1
|
Isaksen I, Jana S, Payne CM, Bissaro B, Røhr ÅK. The rotamer of the second-sphere histidine in AA9 lytic polysaccharide monooxygenase is pH dependent. Biophys J 2024; 123:1139-1151. [PMID: 38571309 PMCID: PMC11079946 DOI: 10.1016/j.bpj.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/10/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) catalyze a reaction that is crucial for the biological decomposition of various biopolymers and for the industrial conversion of plant biomass. Despite the importance of LPMOs, the exact molecular-level nature of the reaction mechanism is still debated today. Here, we investigated the pH-dependent conformation of a second-sphere histidine (His) that we call the stacking histidine, which is conserved in fungal AA9 LPMOs and is speculated to assist catalysis in several of the LPMO reaction pathways. Using constant-pH and accelerated molecular dynamics simulations, we monitored the dynamics of the stacking His in different protonation states for both the resting Cu(II) and active Cu(I) forms of two fungal LPMOs. Consistent with experimental crystallographic and neutron diffraction data, our calculations suggest that the side chain of the protonated and positively charged form is rotated out of the active site toward the solvent. Importantly, only one of the possible neutral states of histidine (HIE state) is observed in the stacking orientation at neutral pH or when bound to cellulose. Our data predict that, in solution, the stacking His may act as a stabilizer (via hydrogen bonding) of the Cu(II)-superoxo complex after the LPMO-Cu(I) has reacted with O2 in solution, which, in fine, leads to H2O2 formation. Also, our data indicate that the HIE-stacking His is a poor acid/base catalyst when bound to the substrate and, in agreement with the literature, may play an important stabilizing role (via hydrogen bonding) during the peroxygenase catalysis. Our study reveals the pH titration midpoint values of the pH-dependent orientation of the stacking His should be considered when modeling and interpreting LPMO reactions, whether it be for classical LPMO kinetics or in industry-oriented enzymatic cocktails, and for understanding LPMO behavior in slightly acidic natural processes such as fungal wood decay.
Collapse
Affiliation(s)
- Ingvild Isaksen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Suvamay Jana
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky
| | - Christina M Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky
| | - Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway; INRAE, Aix Marseille University, UMR1163 Biodiversité et Biotechnologie Fongiques, Marseille, France.
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
2
|
Liebschner D, Afonine PV, Poon BK, Moriarty NW, Adams PD. Improved joint X-ray and neutron refinement procedure in Phenix. Acta Crystallogr D Struct Biol 2023; 79:1079-1093. [PMID: 37942718 PMCID: PMC10833352 DOI: 10.1107/s2059798323008914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Neutron diffraction is one of the three crystallographic techniques (X-ray, neutron and electron diffraction) used to determine the atomic structures of molecules. Its particular strengths derive from the fact that H (and D) atoms are strong neutron scatterers, meaning that their positions, and thus protonation states, can be derived from crystallographic maps. However, because of technical limitations and experimental obstacles, the quality of neutron diffraction data is typically much poorer (completeness, resolution and signal to noise) than that of X-ray diffraction data for the same sample. Further, refinement is more complex as it usually requires additional parameters to describe the H (and D) atoms. The increase in the number of parameters may be mitigated by using the `riding hydrogen' refinement strategy, in which the positions of H atoms without a rotational degree of freedom are inferred from their neighboring heavy atoms. However, this does not address the issues related to poor data quality. Therefore, neutron structure determination often relies on the presence of an X-ray data set for joint X-ray and neutron (XN) refinement. In this approach, the X-ray data serve to compensate for the deficiencies of the neutron diffraction data by refining one model simultaneously against the X-ray and neutron data sets. To be applicable, it is assumed that both data sets are highly isomorphous, and preferably collected from the same crystals and at the same temperature. However, the approach has a number of limitations that are discussed in this work by comparing four separately re-refined neutron models. To address the limitations, a new method for joint XN refinement is introduced that optimizes two different models against the different data sets. This approach is tested using neutron models and data deposited in the Protein Data Bank. The efficacy of refining models with H atoms as riding or as individual atoms is also investigated.
Collapse
Affiliation(s)
- Dorothee Liebschner
- Molecular Biosciences and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Pavel V. Afonine
- Molecular Biosciences and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Billy K. Poon
- Molecular Biosciences and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nigel W. Moriarty
- Molecular Biosciences and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Paul D. Adams
- Molecular Biosciences and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Sørensen HV, Montserrat-Canals M, Loose JSM, Fisher SZ, Moulin M, Blakeley MP, Cordara G, Bjerregaard-Andersen K, Krengel U. Perdeuterated GbpA Enables Neutron Scattering Experiments of a Lytic Polysaccharide Monooxygenase. ACS OMEGA 2023; 8:29101-29112. [PMID: 37599915 PMCID: PMC10433351 DOI: 10.1021/acsomega.3c02168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are surface-active redox enzymes that catalyze the degradation of recalcitrant polysaccharides, making them important tools for energy production from renewable sources. In addition, LPMOs are important virulence factors for fungi, bacteria, and viruses. However, many knowledge gaps still exist regarding their catalytic mechanism and interaction with their insoluble, crystalline substrates. Moreover, conventional structural biology techniques, such as X-ray crystallography, usually do not reveal the protonation state of catalytically important residues. In contrast, neutron crystallography is highly suited to obtain this information, albeit with significant sample volume requirements and challenges associated with hydrogen's large incoherent scattering signal. We set out to demonstrate the feasibility of neutron-based techniques for LPMOs using N-acetylglucosamine-binding protein A (GbpA) from Vibrio cholerae as a target. GbpA is a multifunctional protein that is secreted by the bacteria to colonize and degrade chitin. We developed an efficient deuteration protocol, which yields >10 mg of pure 97% deuterated protein per liter expression media, which was scaled up further at international facilities. The deuterated protein retains its catalytic activity and structure, as demonstrated by small-angle X-ray and neutron scattering studies of full-length GbpA and X-ray crystal structures of its LPMO domain (to 1.1 Å resolution), setting the stage for neutron scattering experiments with its substrate chitin.
Collapse
Affiliation(s)
- H. V. Sørensen
- Department
of Chemistry, University of Oslo, NO-0315 Oslo, Norway
| | - Mateu Montserrat-Canals
- Department
of Chemistry, University of Oslo, NO-0315 Oslo, Norway
- Centre
for Molecular Medicine Norway, University
of Oslo, NO-0318 Oslo, Norway
| | - Jennifer S. M. Loose
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), NO-1340 Ås, Norway
| | - S. Zoë Fisher
- Science
Directorate, European Spallation Source
ERIC, P.O. Box 176, SE-221 00 Lund, Sweden
- Department
of Biology, Lund University, 35 Sölvegatan, SE-223 62 Lund, Sweden
| | - Martine Moulin
- Life Sciences
Group, Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Cedex 9 Grenoble, France
| | - Matthew P. Blakeley
- Large-Scale
Structures Group, Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Gabriele Cordara
- Department
of Chemistry, University of Oslo, NO-0315 Oslo, Norway
| | | | - Ute Krengel
- Department
of Chemistry, University of Oslo, NO-0315 Oslo, Norway
| |
Collapse
|