1
|
Kadirvelraj R, Boruah BM, Wang S, Chapla D, Huang C, Ramiah A, Hudson KL, Prudden AR, Boons GJ, Withers SG, Wood ZA, Moremen KW. Structural basis for Lewis antigen synthesis by the α1,3-fucosyltransferase FUT9. Nat Chem Biol 2023; 19:1022-1030. [PMID: 37202521 PMCID: PMC10726971 DOI: 10.1038/s41589-023-01345-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/20/2023] [Indexed: 05/20/2023]
Abstract
Mammalian cell surface and secreted glycoproteins exhibit remarkable glycan structural diversity that contributes to numerous physiological and pathogenic interactions. Terminal glycan structures include Lewis antigens synthesized by a collection of α1,3/4-fucosyltransferases (CAZy GT10 family). At present, the only available crystallographic structure of a GT10 member is that of the Helicobacter pylori α1,3-fucosyltransferase, but mammalian GT10 fucosyltransferases are distinct in sequence and substrate specificity compared with the bacterial enzyme. Here, we determined crystal structures of human FUT9, an α1,3-fucosyltransferase that generates Lewisx and Lewisy antigens, in complex with GDP, acceptor glycans, and as a FUT9-donor analog-acceptor Michaelis complex. The structures reveal substrate specificity determinants and allow prediction of a catalytic model supported by kinetic analyses of numerous active site mutants. Comparisons with other GT10 fucosyltransferases and GT-B fold glycosyltransferases provide evidence for modular evolution of donor- and acceptor-binding sites and specificity for Lewis antigen synthesis among mammalian GT10 fucosyltransferases.
Collapse
Affiliation(s)
- Renuka Kadirvelraj
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Bhargavi M Boruah
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Shuo Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Chin Huang
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Annapoorani Ramiah
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Kieran L Hudson
- Department of Biochemistry and Molecular Biology, Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zachary A Wood
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA.
| | - Kelley W Moremen
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA.
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
2
|
Li H, Chapla D, Amos RA, Ramiah A, Moremen KW, Li H. Structural basis for heparan sulfate co-polymerase action by the EXT1-2 complex. Nat Chem Biol 2023; 19:565-574. [PMID: 36593275 PMCID: PMC10160006 DOI: 10.1038/s41589-022-01220-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/31/2022] [Indexed: 01/04/2023]
Abstract
Heparan sulfate (HS) proteoglycans are extended (-GlcAβ1,4GlcNAcα1,4-)n co-polymers containing decorations of sulfation and epimerization that are linked to cell surface and extracellular matrix proteins. In mammals, HS repeat units are extended by an obligate heterocomplex of two exostosin family members, EXT1 and EXT2, where each protein monomer contains distinct GT47 (GT-B fold) and GT64 (GT-A fold) glycosyltransferase domains. In this study, we generated human EXT1-EXT2 (EXT1-2) as a functional heterocomplex and determined its structure in the presence of bound donor and acceptor substrates. Structural data and enzyme activity of catalytic site mutants demonstrate that only two of the four glycosyltransferase domains are major contributors to co-polymer syntheses: the EXT1 GT-B fold β1,4GlcA transferase domain and the EXT2 GT-A fold α1,4GlcNAc transferase domain. The two catalytic sites are over 90 Å apart, indicating that HS is synthesized by a dissociative process that involves a single catalytic site on each monomer.
Collapse
Affiliation(s)
- Hua Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Robert A Amos
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Annapoorani Ramiah
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
3
|
Sanz‐Martínez I, García‐García A, Tejero T, Hurtado‐Guerrero R, Merino P. The Essential Role of Water Molecules in the Reaction Mechanism of Protein O-Fucosyltransferase 2. Angew Chem Int Ed Engl 2022; 61:e202213610. [PMID: 36260536 PMCID: PMC9828666 DOI: 10.1002/anie.202213610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/11/2022]
Abstract
Protein O-fucosyltransferase 2 (PoFUT2) is an inverting glycosyltransferase (GT) that fucosylates thrombospondin repeats (TSRs) from group 1 and 2. PoFUT2 recognizes a large and diverse number of TSRs through a dynamic network of water-mediated interactions. By X-ray structural studies of C. elegans PoFUT2 complexed to a TSR of group 2, we demonstrate that this GT recognizes similarly the 3D structure of TSRs from both groups 1 and 2. Its active site is highly exposed to the solvent, suggesting that water molecules might also play an essential role in the fucosylation mechanism. We applied QM/MM methods using human PoFUT2 as a model, and found that HsPoFUT2 follows a classical SN 2 reaction mechanism in which water molecules contribute to a great extent in facilitating the release of the leaving pyrophosphate unit, causing the H transfer from the acceptor nucleophile (Thr/Ser) to the catalytic base, which is the last event in the reaction. This demonstrates the importance of water molecules not only in recognition of the ligands but also in catalysis.
Collapse
Affiliation(s)
- Ignacio Sanz‐Martínez
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI).Universidad de Zaragoza50018ZaragozaSpain
| | - Ana García‐García
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI).Universidad de Zaragoza50018ZaragozaSpain
| | - Tomás Tejero
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH).Universidad de Zaragoza-CSIC50009ZaragozaSpain
| | - Ramón Hurtado‐Guerrero
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI).Universidad de Zaragoza50018ZaragozaSpain,Copenhagen Center for GlycomicsDepartment of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDK-2200Denmark,Fundación ARAIDZaragoza50018Spain
| | - Pedro Merino
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI).Universidad de Zaragoza50018ZaragozaSpain
| |
Collapse
|
4
|
Hou J, Wen X, Long P, Xiong S, Liu H, Cai L, Deng H, Zhang Z. The role of post-translational modifications in driving abnormal cardiovascular complications at high altitude. Front Cardiovasc Med 2022; 9:886300. [PMID: 36186970 PMCID: PMC9515308 DOI: 10.3389/fcvm.2022.886300] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The high-altitude environment is characterized by hypobaric hypoxia, low temperatures, low humidity, and high radiation, which is a natural challenge for lowland residents entering. Previous studies have confirmed the acute and chronic effects of high altitude on the cardiovascular systems of lowlanders. Abnormal cardiovascular complications, including pulmonary edema, cardiac hypertrophy and pulmonary arterial hypertension were commonly explored. Effective evaluation of cardiovascular adaptive response in high altitude can provide a basis for early warning, prevention, diagnosis, and treatment of altitude diseases. At present, post-translational modifications (PTMs) of proteins are a key step to regulate their biological functions and dynamic interactions with other molecules. This process is regulated by countless enzymes called “writer, reader, and eraser,” and the performance is precisely controlled. Mutations and abnormal expression of these enzymes or their substrates have been implicated in the pathogenesis of cardiovascular diseases associated with high altitude. Although PTMs play an important regulatory role in key processes such as oxidative stress, apoptosis, proliferation, and hypoxia response, little attention has been paid to abnormal cardiovascular response at high altitude. Here, we reviewed the roles of PTMs in driving abnormal cardiovascular complications at high altitude.
Collapse
Affiliation(s)
- Jun Hou
- Department of Cardiology, Chengdu Third People’s Hospital, Cardiovascular Disease Research Institute of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People’s Hospital, Chengdu, China
| | - Pan Long
- School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Shiqiang Xiong
- Department of Cardiology, Chengdu Third People’s Hospital, Cardiovascular Disease Research Institute of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Hanxiong Liu
- Department of Cardiology, Chengdu Third People’s Hospital, Cardiovascular Disease Research Institute of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Lin Cai
- Department of Cardiology, Chengdu Third People’s Hospital, Cardiovascular Disease Research Institute of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- *Correspondence: Lin Cai,
| | - Haoyu Deng
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Center for Heart and Lung Innovation, St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Haoyu Deng,
| | - Zhen Zhang
- Department of Cardiology, Chengdu Third People’s Hospital, Cardiovascular Disease Research Institute of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Zhen Zhang,
| |
Collapse
|
5
|
Structural Insights in Mammalian Sialyltransferases and Fucosyltransferases: We Have Come a Long Way, but It Is Still a Long Way Down. Molecules 2021; 26:molecules26175203. [PMID: 34500643 PMCID: PMC8433944 DOI: 10.3390/molecules26175203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
Mammalian cell surfaces are modified with complex arrays of glycans that play major roles in health and disease. Abnormal glycosylation is a hallmark of cancer; terminal sialic acid and fucose in particular have high levels in tumor cells, with positive implications for malignancy. Increased sialylation and fucosylation are due to the upregulation of a set of sialyltransferases (STs) and fucosyltransferases (FUTs), which are potential drug targets in cancer. In the past, several advances in glycostructural biology have been made with the determination of crystal structures of several important STs and FUTs in mammals. Additionally, how the independent evolution of STs and FUTs occurred with a limited set of global folds and the diverse modular ability of catalytic domains toward substrates has been elucidated. This review highlights advances in the understanding of the structural architecture, substrate binding interactions, and catalysis of STs and FUTs in mammals. While this general understanding is emerging, use of this information to design inhibitors of STs and FUTs will be helpful in providing further insights into their role in the manifestation of cancer and developing targeted therapeutics in cancer.
Collapse
|
6
|
Piniello B, Lira-Navarrete E, Takeuchi H, Takeuchi M, Haltiwanger RS, Hurtado-Guerrero R, Rovira C. Asparagine Tautomerization in Glycosyltransferase Catalysis. The Molecular Mechanism of Protein O-Fucosyltransferase 1. ACS Catal 2021; 11:9926-9932. [PMID: 34868727 PMCID: PMC8631701 DOI: 10.1021/acscatal.1c01785] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/19/2021] [Indexed: 12/12/2022]
Abstract
![]()
O-glycosylation is a post-translational protein
modification essential to life. One of the enzymes involved in this
process is protein O-fucosyltransferase 1 (POFUT1),
which fucosylates threonine or serine residues within a specific sequence
context of epidermal growth factor-like domains (EGF-LD). Unlike most
inverting glycosyltransferases, POFUT1 lacks a basic residue in the
active site that could act as a catalytic base to deprotonate the
Thr/Ser residue of the EGF-LD acceptor during the chemical reaction.
Using quantum mechanics/molecular mechanics (QM/MM) methods on recent
crystal structures, as well as mutagenesis experiments, we uncover
the enzyme catalytic mechanism, revealing that it involves proton
shuttling through an active site asparagine, conserved among species,
which undergoes tautomerization. This mechanism is consistent with
experimental kinetic analysis of Caenorhabditis elegans POFUT1 Asn43 mutants, which ablate enzyme activity even if mutated
to Asp, the canonical catalytic base in inverting glycosyltransferases.
These results will aid inhibitor development for Notch-associated O-glycosylation disorders.
Collapse
Affiliation(s)
- Beatriz Piniello
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Erandi Lira-Navarrete
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain
| | - Hideyuki Takeuchi
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602, United States
| | - Megumi Takeuchi
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602, United States
| | - Robert S. Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602, United States
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain
- Fundación ARAID, 50018 Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 1017 Copenhagen, Denmark
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
7
|
Lira-Navarrete E, Pallarés MC, Castello F, Ruedas-Rama MJ, Orte A, Lostao A, Hurtado-Guerrero R. Protein O-Fucosyltransferase 1 Undergoes Interdomain Flexibility in Solution. Molecules 2021; 26:2105. [PMID: 33916911 PMCID: PMC8067585 DOI: 10.3390/molecules26082105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 11/25/2022] Open
Abstract
Protein O-fucosyltransferase 1 (PoFUT1) is a GT-B fold enzyme that fucosylates proteins containing EGF-like repeats. GT-B glycosyltransferases have shown a remarkable grade of plasticity adopting closed and open conformations as a way of tuning their catalytic cycle, a feature that has not been observed for PoFUT1. Here, we analyzed Caenorhabditis elegans PoFUT1 (CePoFUT1) conformational behavior in solution by atomic force microscopy (AFM) and single-molecule fluorescence resonance energy transfer (SMF-FRET). Our results show that this enzyme is very flexible and adopts mainly compact conformations and to a lesser extend a highly dynamic population that oscillates between compact and highly extended conformations. Overall, our experiments illustrate the inherent complexity of CePoFUT1 dynamics, which might play a role during its catalytic cycle.
Collapse
Affiliation(s)
- Erandi Lira-Navarrete
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018 Zaragoza, Spain;
| | - María Carmen Pallarés
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Fabio Castello
- Departamento de Fisicoquímica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain; (F.C.); (M.J.R.-R.)
| | - Maria J. Ruedas-Rama
- Departamento de Fisicoquímica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain; (F.C.); (M.J.R.-R.)
| | - Angel Orte
- Departamento de Fisicoquímica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain; (F.C.); (M.J.R.-R.)
| | - Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Fundación ARAID, 50018 Zaragoza, Spain
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018 Zaragoza, Spain;
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Fundación ARAID, 50018 Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
8
|
Guillen N. Signals and signal transduction pathways in Entamoeba histolytica during the life cycle and when interacting with bacteria or human cells. Mol Microbiol 2020; 115:901-915. [PMID: 33249684 DOI: 10.1111/mmi.14657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023]
Abstract
Entamoeba histolytica is the etiological agent of amebiasis in humans. This ameba parasite resides as a commensal in the intestine where it shares intestinal resources with the bacterial microbiome. In the intestinal ecosystem, the ameba encysts and eventually develops disease by invading the tissues. E. histolytica possesses cell surface receptors for the proper sensing of signals involved in encystation or sustaining parasite interaction with bacteria and human cells. Among those receptors are the Gal/GalNAc lectin, G protein-coupled receptors, and transmembrane kinases. In addition there are recently discovered, promising proteins, including orthologs of Toll-type receptors and β trefoil lectins. These proteins trigger a wide variety of signal transduction pathways; however, most of the players involved in the signaling pathways evoked in this parasite are unknown. This review provides an overview of amoebic receptors and their role in encystation, adherence to bacteria or human cells, as well as the reported intracellular signal transduction processes that they can trigger. This knowledge is essential for understanding the lifestyle of E. histolytica and its cytopathic effect on bacteria and human cells that are responsible for infection.
Collapse
Affiliation(s)
- Nancy Guillen
- Institut Pasteur, Centre National de la Recherche Scientifique, CNRS-ERL9195, Paris, France
| |
Collapse
|
9
|
Boruah BM, Kadirvelraj R, Liu L, Ramiah A, Li C, Zong G, Bosman GP, Yang JY, Wang LX, Boons GJ, Wood ZA, Moremen KW. Characterizing human α-1,6-fucosyltransferase (FUT8) substrate specificity and structural similarities with related fucosyltransferases. J Biol Chem 2020; 295:17027-17045. [PMID: 33004438 PMCID: PMC7863877 DOI: 10.1074/jbc.ra120.014625] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Mammalian Asn-linked glycans are extensively processed as they transit the secretory pathway to generate diverse glycans on cell surface and secreted glycoproteins. Additional modification of the glycan core by α-1,6-fucose addition to the innermost GlcNAc residue (core fucosylation) is catalyzed by an α-1,6-fucosyltransferase (FUT8). The importance of core fucosylation can be seen in the complex pathological phenotypes of FUT8 null mice, which display defects in cellular signaling, development, and subsequent neonatal lethality. Elevated core fucosylation has also been identified in several human cancers. However, the structural basis for FUT8 substrate specificity remains unknown.Here, using various crystal structures of FUT8 in complex with a donor substrate analog, and with four distinct glycan acceptors, we identify the molecular basis for FUT8 specificity and activity. The ordering of three active site loops corresponds to an increased occupancy for bound GDP, suggesting an induced-fit folding of the donor-binding subsite. Structures of the various acceptor complexes were compared with kinetic data on FUT8 active site mutants and with specificity data from a library of glycan acceptors to reveal how binding site complementarity and steric hindrance can tune substrate affinity. The FUT8 structure was also compared with other known fucosyltransferases to identify conserved and divergent structural features for donor and acceptor recognition and catalysis. These data provide insights into the evolution of modular templates for donor and acceptor recognition among GT-B fold glycosyltransferases in the synthesis of diverse glycan structures in biological systems.
Collapse
Affiliation(s)
- Bhargavi M Boruah
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Renuka Kadirvelraj
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Annapoorani Ramiah
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Gerlof P Bosman
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Zachary A Wood
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
10
|
Deschuyter M, Pennarubia F, Pinault E, Legardinier S, Maftah A. Functional Characterization of POFUT1 Variants Associated with Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12061430. [PMID: 32486426 PMCID: PMC7352195 DOI: 10.3390/cancers12061430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Protein O-fucosyltransferase 1 (POFUT1) overexpression, which is observed in many cancers such as colorectal cancer (CRC), leads to a NOTCH signaling dysregulation associated with the tumoral process. In rare CRC cases, with no POFUT1 overexpression, seven missense mutations were found in human POFUT1. METHODS Recombinant secreted forms of human WT POFUT1 and its seven mutated counterparts were produced and purified. Their O-fucosyltransferase activities were assayed in vitro using a chemo-enzymatic approach with azido-labeled GDP-fucose as a donor substrate and NOTCH1 EGF-LD26, produced in E. coli periplasm, as a relevant acceptor substrate. Targeted mass spectrometry (MS) was carried out to quantify the O-fucosyltransferase ability of all POFUT1 proteins. FINDINGS MS analyses showed a significantly higher O-fucosyltransferase activity of six POFUT1 variants (R43H, Y73C, T115A, I343V, D348N, and R364W) compared to WT POFUT1. INTERPRETATION This study provides insights on the possible involvement of these seven missense mutations in colorectal tumors. The hyperactive forms could lead to an increased O-fucosylation of POFUT1 protein targets such as NOTCH receptors in CRC patients, thereby leading to a NOTCH signaling dysregulation. It is the first demonstration of gain-of-function mutations for this crucial glycosyltransferase, modulating NOTCH activity, as well as that of other potential glycoproteins.
Collapse
Affiliation(s)
- Marlène Deschuyter
- PEIRENE, EA 7500, Glycosylation and Cell Differentiation, Faculty of Sciences and Technology, University of Limoges, F-87060 Limoges, France; (M.D.); (F.P.); (E.P.); (S.L.)
| | - Florian Pennarubia
- PEIRENE, EA 7500, Glycosylation and Cell Differentiation, Faculty of Sciences and Technology, University of Limoges, F-87060 Limoges, France; (M.D.); (F.P.); (E.P.); (S.L.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Emilie Pinault
- PEIRENE, EA 7500, Glycosylation and Cell Differentiation, Faculty of Sciences and Technology, University of Limoges, F-87060 Limoges, France; (M.D.); (F.P.); (E.P.); (S.L.)
- BISCEm US042 INSERM—UMS 2015 CNRS, Mass Spectrometry Platform, Faculty of Medicine and Pharmacy, University of Limoges, F-87025 Limoges, France
| | - Sébastien Legardinier
- PEIRENE, EA 7500, Glycosylation and Cell Differentiation, Faculty of Sciences and Technology, University of Limoges, F-87060 Limoges, France; (M.D.); (F.P.); (E.P.); (S.L.)
| | - Abderrahman Maftah
- PEIRENE, EA 7500, Glycosylation and Cell Differentiation, Faculty of Sciences and Technology, University of Limoges, F-87060 Limoges, France; (M.D.); (F.P.); (E.P.); (S.L.)
- Correspondence: ; Tel.: +33-5554-57684; Fax: +33-5554-57653
| |
Collapse
|
11
|
Structural basis for substrate specificity and catalysis of α1,6-fucosyltransferase. Nat Commun 2020; 11:973. [PMID: 32080177 PMCID: PMC7033129 DOI: 10.1038/s41467-020-14794-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
Core-fucosylation is an essential biological modification by which a fucose is transferred from GDP-β-L-fucose to the innermost N-acetylglucosamine residue of N-linked glycans. A single human enzyme α1,6-fucosyltransferase (FUT8) is the only enzyme responsible for this modification via the addition of an α-1,6-linked fucose to N-glycans. To date, the details of substrate recognition and catalysis by FUT8 remain unknown. Here, we report the crystal structure of FUT8 complexed with GDP and a biantennary complex N-glycan (G0), which provides insight into both substrate recognition and catalysis. FUT8 follows an SN2 mechanism and deploys a series of loops and an α-helix which all contribute in forming the binding site. An exosite, formed by one of these loops and an SH3 domain, is responsible for the recognition of branched sugars, making contacts specifically to the α1,3 arm GlcNAc, a feature required for catalysis. This information serves as a framework for inhibitor design, and helps to assess its potential as a therapeutic target.
Collapse
|
12
|
Emerging structural insights into glycosyltransferase-mediated synthesis of glycans. Nat Chem Biol 2019; 15:853-864. [PMID: 31427814 DOI: 10.1038/s41589-019-0350-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
Abstract
Glycans linked to proteins and lipids play key roles in biology; thus, accurate replication of cellular glycans is crucial for maintaining function following cell division. The fact that glycans are not copied from genomic templates suggests that fidelity is provided by the catalytic templates of glycosyltransferases that accurately add sugars to specific locations on growing oligosaccharides. To form new glycosidic bonds, glycosyltransferases bind acceptor substrates and orient a specific hydroxyl group, frequently one of many, for attack of the donor sugar anomeric carbon. Several recent crystal structures of glycosyltransferases with bound acceptor substrates reveal that these enzymes have common core structures that function as scaffolds upon which variable loops are inserted to confer substrate specificity and correctly orient the nucleophilic hydroxyl group. The varied approaches for acceptor binding site assembly suggest an ongoing evolution of these loop regions provides templates for assembly of the diverse glycan structures observed in biology.
Collapse
|
13
|
Agirre J, van Raaij MJ. Carbohydrate structure hits the groove. Acta Crystallogr F Struct Biol Commun 2018; 74:441-442. [PMID: 30084392 PMCID: PMC6096480 DOI: 10.1107/s2053230x18010853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
An introduction to the Acta Cryst. F special issue on glycoproteins and protein–carbohydrate complexes in which the contents, the current state of the field and the future of glycan structural biology are briefly discussed.
Collapse
Affiliation(s)
- Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Mark J. van Raaij
- Department of Molecular Structure, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, E-28049 Madrid, Spain
| |
Collapse
|