1
|
Fölsche V, Großmann C, Richter AS. Impact of Porphyrin Binding to GENOMES UNCOUPLED 4 on Tetrapyrrole Biosynthesis in planta. FRONTIERS IN PLANT SCIENCE 2022; 13:850504. [PMID: 35371166 PMCID: PMC8967248 DOI: 10.3389/fpls.2022.850504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Plant tetrapyrrole biosynthesis (TPS) provides the indispensable chlorophyll (Chl) and heme molecules in photosynthetic organisms. Post-translational mechanisms control the enzymes to ensure a balanced flow of intermediates in the pathway and synthesis of appropriate amounts of both endproducts. One of the critical regulators of TPS is GENOMES UNCOUPLED 4 (GUN4). GUN4 interacts with magnesium chelatase (MgCh), and its binding of the catalytic substrate and product of the MgCh reaction stimulates the insertion of Mg2+ into protoporphyrin IX. Despite numerous in vitro studies, knowledge about the in vivo function of the GUN4:porphyrin interaction for the whole TPS pathway, particularly in plants, is still limited. To address this, we focused on two highly conserved amino acids crucial for porphyrin-binding to GUN4 and analyzed GUN4-F191A, R211A, and R211E substitution mutants in vitro and in vivo. Our analysis confirmed the importance of these amino acids for porphyrin-binding and the stimulation of plant MgCh by GUN4 in vitro. Expression of porphyrin-binding deficient F191A, R211A, and R211E in the Arabidopsis gun4-2 knockout mutant background revealed that, unlike in cyanobacteria and green algae, GUN4:porphyrin interactions did not affect the stability of GUN4 or other Arabidopsis TPS pathway enzymes in vivo. In addition, although they shared diminished porphyrin-binding and MgCh activation in vitro, expression of the different GUN4 mutants in gun4-2 had divergent effects on the TPS and the accumulation of Chl and Chl-binding proteins. For instance, expression of R211E, but not R211A, induced a substantial decrease of ALA synthesis rate, lower TPS intermediate and Chl level, and strongly impaired accumulation of photosynthetic complexes compared to wild-type plants. Furthermore, the presence of R211E led to significant growth retardation and paler leaves compared to GUN4 knockdown mutants, indicating that the exchange of R211 to glutamate compromised TPS and Chl accumulation more substantially than the almost complete lack of GUN4. Extensive in vivo analysis of GUN4 point mutants suggested that F191 and R211 might also play a role beyond porphyrin-binding.
Collapse
Affiliation(s)
- Vincent Fölsche
- Physiology of Plant Cell Organelles, Humboldt-Universität Berlin, Berlin, Germany
- Department of Plant Physiology, Humboldt-Universität Berlin, Berlin, Germany
| | - Christopher Großmann
- Physiology of Plant Cell Organelles, Humboldt-Universität Berlin, Berlin, Germany
| | - Andreas S. Richter
- Physiology of Plant Cell Organelles, Humboldt-Universität Berlin, Berlin, Germany
- Department of Plant Physiology, Humboldt-Universität Berlin, Berlin, Germany
- Physiology of Plant Metabolism, University of Rostock, Rostock, Germany
| |
Collapse
|
2
|
Hu JH, Chang JW, Xu T, Wang J, Wang X, Lin R, Duanmu D, Liu L. Structural basis of bilin binding by the chlorophyll biosynthesis regulator GUN4. Protein Sci 2021; 30:2083-2091. [PMID: 34382282 DOI: 10.1002/pro.4164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/05/2022]
Abstract
The chlorophyll biosynthesis regulator GENOMES UNCOUPLED 4 (GUN4) is conserved in nearly all oxygenic photosynthetic organisms. Recently, GUN4 has been found to be able to bind the linear tetrapyrroles (bilins) and stimulate the magnesium chelatase activity in the unicellular green alga Chlamydomonas reinhardtii. Here, we characterize GUN4 proteins from Arabidopsis thaliana and the cyanobacterium Synechocystis sp. PCC 6803 for their ability to bind bilins, and present the crystal structures of Synechocystis GUN4 in biliverdin-bound, phycocyanobilin-bound, and phytochromobilin-bound forms at the resolutions of 1.05, 1.10, and 1.70 Å, respectively. These linear molecules adopt a cyclic-helical conformation, and bind more tightly than planar porphyrins to the tetrapyrrole-binding pocket of GUN4. Based on structural comparison, we propose a working model of GUN4 in regulation of tetrapyrrole biosynthetic pathway, and address the role of the bilin-bound GUN4 in retrograde signaling.
Collapse
Affiliation(s)
- Jiu-Hui Hu
- School of Life Sciences, Anhui University, Hefei, China
| | | | - Tao Xu
- School of Life Sciences, Anhui University, Hefei, China
| | - Jia Wang
- School of Life Sciences, Anhui University, Hefei, China.,Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao Wang
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lin Liu
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| |
Collapse
|
3
|
Li RQ, Jiang M, Liu YH, Zheng YC, Huang JZ, Wu JM, Shu QY. The xantha Marker Trait Is Associated with Altered Tetrapyrrole Biosynthesis and Deregulated Transcription of PhANGs in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:901. [PMID: 28620402 PMCID: PMC5449477 DOI: 10.3389/fpls.2017.00901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/15/2017] [Indexed: 05/08/2023]
Abstract
The xantha marker trait, which is controlled by a down-regulating epi-mutation of OsGUN4, has been applied to the production of hybrid rice. However, the molecular basis for the ability of xantha mutants to attain high photosynthetic capacity even with decreased chlorophyll contents has not been characterized. In the present study, we observed that the total chlorophyll content of the xantha mutant was only 27.2% of that of the wild-type (WT) plants. However, the xantha mutant still accumulated 59.9% of the WT δ-aminolevulinic acid content, 72.8% of the WT Mg-protoporphyrin IX content, and 63.0% of the WT protochlorophyllide a content. Additionally, the protoporphyrin IX and heme contents in the mutant increased to 155.0 and 160.0%, respectively, of the WT levels. A search for homologs resulted in the identification of 124 rice genes involved in tetrapyrrole biosynthesis and photosynthesis. With the exception of OsGUN4, OsHO-1, and OsHO-2, the expression levels of the genes involved in tetrapyrrole biosynthesis were significantly higher in the xantha mutant than in the WT plants, as were all 72 photosynthesis-associated nuclear genes. In contrast, there were no differences between the xantha mutant and WT plants regarding the expression of all 22 photosynthesis-associated chloroplast genes. Furthermore, the abundance of 1O2 and the expression levels of 1O2-related genes were lower in the xantha mutant than in the WT plants, indicating 1O2-mediated retrograde signaling was repressed in the mutant plants. These results suggested that the abundance of protoporphyrin IX used for chlorophyll synthesis decreased in the mutant, which ultimately decreased the amount of chlorophyll in the xantha mutant. Additionally, the up-regulated expression of photosynthesis-associated nuclear genes enabled the mutant to attain a high photosynthetic capacity. Our findings confirm that OsGUN4 plays an important role in tetrapyrrole biosynthesis and photosynthesis in rice. GUN4, chlorophyll synthesis pathways, and photosynthetic activities are highly conserved in plants and hence, novel traits (e.g., xantha marker trait) may be generated in other cereal crops by modifying the GUN4 gene.
Collapse
Affiliation(s)
- Rui-Qing Li
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang UniversityHangzhou, China
- Hubei Collaborative Innovation Center for Grain IndustryJingzhou, China
- Department of Chemistry, Zhejiang UniversityHangzhou, China
| | - Meng Jiang
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang UniversityHangzhou, China
| | - Yan-Hua Liu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang UniversityHangzhou, China
| | - Yun-Chao Zheng
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang UniversityHangzhou, China
- Institute of Nuclear Agricultural Sciences, Zhejiang UniversityHangzhou, China
| | - Jian-Zhong Huang
- Institute of Nuclear Agricultural Sciences, Zhejiang UniversityHangzhou, China
| | - Jian-Min Wu
- Department of Chemistry, Zhejiang UniversityHangzhou, China
| | - Qing-Yao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang UniversityHangzhou, China
- Hubei Collaborative Innovation Center for Grain IndustryJingzhou, China
- *Correspondence: Qing-Yao Shu,
| |
Collapse
|
4
|
Richter AS, Hochheuser C, Fufezan C, Heinze L, Kuhnert F, Grimm B. Phosphorylation of GENOMES UNCOUPLED 4 Alters Stimulation of Mg Chelatase Activity in Angiosperms. PLANT PHYSIOLOGY 2016; 172:1578-1595. [PMID: 27688621 PMCID: PMC5100749 DOI: 10.1104/pp.16.01036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/27/2016] [Indexed: 05/07/2023]
Abstract
GENOMES UNCOUPLED 4 (GUN4) is a positive regulator of light-dependent chlorophyll biosynthesis. GUN4 activates Mg chelatase (MgCh) that catalyzes the insertion of an Mg2+ ion into protoporphyrin IX. We show that Arabidopsis (Arabidopsis thaliana) GUN4 is phosphorylated at Ser 264 (S264), the penultimate amino acid residue at the C terminus. While GUN4 is preferentially phosphorylated in darkness, phosphorylation is reduced upon accumulation of Mg porphyrins. Expression of a phosphomimicking GUN4(S264D) results in an incomplete complementation of the white gun4-2 null mutant and a chlorotic phenotype comparable to gun4 knockdown mutants. Phosphorylated GUN4 has a reduced stimulatory effect on MgCh in vitro and in vivo but retains its protein stability and tetrapyrrole binding capacity. Analysis of GUN4 found in oxygenic photosynthetic organisms reveals the evolution of a C-terminal extension, which harbors the phosphorylation site of GUN4 expressed in angiosperms. Homologs of GUN4 from Synechocystis and Chlamydomonas lack the conserved phosphorylation site found in a C-terminal extension of angiosperm GUN4. Biochemical studies proved the importance of the C-terminal extension for MgCh stimulation and inactivation of GUN4 by phosphorylation in angiosperms. An additional mechanism regulating MgCh activity is proposed. In conjunction with the dark repression of 5-aminolevulinic acid synthesis, GUN4 phosphorylation minimizes the flow of intermediates into the Mg branch of the tetrapyrrole metabolic pathway for chlorophyll biosynthesis.
Collapse
Affiliation(s)
- Andreas Sven Richter
- Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany (A.S.R., C.H., L.H., F.K., B.G.); and
- Computational Biology, Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany (C.F.)
| | - Caroline Hochheuser
- Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany (A.S.R., C.H., L.H., F.K., B.G.); and
- Computational Biology, Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany (C.F.)
| | - Christian Fufezan
- Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany (A.S.R., C.H., L.H., F.K., B.G.); and
- Computational Biology, Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany (C.F.)
| | - Laura Heinze
- Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany (A.S.R., C.H., L.H., F.K., B.G.); and
- Computational Biology, Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany (C.F.)
| | - Franziska Kuhnert
- Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany (A.S.R., C.H., L.H., F.K., B.G.); and
- Computational Biology, Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany (C.F.)
| | - Bernhard Grimm
- Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany (A.S.R., C.H., L.H., F.K., B.G.); and
- Computational Biology, Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany (C.F.)
| |
Collapse
|
5
|
Tarahi Tabrizi S, Sawicki A, Zhou S, Luo M, Willows RD. GUN4-Protoporphyrin IX Is a Singlet Oxygen Generator with Consequences for Plastid Retrograde Signaling. J Biol Chem 2016; 291:8978-84. [PMID: 26969164 DOI: 10.1074/jbc.c116.719989] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 11/06/2022] Open
Abstract
The genomes uncoupled 4 (GUN4) protein is a nuclear-encoded, chloroplast-localized, porphyrin-binding protein implicated in retrograde signaling between the chloroplast and nucleus, although its exact role in this process is still unclear. Functionally, it enhances Mg-chelatase activity in the chlorophyll biosynthesis pathway. Because GUN4 is present only in organisms that carry out oxygenic photosynthesis and because it binds protoporphyrin IX (PPIX) and Mg-PPIX, it has been suggested that it prevents production of light- and PPIX- or Mg-PPIX-dependent reactive oxygen species. A chld-1/GUN4 mutant with elevated PPIX has a light-dependent up-regulation of GUN4, implicating this protein in light-dependent sensing of PPIX, with the suggestion that GUN4 reduces PPIX-generated singlet oxygen, O2(a(1)Δg), and subsequent oxidative damage (Brzezowski, P., Schlicke, H., Richter, A., Dent, R. M., Niyogi, K. K., and Grimm, B. (2014) Plant J. 79, 285-298). In direct contrast, our results show that purified GUN4 and oxidatively damaged ChlH increase the rate of PPIX-generated singlet oxygen production in the light, by a factor of 5 and 10, respectively, when compared with PPIX alone. Additionally, the functional GUN4-PPIX-ChlH complex and ChlH-PPIX complexes generate O2(a(1)Δg) at a reduced rate when compared with GUN4-PPIX. As O2(a(1)Δg) is a potential plastid-to-nucleus signal, possibly through second messengers, light-dependent O2(a(1)Δg) generation by GUN4-PPIX is proposed to be part of a signal transduction pathway from the chloroplast to the nucleus. GUN4 thus senses the availability and flux of PPIX through the chlorophyll biosynthetic pathway and also modulates Mg-chelatase activity. The light-dependent O2(a(1)Δg) generation from GUN4-PPIX is thus proposed as the first step in retrograde signaling from the chloroplast to the nucleus.
Collapse
Affiliation(s)
- Shabnam Tarahi Tabrizi
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Artur Sawicki
- the Department of Biophysics, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland, and
| | - Shuaixiang Zhou
- the National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Meizhong Luo
- the National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Robert D Willows
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia,
| |
Collapse
|
6
|
Kopečná J, Cabeza de Vaca I, Adams NBP, Davison PA, Brindley AA, Hunter CN, Guallar V, Sobotka R. Porphyrin Binding to Gun4 Protein, Facilitated by a Flexible Loop, Controls Metabolite Flow through the Chlorophyll Biosynthetic Pathway. J Biol Chem 2015; 290:28477-28488. [PMID: 26446792 DOI: 10.1074/jbc.m115.664987] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Indexed: 01/01/2023] Open
Abstract
In oxygenic phototrophs, chlorophylls, hemes, and bilins are synthesized by a common branched pathway. Given the phototoxic nature of tetrapyrroles, this pathway must be tightly regulated, and an important regulatory role is attributed to magnesium chelatase enzyme at the branching between the heme and chlorophyll pathway. Gun4 is a porphyrin-binding protein known to stimulate in vitro the magnesium chelatase activity, but how the Gun4-porphyrin complex acts in the cell was unknown. To address this issue, we first performed simulations to determine the porphyrin-docking mechanism to the cyanobacterial Gun4 structure. After correcting crystallographic loop contacts, we determined the binding site for magnesium protoporphyrin IX. Molecular modeling revealed that the orientation of α6/α7 loop is critical for the binding, and the magnesium ion held within the porphyrin is coordinated by Asn-211 residue. We also identified the basis for stronger binding in the Gun4-1 variant and for weaker binding in the W192A mutant. The W192A-Gun4 was further characterized in magnesium chelatase assay showing that tight porphyrin binding in Gun4 facilitates its interaction with the magnesium chelatase ChlH subunit. Finally, we introduced the W192A mutation into cells and show that the Gun4-porphyrin complex is important for the accumulation of ChlH and for channeling metabolites into the chlorophyll biosynthetic pathway.
Collapse
Affiliation(s)
- Jana Kopečná
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
| | - Israel Cabeza de Vaca
- Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program, Carrer de Jordi Girona 29, 08034 Barcelona, Spain
| | - Nathan B P Adams
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Paul A Davison
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Amanda A Brindley
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Victor Guallar
- Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program, Carrer de Jordi Girona 29, 08034 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Roman Sobotka
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|