1
|
Leiszner SS, Chakarawet K, Long JR, Nishibori E, Sugimoto K, Platts JA, Overgaard J. Electron Density Analysis of Metal-Metal Bonding in a Ni 4 Cluster Featuring Ferromagnetic Exchange. Inorg Chem 2023; 62:192-200. [PMID: 36547395 DOI: 10.1021/acs.inorgchem.2c03170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a combined experimental and theoretical study of the nature of the proposed metal-metal bonding in the tetranuclear cluster Ni4(NPtBu3)4, which features four nickel(I) centers engaged in strong ferromagnetic coupling. High-resolution single-crystal synchrotron X-ray diffraction data collected at 25 K provide an accurate geometrical structure and a multipole model electron density description. Topological analysis of the electron density in the Ni4N4 core using the quantum theory of atoms in molecules clearly identifies the bonding as an eight-membered ring of type [Ni-N-]4 without direct Ni-Ni bonding, and this result is generally corroborated by an analysis of the energy density distribution. In contrast, the calculated bond delocalization index of ∼0.6 between neighboring Ni atoms is larger than what has been found for other bridged metal-metal bonds and implies direct Ni-Ni bonding. Similar support for the presence of direct Ni-Ni bonding is found in the interacting quantum atom approach, an energy decomposition scheme, which suggests the presence of stabilizing Ni-Ni bonding interactions with an exchange-correlation energy contribution approximately 50% of that of the Ni-N interactions. Altogether, while the direct interactions between neighboring Ni centers are too weak and sterically constrained to bear the signature of a topological bond critical point, other continuous measures clearly indicate significant Ni-Ni bonding. These metal-metal bonding interactions likely mediate direct ferromagnetic exchange, giving rise to the high-spin ground state of the molecule.
Collapse
Affiliation(s)
| | - Khetpakorn Chakarawet
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Eiji Nishibori
- Department of Physics, Faculty of Pure and Applied Sciences, Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba 3058571, Japan
| | - Kunihisa Sugimoto
- Diffraction & Scattering Division Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - James A Platts
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - Jacob Overgaard
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
2
|
Macetti G, Genoni A. Introduction of a weighting scheme for the X-ray restrained wavefunction approach: advantages and drawbacks. Acta Crystallogr A Found Adv 2023; 79:25-40. [PMID: 36601761 DOI: 10.1107/s2053273322010221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/23/2022] [Indexed: 11/22/2022] Open
Abstract
In a quite recent study [Genoni et al. (2017). IUCrJ, 4, 136-146], it was observed that the X-ray restrained wavefunction (XRW) approach allows a more efficient and larger capture of electron correlation effects on the electron density if high-angle reflections are not considered in the calculations. This is due to the occurrence of two concomitant effects when one uses theoretical X-ray diffraction data corresponding to a single-molecule electron density in a large unit cell: (i) the high-angle reflections are generally much more numerous than the low- and medium-angle ones, and (ii) they are already very well described at unrestrained level. Nevertheless, since high-angle data also contain important information that should not be disregarded, it is not advisable to neglect them completely. For this reason, based on the results of the previous investigation, this work introduces a weighting scheme for XRW calculations to up-weight the contribution of low- and medium-angle reflections, and, at the same time, to reasonably down-weight the importance of the high-angle data. The proposed strategy was tested through XRW computations with both theoretical and experimental structure-factor amplitudes. The tests have shown that the new weighting scheme works optimally if it is applied with theoretically generated X-ray diffraction data, while it is not advantageous when traditional experimental X-ray diffraction data (even of very high resolution) are employed. This also led to the conclusion that the use of a specific external parameter λJ for each resolution range might not be a suitable strategy to adopt in XRW calculations exploiting experimental X-ray data as restraints.
Collapse
Affiliation(s)
- Giovanni Macetti
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques, 1 Boulevard Arago, Metz, F-57078, France
| | - Alessandro Genoni
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques, 1 Boulevard Arago, Metz, F-57078, France
| |
Collapse
|
3
|
Klahn EA, Damgaard-Møller E, Krause L, Kibalin I, Gukasov A, Tripathi S, Swain A, Shanmugam M, Overgaard J. Quantifying magnetic anisotropy using X-ray and neutron diffraction. IUCRJ 2021; 8:833-841. [PMID: 34584744 PMCID: PMC8420765 DOI: 10.1107/s2052252521008290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
In this work, the magnetic anisotropy in two iso-structural distorted tetrahedral Co(II) complexes, CoX 2tmtu2 [X = Cl(1) and Br(2), tmtu = tetra-methyl-thio-urea] is investigated, using a combination of polarized neutron diffraction (PND), very low-temperature high-resolution synchrotron X-ray diffraction and CASSCF/NEVPT2 ab initio calculations. Here, it was found consistently among all methods that the compounds have an easy axis of magnetization pointing nearly along the bis-ector of the compression angle, with minute deviations between PND and theory. Importantly, this work represents the first derivation of the atomic susceptibility tensor based on powder PND for a single-molecule magnet and the comparison thereof with ab initio calculations and high-resolution X-ray diffraction. Theoretical ab initio ligand field theory (AILFT) analysis finds the d xy orbital to be stabilized relative to the d xz and d yz orbitals, thus providing the intuitive explanation for the presence of a negative zero-field splitting parameter, D, from coupling and thus mixing of d xy and . Experimental d-orbital populations support this interpretation, showing in addition that the metal-ligand covalency is larger for Br-ligated 2 than for Cl-ligated 1.
Collapse
Affiliation(s)
- Emil Andreasen Klahn
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C 8000, Denmark
| | - Emil Damgaard-Møller
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C 8000, Denmark
| | - Lennard Krause
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C 8000, Denmark
| | - Iurii Kibalin
- LLB, CEA, CE de Saclay, Gif sur Yvette 91191, France
| | - Arsen Gukasov
- LLB, CEA, CE de Saclay, Gif sur Yvette 91191, France
| | - Shalini Tripathi
- Department of Chemistry, IIT Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Abinash Swain
- Department of Chemistry, IIT Bombay, Powai, Mumbai, Maharashtra 400076, India
| | | | - Jacob Overgaard
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C 8000, Denmark
| |
Collapse
|
4
|
Damgaard‐Møller E, Krause L, Tolborg K, Macetti G, Genoni A, Overgaard J. Quantification of the Magnetic Anisotropy of a Single‐Molecule Magnet from the Experimental Electron Density. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Emil Damgaard‐Møller
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Lennard Krause
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Kasper Tolborg
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Giovanni Macetti
- Université de Lorraine & CNRS Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019 1 Boulevard Arago F-57078 Metz France
| | - Alessandro Genoni
- Université de Lorraine & CNRS Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019 1 Boulevard Arago F-57078 Metz France
| | - Jacob Overgaard
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
5
|
Damgaard-Møller E, Krause L, Tolborg K, Macetti G, Genoni A, Overgaard J. Quantification of the Magnetic Anisotropy of a Single-Molecule Magnet from the Experimental Electron Density. Angew Chem Int Ed Engl 2020; 59:21203-21209. [PMID: 33463025 DOI: 10.1002/anie.202007856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/23/2020] [Indexed: 11/07/2022]
Abstract
Reported here is an entirely new application of experimental electron density (EED) in the study of magnetic anisotropy of single-molecule magnets (SMMs). Among those SMMs based on one single transition metal, tetrahedral CoII-complexes are prominent, and their large zero-field splitting arises exclusively from coupling between the d x 2 - y 2 and dxy orbitals. Using very low temperature single-crystal synchrotron X-ray diffraction data, an accurate electron density (ED) was obtained for a prototypical SMM, and the experimental d-orbital populations were used to quantify the dxy-d x 2 - y 2 coupling, which simultaneously provides the composition of the ground-state Kramers doublet wave function. Based on this experimentally determined wave function, an energy barrier for magnetic relaxation in the range 193-268 cm-1 was calculated, and is in full accordance with the previously published value of 230 cm-1 obtained from near-infrared spectroscopy. These results provide the first clear and direct link between ED and molecular magnetic properties.
Collapse
Affiliation(s)
- Emil Damgaard-Møller
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Lennard Krause
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Kasper Tolborg
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Giovanni Macetti
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, F-57078, Metz, France
| | - Alessandro Genoni
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, F-57078, Metz, France
| | - Jacob Overgaard
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| |
Collapse
|
6
|
Grabowsky S, Genoni A, Thomas SP, Jayatilaka D. The Advent of Quantum Crystallography: Form and Structure Factors from Quantum Mechanics for Advanced Structure Refinement and Wavefunction Fitting. 21ST CENTURY CHALLENGES IN CHEMICAL CRYSTALLOGRAPHY II 2020. [DOI: 10.1007/430_2020_62] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|