crystallography. In addition, details of up-and-coming methods, such as neutron crystallography, cryo-electron microscopy, and small- and wide-angle solution scattering, and their potential applications to serpin structural biology will be briefly discussed. As serpins remain important both biologically and medicinally, the information provided in this chapter will aid in future experiments to expand our knowledge of this family of proteins.
Collapse
|
12
|
Ren Z, Ayhan M, Bandara S, Bowatte K, Kumarapperuma I, Gunawardana S, Shin H, Wang C, Zeng X, Yang X. Crystal-on-crystal chips for in situ serial diffraction at room temperature. LAB ON A CHIP 2018; 18:2246-2256. [PMID: 29952383 PMCID: PMC6057835 DOI: 10.1039/c8lc00489g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Recent developments in serial crystallography at X-ray free electron lasers (XFELs) and synchrotrons have been driven by two scientific goals in structural biology - first, static structure determination from nano or microcrystals of membrane proteins and large complexes that are difficult for conventional cryocrystallography, and second, direct observations of transient structural species in biochemical reactions at near atomic resolution. Since room-temperature diffraction experiments naturally demand a large quantity of purified protein, sample economy is critically important for all steps of serial crystallography from crystallization, crystal delivery to data collection. Here we report the development and applications of "crystal-on-crystal" devices to facilitate large-scale in situ serial diffraction experiments on protein crystals of all sizes - large, small, or microscopic. We show that the monocrystalline quartz as a substrate material prevents vapor loss during crystallization and significantly reduces background X-ray scattering. These devices can be readily adopted at XFEL and synchrotron beamlines, which enable efficient delivery of hundreds to millions of crystals to the X-ray beam, with an overall protein consumption per dataset comparable to that of cryocrystallography.
Collapse
Affiliation(s)
- Zhong Ren
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA
- Renz Research, Inc., Westmont, IL 60559, USA
- Corresponding authors: and
| | - Medine Ayhan
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sepalika Bandara
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kalinga Bowatte
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Indika Kumarapperuma
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Semini Gunawardana
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Heewhan Shin
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Cong Wang
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xiaoli Zeng
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xiaojing Yang
- Department of Chemistry, The University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Vision Sciences, The University of Illinois at Chicago, Chicago, IL 60607, USA
- Corresponding authors: and
| |
Collapse
|
13
|
Denz M, Brehm G, Hémonnot CYJ, Spears H, Wittmeier A, Cassini C, Saldanha O, Perego E, Diaz A, Burghammer M, Köster S. Cyclic olefin copolymer as an X-ray compatible material for microfluidic devices. LAB ON A CHIP 2017; 18:171-178. [PMID: 29210424 DOI: 10.1039/c7lc00824d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The combination of microfluidics and X-ray methods attracts a lot of attention from researchers as it brings together the high controllability of microfluidic sample environments and the small length scales probed by X-rays. In particular, the fields of biophysics and biology have benefited enormously from such approaches. We introduce a straightforward fabrication method for X-ray compatible microfluidic devices made solely from cyclic olefin copolymers. We benchmark the performance of the devices against other devices including more commonly used Kapton windows and obtain data of equal quality using small angle X-ray scattering. An advantage of the devices presented here is that no gluing between interfaces is necessary, rendering the production very reliable. As a biophysical application, we investigate the early time points of the assembly of vimentin intermediate filament proteins into higher-order structures. This weakly scattering protein system leads to high quality data in the new devices, thus opening up the way for numerous future applications.
Collapse
Affiliation(s)
- Manuela Denz
- Institute for X-Ray Physics, University of Goettingen, 37077 Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Šrajer V, Schmidt M. Watching Proteins Function with Time-resolved X-ray Crystallography. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2017; 50:373001. [PMID: 29353938 PMCID: PMC5771432 DOI: 10.1088/1361-6463/aa7d32] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron X-ray sources. An expansive database of more than 100,000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al., 2005a; Schmidt 2008; Neutze and Moffat, 2012; Šrajer 2014). In this approach, short and intense X-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron X-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard X-rays (XFELs; 5-20 keV), which provide exceptionally intense, femtosecond X-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al., 2014; Barends et al., 2015; Pande et al., 2016). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We also outline challenges and further developments necessary to broaden the application of these methods to many important proteins and enzymes of biomedical relevance.
Collapse
Affiliation(s)
- Vukica Šrajer
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, USA
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, IL, USA
| |
Collapse
|
15
|
Locating and Visualizing Crystals for X-Ray Diffraction Experiments. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2017; 1607:143-164. [PMID: 28573572 DOI: 10.1007/978-1-4939-7000-1_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Macromolecular crystallography has advanced from using macroscopic crystals, which might be >1 mm on a side, to crystals that are essentially invisible to the naked eye, or even under a standard laboratory microscope. As crystallography requires recognizing crystals when they are produced, and then placing them in an X-ray, electron, or neutron beam, this provides challenges, particularly in the case of advanced X-ray sources, where beams have very small cross sections and crystals may be vanishingly small. Methods for visualizing crystals are reviewed here, and examples of different types of cases are presented, including: standard crystals, crystals grown in mesophase, in situ crystallography, and crystals grown for X-ray Free Electron Laser or Micro Electron Diffraction experiments. As most techniques have limitations, it is desirable to have a range of complementary techniques available to identify and locate crystals. Ideally, a given technique should not cause sample damage, but sometimes it is necessary to use techniques where damage can only be minimized. For extreme circumstances, the act of probing location may be coincident with collecting X-ray diffraction data. Future challenges and directions are also discussed.
Collapse
|
16
|
Abstract
Time-resolved macromolecular crystallography unifies protein structure determination with chemical kinetics. With the advent of fourth generation X-ray sources the time-resolution can be on the order of 10-40 fs, which opens the ultrafast time scale to structure determination. Fundamental motions and transitions associated with chemical reactions in proteins can now be observed. Moreover, new experimental approaches at synchrotrons allow for the straightforward investigation of all kind of reactions in biological macromolecules. Here, recent developments in the field are reviewed.
Collapse
Affiliation(s)
- Marius Schmidt
- Kenwood Interdisciplinary Research Complex, Physics Department, University of Wisconsin-Milwaukee, Room 3087, 3135 North Maryland Avenue, Milwaukee, WI, 53211, USA.
| |
Collapse
|
17
|
Abstract
This chapter provides a review of different advanced methods that help to increase the success rate of a crystallization project, by producing larger and higher quality single crystals for determination of macromolecular structures by crystallographic methods. For this purpose, the chapter is divided into three parts. The first part deals with the fundamentals for understanding the crystallization process through different strategies based on physical and chemical approaches. The second part presents new approaches involved in more sophisticated methods not only for growing protein crystals but also for controlling the size and orientation of crystals through utilization of electromagnetic fields and other advanced techniques. The last section deals with three different aspects: the importance of microgravity, the use of ligands to stabilize proteins, and the use of microfluidics to obtain protein crystals. All these advanced methods will allow the readers to obtain suitable crystalline samples for high-resolution X-ray and neutron crystallography.
Collapse
Affiliation(s)
- Abel Moreno
- Instituto de Química, Universidad Nacional Autónoma de Mexico, Av. Universidad 3000, Cd.Mx., Mexico City, 04510, Mexico.
| |
Collapse
|
18
|
Ghazal A, Lafleur JP, Mortensen K, Kutter JP, Arleth L, Jensen GV. Recent advances in X-ray compatible microfluidics for applications in soft materials and life sciences. LAB ON A CHIP 2016; 16:4263-4295. [PMID: 27731448 DOI: 10.1039/c6lc00888g] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The increasingly narrow and brilliant beams at X-ray facilities reduce the requirements for both sample volume and data acquisition time. This creates new possibilities for the types and number of sample conditions that can be examined but simultaneously increases the demands in terms of sample preparation. Microfluidic-based sample preparation techniques have emerged as elegant alternatives that can be integrated directly into the experimental X-ray setup remedying several shortcomings of more traditional methods. We review the use of microfluidic devices in conjunction with X-ray measurements at synchrotron facilities in the context of 1) mapping large parameter spaces, 2) performing time resolved studies of mixing-induced kinetics, and 3) manipulating/processing samples in ways which are more demanding or not accessible on the macroscale. The review covers the past 15 years and focuses on applications where synchrotron data collection is performed in situ, i.e. directly on the microfluidic platform or on a sample jet from the microfluidic device. Considerations such as the choice of materials and microfluidic designs are addressed. The combination of microfluidic devices and measurements at large scale X-ray facilities is still emerging and far from mature, but it definitely offers an exciting array of new possibilities.
Collapse
Affiliation(s)
- Aghiad Ghazal
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Josiane P Lafleur
- Dept. of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kell Mortensen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Jörg P Kutter
- Dept. of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Grethe V Jensen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
19
|
Ghazal A, Gontsarik M, Kutter JP, Lafleur JP, Labrador A, Mortensen K, Yaghmur A. Direct monitoring of calcium-triggered phase transitions in cubosomes using small-angle X-ray scattering combined with microfluidics. J Appl Crystallogr 2016. [DOI: 10.1107/s1600576716014199] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This article introduces a simple microfluidic device that can be combined with synchrotron small-angle X-ray scattering (SAXS) for monitoring dynamic structural transitions. The microfluidic device is a thiol–ene-based system equipped with 125 µm-thick polystyrene windows, which are suitable for X-ray experiments. The device was prepared by soft lithography using elastomeric molds followed by a simple UV-initiated curing step to polymerize the chip material and simultaneously seal the device with the polystyrene windows. The microfluidic device was successfully used to explore the dynamics of the structural transitions of phytantriol/dioleoylphosphatidylglycerol-based cubosomes on exposure to a buffer containing calcium ions. The resulting SAXS data were resolved in the time frame between 0.5 and 5.5 s, and a calcium-triggered structural transition from an internal inverted-type cubic phase of symmetryIm3mto an internal inverted-type cubic phase of symmetryPn3mwas detected. The combination of microfluidics with X-ray techniques opens the door to the investigation of early dynamic structural transitions, which is not possible with conventional techniques such as glass flow cells. The combination of microfluidics with X-ray techniques can be used for investigating protein unfolding, for monitoring the formation of nanoparticles in real time, and for other biomedical and pharmaceutical investigations.
Collapse
|
20
|
Sui S, Wang Y, Kolewe KW, Srajer V, Henning R, Schiffman JD, Dimitrakopoulos C, Perry SL. Graphene-based microfluidics for serial crystallography. LAB ON A CHIP 2016; 16:3082-96. [PMID: 27241728 PMCID: PMC4970872 DOI: 10.1039/c6lc00451b] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Microfluidic strategies to enable the growth and subsequent serial crystallographic analysis of micro-crystals have the potential to facilitate both structural characterization and dynamic structural studies of protein targets that have been resistant to single-crystal strategies. However, adapting microfluidic crystallization platforms for micro-crystallography requires a dramatic decrease in the overall device thickness. We report a robust strategy for the straightforward incorporation of single-layer graphene into ultra-thin microfluidic devices. This architecture allows for a total material thickness of only ∼1 μm, facilitating on-chip X-ray diffraction analysis while creating a sample environment that is stable against significant water loss over several weeks. We demonstrate excellent signal-to-noise in our X-ray diffraction measurements using a 1.5 μs polychromatic X-ray exposure, and validate our approach via on-chip structure determination using hen egg white lysozyme (HEWL) as a model system. Although this work is focused on the use of graphene for protein crystallography, we anticipate that this technology should find utility in a wide range of both X-ray and other lab on a chip applications.
Collapse
Affiliation(s)
- Shuo Sui
- Department of Chemical Engineering, The University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Yuxi Wang
- Department of Chemical Engineering, The University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Kristopher W Kolewe
- Department of Chemical Engineering, The University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Vukica Srajer
- BioCARS Center for Advanced Radiation Sources, The University of Chicago, Argonne, IL 60439, USA
| | - Robert Henning
- BioCARS Center for Advanced Radiation Sources, The University of Chicago, Argonne, IL 60439, USA
| | - Jessica D Schiffman
- Department of Chemical Engineering, The University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Christos Dimitrakopoulos
- Department of Chemical Engineering, The University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Sarah L Perry
- Department of Chemical Engineering, The University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
21
|
Ren Z, Yang X. Angular-split/temporal-delay approach to ultrafast protein dynamics at XFELs. Acta Crystallogr D Struct Biol 2016; 72:871-82. [PMID: 27377384 PMCID: PMC6688658 DOI: 10.1107/s2059798316008573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 05/27/2016] [Indexed: 11/10/2022] Open
Abstract
X-ray crystallography promises direct insights into electron-density changes that lead to and arise from structural changes such as electron and proton transfer and the formation, rupture and isomerization of chemical bonds. The ultrashort pulses of hard X-rays produced by free-electron lasers present an exciting opportunity for capturing ultrafast structural events in biological macromolecules within femtoseconds after photoexcitation. However, shot-to-shot fluctuations, which are inherent to the very process of self-amplified spontaneous emission (SASE) that generates the ultrashort X-ray pulses, are a major source of noise that may conceal signals from structural changes. Here, a new approach is proposed to angularly split a single SASE pulse and to produce a temporal delay of picoseconds between the split pulses. These split pulses will allow the probing of two distinct states before and after photoexcitation triggered by a laser pulse between the split X-ray pulses. The split pulses originate from a single SASE pulse and share many common properties; thus, noise arising from shot-to-shot fluctuations is self-canceling. The unambiguous interpretation of ultrafast structural changes would require diffraction data at atomic resolution, as these changes may or may not involve any atomic displacement. This approach, in combination with the strategy of serial crystallography, offers a solution to study ultrafast dynamics of light-initiated biochemical reactions or biological processes at atomic resolution.
Collapse
Affiliation(s)
- Zhong Ren
- Renz Research Inc., Westmont, IL 60559, USA
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Vision Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
22
|
Maeki M, Yamazaki S, Pawate AS, Ishida A, Tani H, Yamashita K, Sugishima M, Watanabe K, Tokeshi M, Kenis PJA, Miyazaki M. A microfluidic-based protein crystallization method in 10 micrometer-sized crystallization space. CrystEngComm 2016. [DOI: 10.1039/c6ce01671e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Gavira JA. Current trends in protein crystallization. Arch Biochem Biophys 2015; 602:3-11. [PMID: 26747744 DOI: 10.1016/j.abb.2015.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 10/24/2022]
Abstract
UNLABELLED Proteins belong to the most complex colloidal system in terms of their physicochemical properties, size and conformational-flexibility. This complexity contributes to their great sensitivity to any external change and dictate the uncertainty of crystallization. The need of 3D models to understand their functionality and interaction mechanisms with other neighbouring (macro)molecules has driven the tremendous effort put into the field of crystallography that has also permeated other fields trying to shed some light into reluctant-to-crystallize proteins. This review is aimed at revising protein crystallization from a regular-laboratory point of view. It is also devoted to highlight the latest developments and achievements to produce, identify and deliver high-quality protein crystals for XFEL, Micro-ED or neutron diffraction. The low likelihood of protein crystallization is rationalized by considering the intrinsic polypeptide nature (folded state, surface charge, etc) followed by a description of the standard crystallization methods (batch, vapour diffusion and counter-diffusion), including high throughput advances. Other methodologies aimed at determining protein features in solution (NMR, SAS, DLS) or to gather structural information from single particles such as Cryo-EM are also discussed. Finally, current approaches showing the convergence of different structural biology techniques and the cross-methodologies adaptation to tackle the most difficult problems, are presented. SYNOPSIS Current advances in biomacromolecules crystallization, from nano crystals for XFEL and Micro-ED to large crystals for neutron diffraction, are covered with special emphasis in methodologies applicable at laboratory scale.
Collapse
Affiliation(s)
- José A Gavira
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR), Avda. de las Palmeras, 4. 18100 Armilla, Granada, Spain
| |
Collapse
|