1
|
Yang X, Hu T, Liang J, Xiong Z, Lin Z, Zhao Y, Zhou X, Gao Y, Sun S, Yang X, Guddat LW, Yang H, Rao Z, Zhang B. An oligopeptide permease, OppABCD, requires an iron-sulfur cluster domain for functionality. Nat Struct Mol Biol 2024; 31:1072-1082. [PMID: 38548954 DOI: 10.1038/s41594-024-01256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 02/23/2024] [Indexed: 07/20/2024]
Abstract
Oligopeptide permease, OppABCD, belongs to the type I ABC transporter family. Its role is to import oligopeptides into bacteria for nutrient uptake and to modulate the host immune response. OppABCD consists of a cluster C substrate-binding protein (SBP), OppA, membrane-spanning OppB and OppC subunits, and an ATPase, OppD, that contains two nucleotide-binding domains (NBDs). Here, using cryo-electron microscopy, we determined the high-resolution structures of Mycobacterium tuberculosis OppABCD in the resting state, oligopeptide-bound pre-translocation state, AMPPNP-bound pre-catalytic intermediate state and ATP-bound catalytic intermediate state. The structures show an assembly of a cluster C SBP with its ABC translocator and a functionally required [4Fe-4S] cluster-binding domain in OppD. Moreover, the ATP-bound OppABCD structure has an outward-occluded conformation, although no substrate was observed in the transmembrane cavity. Here, we reveal an oligopeptide recognition and translocation mechanism of OppABCD, which provides a perspective on how this and other type I ABC importers facilitate bulk substrate transfer across the lipid bilayer.
Collapse
Affiliation(s)
- Xiaolin Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.
| | - Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jingxi Liang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Zhiqi Xiong
- Laboratory of Structural Biology, Tsinghua University, Beijing, China
| | - Zhenli Lin
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yao Zhao
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
| | - Xiaoting Zhou
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shan Sun
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane Queensland, Australia
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
- Laboratory of Structural Biology, Tsinghua University, Beijing, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
2
|
Diep P, Stogios PJ, Evdokimova E, Savchenko A, Mahadevan R, Yakunin AF. Ni(II)-binding affinity of CcNikZ-II and its homologs: the role of the HH-prong and variable loop revealed by structural and mutational studies. FEBS J 2024; 291:2980-2993. [PMID: 38555564 DOI: 10.1111/febs.17125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/30/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024]
Abstract
Extracytoplasmic Ni(II)-binding proteins (NiBPs) are molecular shuttles involved in cellular nickel uptake. Here, we determined the crystal structure of apo CcNikZ-II at 2.38 Å, which revealed a Ni(II)-binding site comprised of the double His (HH-)prong (His511, His512) and a short variable (v-)loop nearby (Thr59-Thr64, TEDKYT). Mutagenesis of the site identified Glu60 and His511 as critical for high affinity Ni(II)-binding. Phylogenetic analysis showed 15 protein clusters with two groups containing the HH-prong. Metal-binding assays with 11 purified NiBPs containing this feature yielded higher Ni(II)-binding affinities. Replacement of the wild type v-loop with those from other NiBPs improved the affinity by up to an order of magnitude. This work provides molecular insights into the determinants for Ni(II) affinity and paves way for NiBP engineering.
Collapse
Affiliation(s)
- Patrick Diep
- Department of Chemical Engineering and Applied Chemistry, BioZone - Centre for Applied Bioscience and Bioengineering, University of Toronto, Toronto, Ontario, Canada
- Systems & Synthetic Biology Group, Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, BioZone - Centre for Applied Bioscience and Bioengineering, University of Toronto, Toronto, Ontario, Canada
| | - Elena Evdokimova
- Department of Chemical Engineering and Applied Chemistry, BioZone - Centre for Applied Bioscience and Bioengineering, University of Toronto, Toronto, Ontario, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, BioZone - Centre for Applied Bioscience and Bioengineering, University of Toronto, Toronto, Ontario, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, BioZone - Centre for Applied Bioscience and Bioengineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, BioZone - Centre for Applied Bioscience and Bioengineering, University of Toronto, Toronto, Ontario, Canada
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Wales, UK
| |
Collapse
|
3
|
Ackroyd BK, Dodson EJ, Mehboob J, Dowle AA, Thomas GH, Wilkinson AJ. Structure and ligand binding in the putative anti-microbial peptide transporter protein, YejA. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001430. [PMID: 38334478 PMCID: PMC10924461 DOI: 10.1099/mic.0.001430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
YejABEF is an ATP-binding cassette transporter that is implicated in the sensitivity of Escherichia coli to anti-microbial peptides, the best-characterized example being microcin C, a peptide-nucleotide antibiotic that targets aspartyl-tRNA synthetase. Here the structure of the extracellular solute binding protein, YejA, has been determined, revealing an oligopeptide-binding protein fold enclosing a ligand-binding pocket larger than those of other peptide-binding proteins of known structure. Prominent electron density in this cavity defines an undecapeptide sequence LGEPRYAFNFN, an observation that is confirmed by mass spectrometry. In the structure, the peptide interactions with the protein are mediated by main chain hydrogen bonds with the exception of Arg5 whose guanidinium side chain makes a set of defining polar interactions with four YejA residues. More detailed characterization of purified recombinant YejA, by a combination of ESI and MALDI-mass spectrometry as well as thermal shift assays, reveals a set of YejA complexes containing overlapping peptides 10-19 residues in length. All contain the sequence LGEPRYAFN. Curiously, these peptides correspond to residues 8-26 of the mature YejA protein, which belong to a unique N-terminal extension that distinguishes YejA from other cluster C oligopeptide binding proteins of known structure. This 35-residue extension is well-ordered and packs across the surface of the protein. The undecapeptide ligand occupies only a fraction of the enclosed pocket volume suggesting the possibility that much larger peptides or peptide conjugates could be accommodated, though thermal shift assays of YejA binding to antimicrobial peptides and peptides unrelated to LGEPRYAFNFN have not provided evidence of binding. While the physiological significance of this 'auto-binding' is not clear, the experimental data suggest that it is not an artefact of the crystallization process and that it may have a function in the sensing of periplasmic or membrane stress.
Collapse
Affiliation(s)
- Bryony K. Ackroyd
- York Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, UK
- Department of Biology and York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Eleanor J. Dodson
- York Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Javeria Mehboob
- Department of Biology and York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Adam A. Dowle
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK
| | - Gavin H. Thomas
- Department of Biology and York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Anthony J. Wilkinson
- York Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, UK
| |
Collapse
|
4
|
Hughes AM, Darby JF, Dodson EJ, Wilson SJ, Turkenburg JP, Thomas GH, Wilkinson AJ. Peptide transport in Bacillus subtilis - structure and specificity in the extracellular solute binding proteins OppA and DppE. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748525 DOI: 10.1099/mic.0.001274] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Peptide transporters play important nutritional and cell signalling roles in Bacillus subtilis, which are pronounced during stationary phase adaptations and development. Three high-affinity ATP-binding cassette (ABC) family transporters are involved in peptide uptake - the oligopeptide permease (Opp), another peptide permease (App) and a less well-characterized dipeptide permease (Dpp). Here we report crystal structures of the extracellular substrate binding proteins, OppA and DppE, which serve the Opp and Dpp systems, respectively. The structure of OppA was determined in complex with endogenous peptides, modelled as Ser-Asn-Ser-Ser, and with the sporulation-promoting peptide Ser-Arg-Asn-Val-Thr, which bind with K d values of 0.4 and 2 µM, respectively, as measured by isothermal titration calorimetry. Differential scanning fluorescence experiments with a wider panel of ligands showed that OppA has highest affinity for tetra- and penta-peptides. The structure of DppE revealed the unexpected presence of a murein tripeptide (MTP) ligand, l-Ala-d-Glu-meso-DAP, in the peptide binding groove. The mode of MTP binding in DppE is different to that observed in the murein peptide binding protein, MppA, from Escherichia coli, suggesting independent evolution of these proteins from an OppA-like precursor. The presence of MTP in DppE points to a role for Dpp in the uptake and recycling of cell wall peptides, a conclusion that is supported by analysis of the genomic context of dpp, which revealed adjacent genes encoding enzymes involved in muropeptide catabolism in a gene organization that is widely conserved in Firmicutes.
Collapse
Affiliation(s)
- Adam M Hughes
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - John F Darby
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Eleanor J Dodson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Samuel J Wilson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Johan P Turkenburg
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Gavin H Thomas
- Department of Biology, University of York, York YO10 5DD, UK
| | - Anthony J Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| |
Collapse
|
5
|
Law WWH, Kanelis V, Zamble DB. Biochemical studies highlight determinants for metal selectivity in the Escherichia coli periplasmic solute binding protein NikA. Metallomics 2022; 14:mfac084. [PMID: 36255398 PMCID: PMC9671101 DOI: 10.1093/mtomcs/mfac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/15/2022] [Indexed: 11/12/2022]
Abstract
Nickel is an essential micronutrient for the survival of many microbes. On account of the toxicity of nickel and its scarcity in the environment, microbes have evolved specific systems for uptaking and delivering nickel to enzymes. NikA, the solute binding protein for the ATP-binding cassette (ABC) importer NikABCDE, plays a vital role in the nickel homeostasis of Escherichia coli by selectively binding nickel over other metals in the metabolically complex periplasm. While the endogenous ligand for NikA is known to be the Ni(II)-(L-His)2 complex, the molecular basis by which NikA selectively binds Ni(II)-(L-His)2 is unclear, especially considering that NikA can bind multiple metal-based ligands with comparable affinity. Here we show that, regardless of its promiscuous binding activity, NikA preferentially interacts with Ni(II)-(L-His)2, even over other metal-amino acid ligands with an identical coordination geometry for the metal. Replacing both the Ni(II) and the L-His residues in Ni(II)-(L-His)2 compromises binding of the ligand to NikA, in part because these alterations affect the degree by which NikA closes around the ligand. Replacing H416, the only NikA residue that ligates the Ni(II), with other potential metal-coordinating amino acids decreases the binding affinity of NikA for Ni(II)-(L-His)2 and compromises uptake of Ni(II) into E. coli cells, likely due to altered metal selectivity of the NikA mutants. Together, the biochemical and in vivo studies presented here define key aspects of how NikA selects for Ni(II)-(L-His)2 over other metal complexes, and can be used as a reference for studies into the metal selectivity of other microbial solute binding proteins.
Collapse
Affiliation(s)
- Wayne W H Law
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Deborah B Zamble
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Lee CD, Rizvi A, Edwards AN, DiCandia MA, Vargas Cuebas GG, Monteiro MP, McBride SM. Genetic mechanisms governing sporulation initiation in Clostridioides difficile. Curr Opin Microbiol 2021; 66:32-38. [PMID: 34933206 DOI: 10.1016/j.mib.2021.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/15/2022]
Abstract
As an anaerobe, Clostridioides difficile relies on the formation of a dormant spore for survival outside of the mammalian host's gastrointestinal tract. The spore is recalcitrant to desiccation, numerous disinfectants, UV light, and antibiotics, permitting long-term survival against environmental insults and efficient transmission from host to host. Although the morphological stages of spore formation are similar between C. difficile and other well-studied endospore-forming bacteria, the C. difficile genome does not appear to encode many of the known, conserved regulatory factors that are necessary to initiate sporulation in other spore-forming bacteria. The absence of early sporulation-specific orthologs suggests that C. difficile has evolved to control sporulation initiation in response to its unique and specific ecological niche and environmental cues within the host. Here, we review our current understanding and highlight the recent discoveries that have begun to unravel the regulatory pathways and molecular mechanisms by which C. difficile induces spore formation.
Collapse
Affiliation(s)
- Cheyenne D Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Arshad Rizvi
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Michael A DiCandia
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Germán G Vargas Cuebas
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Marcos P Monteiro
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA.
| |
Collapse
|
7
|
Gomez SY, Patel J, Lopez CA. What's metal got to do with it? Transition metals in Clostridioides difficile infection. Curr Opin Microbiol 2021; 65:116-122. [PMID: 34839238 DOI: 10.1016/j.mib.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/27/2022]
Abstract
The enteric pathogen Clostridioides difficile overcomes barriers to colonization imposed by the microbiota and host immune response to induce disease. To navigate the dynamic gut environment, C. difficile must respond to dietary and host-mediated fluctuations in transition metal availability. Transition metals are required trace nutrients that foster inter-microbial competition when limited, inhibit bacterial growth through host sequestration, or induce toxicity in excess. This review highlights recent evidence that transition metals influence multiple stages of C. difficile colonization and that C. difficile initiates a coordinated response to maintain metal-dependent homeostasis. Further exploration of the mechanisms of C. difficile metal sensing and nutrient competition with the microbiota will be necessary for the therapeutic manipulation of the gut environment during C. difficile infection.
Collapse
Affiliation(s)
- Suzanna Y Gomez
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA, United States
| | - Jay Patel
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA, United States
| | - Christopher A Lopez
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA, United States.
| |
Collapse
|
8
|
Pipatthana M, Harnvoravongchai P, Pongchaikul P, Likhitrattanapisal S, Phanchana M, Chankhamhaengdecha S, Janvilisri T. The repertoire of ABC proteins in Clostridioides difficile. Comput Struct Biotechnol J 2021; 19:2905-2920. [PMID: 34094001 PMCID: PMC8144104 DOI: 10.1016/j.csbj.2021.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 11/07/2022] Open
Abstract
ABC transporters transport substrates across membranes driven by ATP hydrolysis. ABC proteins of C. difficile 630 can be classified into 12 sub-families. Most NPs are found within sub-families involving in drug export. Most core NPs in C. difficile are associated with drug efflux system. ABC proteins in sub-families 3, 6, 7, and 9 may participate in drug resistance.
ATP-binding cassette (ABC) transporters belong to one of the largest membrane protein superfamilies, which function in translocating substrates across biological membranes using energy from ATP hydrolysis. Currently, the classification of ABC transporters in Clostridioides difficile is not complete. Therefore, the sequence-function relationship of all ABC proteins encoded within the C. difficile genome was analyzed. Identification of protein domains associated with the ABC system in the C. difficile 630 reference genome revealed 226 domains: 97 nucleotide-binding domains (NBDs), 98 transmembrane domains (TMDs), 30 substrate-binding domains (SBDs), and one domain with features of an adaptor protein. Gene organization and transcriptional unit analyses indicated the presence of 78 ABC systems comprising 28 importers and 50 exporters. Based on NBD sequence similarity, ABC transporters were classified into 12 sub-families according to their substrates. Interestingly, all ABC exporters, accounting for 64% of the total ABC systems, are involved in antibiotic resistance. Based on analysis of ABC proteins from 49 C. difficile strains, the majority of core NBDs are predicted to be involved in multidrug resistance systems, consistent with the ability of this organism to survive exposure to an array of antibiotics. Our findings herein provide another step toward a better understanding of the function and evolutionary relationships of ABC proteins in this pathogen.
Collapse
Affiliation(s)
- Methinee Pipatthana
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn, Thailand
| | - Somsak Likhitrattanapisal
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Diep P, Mahadevan R, Yakunin AF. A microplate screen to estimate metal-binding affinities of metalloproteins. Anal Biochem 2020; 609:113836. [PMID: 32750358 DOI: 10.1016/j.ab.2020.113836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022]
Abstract
Solute-binding proteins (SBPs) from ATP-binding cassette (ABC) transporters play crucial roles across all forms of life in transporting compounds against chemical gradients. Some SBPs have evolved to scavenge metal substrates from the environment with nanomolar and micromolar affinities (KD). There exist well established techniques like isothermal titration calorimetry for thoroughly studying these metalloprotein interactions with metal ions, but they are low-throughput. For protein libraries comprised of many metalloprotein homologues and mutants, and for collections of buffer conditions and potential ligands, the throughput of these techniques is paramount. In this study, we describe an improved method termed the microITFQ-LTA and validated it using CjNikZ, a well-characterized nickel-specific SBP (Ni-BP) from Campylobacter jejuni. We then demonstrated how the microITFQ-LTA can be designed to screen through a small collection of buffers and ligands to elucidate the binding profile of a putative Ni-BP from Clostridium carboxidivorans that we call CcSBPII. Through this study, we showed CcSBPII can bind to various metal ions with KD ranged over 3 orders of magnitude. In the presence of l-histidine, CcSBPII could bind to Ni2+ over 2000-fold more tightly, which was 11.6-fold tighter than CjNikZ given the same ligand.
Collapse
Affiliation(s)
- Patrick Diep
- BioZone Centre for Applied Bioscience and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.
| | - Radhakrishnan Mahadevan
- BioZone Centre for Applied Bioscience and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Alexander F Yakunin
- BioZone Centre for Applied Bioscience and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada; Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
10
|
Whittingham JL, Hanai S, Brannigan JA, Ferreira WT, Dodson EJ, Turkenburg JP, Cartwright J, Cutting SM, Wilkinson AJ. Crystal structures of the GH18 domain of the bifunctional peroxiredoxin-chitinase CotE from Clostridium difficile. Acta Crystallogr F Struct Biol Commun 2020; 76:241-249. [PMID: 32510464 PMCID: PMC7278498 DOI: 10.1107/s2053230x20006147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022] Open
Abstract
CotE is a coat protein that is present in the spores of Clostridium difficile, an obligate anaerobic bacterium and a pathogen that is a leading cause of antibiotic-associated diarrhoea in hospital patients. Spores serve as the agents of disease transmission, and CotE has been implicated in their attachment to the gut epithelium and subsequent colonization of the host. CotE consists of an N-terminal peroxiredoxin domain and a C-terminal chitinase domain. Here, a C-terminal fragment of CotE comprising residues 349-712 has been crystallized and its structure has been determined to reveal a core eight-stranded β-barrel fold with a neighbouring subdomain containing a five-stranded β-sheet. A prominent groove running across the top of the barrel is lined by residues that are conserved in family 18 glycosyl hydrolases and which participate in catalysis. Electron density identified in the groove defines the pentapeptide Gly-Pro-Ala-Met-Lys derived from the N-terminus of the protein following proteolytic cleavage to remove an affinity-purification tag. These observations suggest the possibility of designing peptidomimetics to block C. difficile transmission.
Collapse
Affiliation(s)
- Jean L. Whittingham
- Structural Biology Laboratory, York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Shumpei Hanai
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - James A. Brannigan
- Structural Biology Laboratory, York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - William T. Ferreira
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Eleanor J. Dodson
- Structural Biology Laboratory, York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Johan P. Turkenburg
- Structural Biology Laboratory, York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Jared Cartwright
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Simon M. Cutting
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Anthony J. Wilkinson
- Structural Biology Laboratory, York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|