1
|
Woods KN. Modeling of protein hydration dynamics is supported by THz spectroscopy of highly diluted solutions. Front Chem 2023; 11:1131935. [PMID: 37361018 PMCID: PMC10290188 DOI: 10.3389/fchem.2023.1131935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
In this investigation, we report the effect on the microscopic dynamics and interactions of the cytokine interferon gamma (IFN-γ) and antibodies to IFN-γ (anti-IFN-γ) and to the interferon gamma receptor 1 (anti-IFNGR1) prepared in highly dilute (HD) solutions of initial proteins. THz spectroscopy measurements have been conducted as a means to analyze and characterize the collective dynamics of the HD samples. MD simulations have also been performed that have successfully reproduced the observed signatures from experimental measurement. Using this joint experimental-computational approach we determine that the HD process associated with the preparation of the highly diluted samples used in this investigation induces a dynamical transition that results in collective changes in the hydrogen-bond network of the solvent. The dynamical transition in the solvent is triggered by changes in the mobility and hydrogen-bonding interactions of the surface molecules in the HD samples and is characterized by dynamical heterogeneity. We have uncovered that the reorganization of the sample surface residue dynamics at the solvent-protein interface leads to both structural and kinetic heterogeneous dynamics that ultimately create interactions that enhance the binding probability of the antigen binding site. Our results indicate that the modified interfacial dynamics of anti-IFN-γ and anti-IFGNR1 that we probe experimentally are directly associated with alterations in the complementarity regions of the distinct antibodies that designate both antigen-antibody affinity and recognition.
Collapse
|
2
|
Woods KN. New insights into the microscopic interactions associated with the physical mechanism of action of highly diluted biologics. Sci Rep 2021; 11:13774. [PMID: 34215838 PMCID: PMC8253741 DOI: 10.1038/s41598-021-93326-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/21/2021] [Indexed: 11/08/2022] Open
Abstract
In this investigation, we report the effect on the microscopic dynamics and interactions of the cytokine interferon gamma (IFN-γ) and antibodies to IFN-γ (anti-IFN-γ) and to the interferon gamma receptor 1 (anti-IFNGR1) prepared in exceptionally dilute solutions of initial proteins. Using both THz spectroscopy and molecular dynamics simulations we have uncovered that the high dilution method of sample preparation results in the reorganization of the sample surface residue dynamics at the solvent-protein interface that leads to both structural and kinetic heterogeneous dynamics that ultimately create interactions that enhance the binding probability of the antigen binding site. Our results indicate that the modified interfacial dynamics of anti-IFN-γ and anti-IFGNR1 that we probe experimentally are directly associated with alterations in the complementarity regions of the distinct antibodies that designate both antigen-antibody affinity and recognition.
Collapse
Affiliation(s)
- Kristina N Woods
- Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians-Universität, 80538, Munich, Germany.
| |
Collapse
|
3
|
Juan-Carlos PDM, Perla-Lidia PP, Stephanie-Talia MM, Mónica-Griselda AM, Luz-María TE. ABC transporter superfamily. An updated overview, relevance in cancer multidrug resistance and perspectives with personalized medicine. Mol Biol Rep 2021; 48:1883-1901. [PMID: 33616835 DOI: 10.1007/s11033-021-06155-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
The ATP binding-cassette superfamily corresponds the mostly transmembrane transporters family found in humans. These proteins actively transport endogenous and exogenous substrates through biological membranes in body tissues, so they have an important role in the regulation of many physiological functions necessary for human homeostasis, as well as in response regulation to several pharmacological substrates. The development of multidrug resistance has become one of the main troubles in conventional chemotherapy in different illnesses including cancer, being the increased efflux of antineoplastic drugs the main reason for this multidrug resistance, with a key role of the ABC superfamily. Likely, the interindividual variability in the pharmacological response among patients is well known, and may be due to intrinsically factors of the disease, genetic and environmental ones. Thus, the understanding of this variability, especially the genetic variability associated with the efficacy and toxicity of drugs, can provide a safer and more effective pharmacological treatment, so ABC genes are considered as important regulators due to their relationship with the reduction in pharmacological response. In this review, updated information about transporters belonging to this superfamily was collected, the possible role of these transporters in cancer, the role of genetic variability in their genes, as well as some therapeutic tools that have been tried to raise against main transporters associated with chemoresistance in cancer.
Collapse
Affiliation(s)
- Pérez-De Marcos Juan-Carlos
- Laboratory of Pharmacology, National Institute of Pediatrics, Mexico City, México.,Postgraduate Degree in Pharmacology, National Polytechnic Institute, Mexico City, México
| | | | | | | | | |
Collapse
|
4
|
Vahedi S, Lusvarghi S, Pluchino K, Shafrir Y, Durell SR, Gottesman MM, Ambudkar SV. Mapping discontinuous epitopes for MRK-16, UIC2 and 4E3 antibodies to extracellular loops 1 and 4 of human P-glycoprotein. Sci Rep 2018; 8:12716. [PMID: 30143707 PMCID: PMC6109178 DOI: 10.1038/s41598-018-30984-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/30/2018] [Indexed: 12/14/2022] Open
Abstract
P-glycoprotein (P-gp), an ATP-dependent efflux pump, is associated with the development of multidrug resistance in cancer cells. Antibody-mediated blockade of human P-gp activity has been shown to overcome drug resistance by re-sensitizing resistant cancer cells to anticancer drugs. Despite the potential clinical application of this finding, the epitopes of the three human P-gp-specific monoclonal antibodies MRK-16, UIC2 and 4E3, which bind to the extracellular loops (ECLs) have not yet been mapped. By generating human-mouse P-gp chimeras, we mapped the epitopes of these antibodies to ECLs 1 and 4. We then identified key amino acids in these regions by replacing mouse residues with homologous human P-gp residues to recover binding of antibodies to the mouse P-gp. We found that changing a total of ten residues, five each in ECL1 and ECL4, was sufficient to recover binding of both MRK-16 and 4E3 antibodies, suggesting a common epitope. However, recovery of the conformation-sensitive UIC2 epitope required replacement of thirteen residues in ECL1 and the same five residues replaced in the ECL4 for MRK-16 and 4E3 binding. These results demonstrate that discontinuous epitopes for MRK-16, UIC2 and 4E3 are located in the same regions of ECL1 and 4 of the multidrug transporter.
Collapse
Affiliation(s)
- Shahrooz Vahedi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892-4256, USA
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892-4256, USA
| | - Kristen Pluchino
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892-4256, USA
| | - Yinon Shafrir
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892-4256, USA
| | - Stewart R Durell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892-4256, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892-4256, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892-4256, USA.
| |
Collapse
|
5
|
Abstract
The ATP binding cassette transporter ABCB1 (also termed P-glycoprotein) is a physiologically essential multidrug efflux transporter of key relevance to biomedicine. Here, we report the conformational trapping and structural analysis of ABCB1 in complex with the antigen-binding fragment of UIC2, a human ABCB1-specific inhibitory antibody, and zosuquidar, a third-generation ABCB1 inhibitor. The structures outline key features underlining specific ABCB1 inhibition by antibodies and small molecules, including a dual mode of inhibitor binding in a fully occluded ABCB1 cavity. Finally, our analysis sheds light on the conformational transitions undergone by the transporter to reach the inhibitor-bound state. The multidrug transporter ABCB1 (P-glycoprotein) is an ATP-binding cassette transporter that has a key role in protecting tissues from toxic insult and contributes to multidrug extrusion from cancer cells. Here, we report the near-atomic resolution cryo-EM structure of nucleotide-free ABCB1 trapped by an engineered disulfide cross-link between the nucleotide-binding domains (NBDs) and bound to the antigen-binding fragment of the human-specific inhibitory antibody UIC2 and to the third-generation ABCB1 inhibitor zosuquidar. Our structure reveals the transporter in an occluded conformation with a central, enclosed, inhibitor-binding pocket lined by residues from all transmembrane (TM) helices of ABCB1. The pocket spans almost the entire width of the lipid membrane and is occupied exclusively by two closely interacting zosuquidar molecules. The external, conformational epitope facilitating UIC2 binding is also visualized, providing a basis for its inhibition of substrate efflux. Additional cryo-EM structures suggest concerted movement of TM helices from both halves of the transporters associated with closing the NBD gap, as well as zosuquidar binding. Our results define distinct recognition interfaces of ABCB1 inhibitory agents, which may be exploited for therapeutic purposes.
Collapse
|