1
|
Tremlett CJ, Stubbs J, Stuart WS, Shaw Stewart PD, West J, Orville AM, Tews I, Harmer NJ. Small but mighty: the power of microcrystals in structural biology. IUCRJ 2025; 12:262-279. [PMID: 40080159 PMCID: PMC12044856 DOI: 10.1107/s2052252525001484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/18/2025] [Indexed: 03/15/2025]
Abstract
Advancements in macromolecular crystallography, driven by improved sources and cryocooling techniques, have enabled the use of increasingly smaller crystals for structure determination, with microfocus beamlines now widely accessible. Initially developed for challenging samples, these techniques have culminated in advanced beamlines such as VMXm. Here, an in vacuo sample environment improves the signal-to-noise ratio in X-ray diffraction experiments, and thus enables the use of submicrometre crystals. The advancement of techniques such as microcrystal electron diffraction (MicroED) for atomic-level insights into charged states and hydrogen positions, along with room-temperature crystallography to observe physiological states via serial crystallography, has driven a resurgence in the use of microcrystals. Reproducibly preparing small crystals, especially from samples that typically yield larger crystals, requires considerable effort, as no one singular approach guarantees optimal crystals for every technique. This review discusses methods for generating such small crystals, including mechanical crushing and batch crystallization with seeding, and evaluates their compatibility with microcrystal data-collection modalities. Additionally, we examine sample-delivery methods, which are crucial for selecting appropriate crystallization strategies. Establishing reliable protocols for sample preparation and delivery opens new avenues for macromolecular crystallography, particularly in the rapidly progressing field of time-resolved crystallography.
Collapse
Affiliation(s)
- Courtney J. Tremlett
- Living Systems InstituteUniversity of ExeterStocker RoadExeterEX4 4QDUnited Kingdom
- Department of BiosciencesUniversity of ExeterStocker RoadExeterEX4 4QDUnited Kingdom
| | - Jack Stubbs
- School of Biological Sciences, Faculty of Environmental and Life SciencesUniversity of SouthamptonSouthamptonSO17 1BJUnited Kingdom
- Diamond Light Source (United Kingdom)Harwell Science and Innovation CampusDidcotOX11 0DEUnited Kingdom
| | - William S. Stuart
- Living Systems InstituteUniversity of ExeterStocker RoadExeterEX4 4QDUnited Kingdom
- Department of BiosciencesUniversity of ExeterStocker RoadExeterEX4 4QDUnited Kingdom
- Defence Science and Technology LaboratoryPorton DownSalisburySP4 0JQUnited Kingdom
| | | | - Jonathan West
- Institute for Life SciencesUniversity of SouthamptonSouthamptonSO17 1BJUnited Kingdom
- Cancer Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonSO17 1BJUnited Kingdom
| | - Allen M. Orville
- Diamond Light Source (United Kingdom)Harwell Science and Innovation CampusDidcotOX11 0DEUnited Kingdom
- Research Complex at HarwellHarwell Science and Innovation CampusDidcotOX11 0FAUnited Kingdom
| | - Ivo Tews
- School of Biological Sciences, Faculty of Environmental and Life SciencesUniversity of SouthamptonSouthamptonSO17 1BJUnited Kingdom
- Institute for Life SciencesUniversity of SouthamptonSouthamptonSO17 1BJUnited Kingdom
| | - Nicholas J. Harmer
- Living Systems InstituteUniversity of ExeterStocker RoadExeterEX4 4QDUnited Kingdom
- Department of BiosciencesUniversity of ExeterStocker RoadExeterEX4 4QDUnited Kingdom
| |
Collapse
|
2
|
Gu DH, Jeong DT, Eo C, Seo PW, Kim JS, Park SY. Novel fixed-target serial crystallography flip-holder for macromolecular crystallography beamlines at synchrotron radiation sources. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:315-320. [PMID: 39899406 DOI: 10.1107/s1600577524011664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/01/2024] [Indexed: 02/05/2025]
Abstract
Synchrotron serial crystallography (SSX) is an emerging method for determining crystal structure at room temperature using synchrotron radiation facilities. Despite the various approaches available, reducing sample consumption, removing mother liquid from crystal solution, soaking small molecules for protein-ligand complex structure and prevention of sample dehydration are still challenging problems to be overcome in SSX. Therefore, we have developed a new flip-type fixed-target SSX sample holder for conventional protein crystallography beamlines based on nylon mesh and kapton film. The potential of the flip-holder was evaluated in an SSX experiment with lysozyme crystals at room temperature. About 19600 diffraction images were collected during 40 minutes using a repetition rate of 10 Hz at the 11C beamline of the Pohang Accelerator Laboratory, and the crystal structure of lysozyme was determined at 1.89 Å resolution. This straightforward flip-holder can be used in synchrotron beamlines for routine crystallography.
Collapse
Affiliation(s)
- Do Heon Gu
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea
| | - Dong Tak Jeong
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Cheolsoo Eo
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Pil Won Seo
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea
| | - Suk Youl Park
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
3
|
Kieffer J, Orlans J, Coquelle N, Debionne S, Basu S, Homs A, Santoni G, De Sanctis D. Application of signal separation to diffraction image compression and serial crystallography. J Appl Crystallogr 2025; 58:138-153. [PMID: 39917186 PMCID: PMC11798513 DOI: 10.1107/s1600576724011038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/13/2024] [Indexed: 02/09/2025] Open
Abstract
We present here a methodology for real-time analysis of diffraction images acquired at a high frame rate (925 Hz) and its application to macromolecular serial crystallography at ESRF. We introduce a new signal-separation algorithm, able to distinguish the amorphous (or powder diffraction) component from the diffraction signal originating from single crystals. It relies on the ability to work efficiently in azimuthal space and is implemented in pyFAI, the fast azimuthal integration library. Two applications are built upon this separation algorithm: a lossy compression algorithm and a peak-picking algorithm. The performances of both are assessed by comparing data quality after reduction with XDS and CrystFEL.
Collapse
Affiliation(s)
- Jérôme Kieffer
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Julien Orlans
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Nicolas Coquelle
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Samuel Debionne
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Shibom Basu
- EMBL Grenoble, 71 avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Alejandro Homs
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Gianluca Santoni
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Daniele De Sanctis
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| |
Collapse
|
4
|
Orlans J, Rose SL, Ferguson G, Oscarsson M, Homs Puron A, Beteva A, Debionne S, Theveneau P, Coquelle N, Kieffer J, Busca P, Sinoir J, Armijo V, Lopez Marrero M, Felisaz F, Papp G, Gonzalez H, Caserotto H, Dobias F, Gigmes J, Lebon G, Basu S, de Sanctis D. Advancing macromolecular structure determination with microsecond X-ray pulses at a 4th generation synchrotron. Commun Chem 2025; 8:6. [PMID: 39775172 PMCID: PMC11707155 DOI: 10.1038/s42004-024-01404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Serial macromolecular crystallography has become a powerful method to reveal room temperature structures of biological macromolecules and perform time-resolved studies. ID29, a flagship beamline of the ESRF 4th generation synchrotron, is the first synchrotron beamline in the world capable of delivering high brilliance microsecond X-ray pulses at high repetition rate for the structure determination of biological macromolecules at room temperature. The cardinal combination of microsecond exposure times, innovative beam characteristics and adaptable sample environment provides high quality complete data, even from an exceptionally small amount of crystalline material, enabling what we collectively term serial microsecond crystallography (SµX). After validating the use of different sample delivery methods with various model systems, we applied SµX to an integral membrane receptor, where only a few thousands diffraction images were sufficient to obtain a fully interpretable electron density map for the antagonist istradefylline-bound A2A receptor conformation, providing access to the antagonist binding mode. SµX, as demonstrated at ID29, will quickly find its broad applicability at upcoming 4th generation synchrotron sources worldwide and opens a new frontier in time-resolved SµX.
Collapse
Affiliation(s)
- Julien Orlans
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Samuel L Rose
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Gavin Ferguson
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Marcus Oscarsson
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | | | - Antonia Beteva
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Samuel Debionne
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Pascal Theveneau
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Nicolas Coquelle
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Jerome Kieffer
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Paolo Busca
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Jeremy Sinoir
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Victor Armijo
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | | | - Franck Felisaz
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Gergely Papp
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Herve Gonzalez
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Hugo Caserotto
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Fabien Dobias
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Jonathan Gigmes
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Guillaume Lebon
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Shibom Basu
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France.
| | - Daniele de Sanctis
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France.
| |
Collapse
|
5
|
Hirata K. Useful experimental aspects of small-wedge synchrotron crystallography for accurate structure analysis of protein molecules. Acta Crystallogr D Struct Biol 2025; 81:22-37. [PMID: 39718396 PMCID: PMC11740584 DOI: 10.1107/s2059798324011987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
Recent advances in low-emittance synchrotron X-ray technology and highly sensitive photon-counting detectors have revolutionized protein micro-crystallography in structural biology. These developments and improvements to sample-exchange robots and beamline control have paved the way for automated and efficient unattended data collection. This study analyzed protein crystal structures such as type 2 angiotensin II receptor, CNNM/CorC membrane proteins and polyhedral protein crystals using small-wedge synchrotron crystallography (SWSX), which dramatically improves measurement efficiency through automated measurement. We evaluated the data quality using SWSX, focusing on `massive data collection'. In this context, `massive' refers to data sets with a multiplicity exceeding 100. The findings could potentially lead to the development of more efficient experimental conditions, such as obtaining high-resolution data using a smaller number of crystals. We have demonstrated that the application of machine learning, a modern key component of data science, to classify data groups is an integral part of the analysis process and may play a crucial role in improving data quality. These results indicate that SWSX is one of the essential candidates for crystal structure analysis methods for difficult-to-analyze samples: it can enable diverse and complex protein functional analysis.
Collapse
Affiliation(s)
- Kunio Hirata
- SR Life Science Instrumentation Team, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo679-5198, Japan
| |
Collapse
|
6
|
Doak RB, Shoeman RL, Gorel A, Niziński S, Barends TR, Schlichting I. Sheet-on-sheet fixed target data collection devices for serial crystallography at synchrotron and XFEL sources. J Appl Crystallogr 2024; 57:1725-1732. [PMID: 39628875 PMCID: PMC11611291 DOI: 10.1107/s1600576724008914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/11/2024] [Indexed: 12/06/2024] Open
Abstract
Serial crystallography (SX) efficiently distributes over many crystals the radiation dose absorbed during diffraction data acquisition, enabling structure determination of samples at ambient temperature. SX relies on the rapid and reliable replacement of X-ray-exposed crystals with fresh crystals at a rate commensurate with the data acquisition rate. 'Solid supports', also known as 'fixed targets' or 'chips', offer one approach. These are microscopically thin solid panes into or onto which crystals are deposited to be individually interrogated by an X-ray beam. Solid supports are generally patterned using photolithography methods to produce a regular array of features that trap single crystals. A simpler and less expensive alternative is to merely sandwich the microcrystals between two unpatterned X-ray-transparent polymer sheets. Known as sheet-on-sheet (SOS) chips, these offer significantly more versatility. SOS chips place no constraint on the size or size distribution of the microcrystals or their growth conditions. Crystals ranging from true nanocrystals up to microcrystals can be investigated, as can crystals grown in media ranging from low viscosity (aqueous solution) up to high viscosity (such as lipidic cubic phase). Here, we describe our two SOS devices. The first is a compact and lightweight version designed specifically for synchrotron use. It incorporates a standard SPINE-type magnetic base for mounting on a conventional macromolecular crystallography goniometer. The second and larger chip is intended for both X-ray free-electron laser and synchrotron use and is fully compatible with the fast-scanning XY-raster stages developed for data collection with patterned chips.
Collapse
Affiliation(s)
- R. Bruce Doak
- Department of Biomolecular MechanismsMax Planck Institute for Medical ResearchJahnstrasse 29Heidelberg69120Germany
| | - Robert L. Shoeman
- Department of Biomolecular MechanismsMax Planck Institute for Medical ResearchJahnstrasse 29Heidelberg69120Germany
| | - Alexander Gorel
- Department of Biomolecular MechanismsMax Planck Institute for Medical ResearchJahnstrasse 29Heidelberg69120Germany
| | - Stanisław Niziński
- Department of Biomolecular MechanismsMax Planck Institute for Medical ResearchJahnstrasse 29Heidelberg69120Germany
| | - Thomas R.M. Barends
- Department of Biomolecular MechanismsMax Planck Institute for Medical ResearchJahnstrasse 29Heidelberg69120Germany
| | - Ilme Schlichting
- Department of Biomolecular MechanismsMax Planck Institute for Medical ResearchJahnstrasse 29Heidelberg69120Germany
| |
Collapse
|
7
|
Lewis SG, Coulson BA, Warren AJ, Warren MR, Hatcher LE. Small-rotative fixed-target serial synchrotron crystallography (SR-FT-SSX) for molecular crystals. Commun Chem 2024; 7:264. [PMID: 39538005 PMCID: PMC11561299 DOI: 10.1038/s42004-024-01360-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
The increasing availability of ultrabright Light Sources is facilitating the study of smaller crystals at faster timescales but with an increased risk of severe X-ray damage, leading to developments in multi-crystal methods such as serial crystallography (SX). SX studies on crystals with small unit cells are challenging as very few reflections are recorded in a single data image, making it difficult to determine the orientation matrix for each crystal and thus preventing the combination of the data from all crystals for structure solution. We herein present a Small-Rotative Fixed-Target Serial Synchrotron Crystallography (SR-FT-SSX) methodology, in which rotation of the serial target through a small diffraction angle ( φ ) at each crystal delivers high-quality data, facilitating ab initio unit cell determination and atomic-scale structure solution. The method is benchmarked using microcrystals of the small-molecule photoswitch sodium nitroprusside dihydrate, obtaining complete data to dmin = 0.6 Å by combining just 66 partial datasets selected against rigorous quality criteria.
Collapse
Affiliation(s)
- Sam G Lewis
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot, Oxfordshire, OX11 0DE, UK
| | - Ben A Coulson
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Anna J Warren
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot, Oxfordshire, OX11 0DE, UK
| | - Mark R Warren
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot, Oxfordshire, OX11 0DE, UK.
| | - Lauren E Hatcher
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
8
|
Jaho S, Axford D, Gu DH, Hough MA, Owen RL. Use of fixed targets for serial crystallography. Methods Enzymol 2024; 709:29-55. [PMID: 39608947 DOI: 10.1016/bs.mie.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
In serial crystallography, large numbers of microcrystals are sequentially delivered to an X-ray beam and a diffraction pattern is obtained from each crystal. This serial approach was developed primarily for X-ray Free Electron Lasers (XFELs) where crystals are destroyed by the beam but is increasingly used in synchrotron experiments. The combination of XFEL and synchrotron-based serial crystallography enables time-resolved experiments over an extremely wide range of time domains - from femtoseconds to seconds - and allows intact or pristine structures free of the effects of radiation damage to be obtained. Several approaches have been developed for sample delivery with varying levels of sample efficiency and ease of use. In the fixed target approach, microcrystals are loaded onto a solid support which is then rastered through the X-ray beam. The key advantages of fixed targets are that every crystal loaded can be used for data collection, and that precise control of when crystals are moved into the beam allows for time-resolved experiments over a very wide range of time domains as well as multi-shot experiments characterising the effects of the X-ray beam on the sample. We describe the application of fixed targets for serial crystallography as implemented at beamline I24 at Diamond Light Source and at the SACLA XFEL. We discuss methodologies for time-resolved serial crystallography in fixed targets and describe best practices for obtaining high-quality structures covering sample preparation, data collection strategies and data analysis pipelines.
Collapse
Affiliation(s)
- Sofia Jaho
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom.
| | - Danny Axford
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Do-Heon Gu
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Michael A Hough
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Robin L Owen
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom.
| |
Collapse
|
9
|
Dunge A, Phan C, Uwangue O, Bjelcic M, Gunnarsson J, Wehlander G, Käck H, Brändén G. Exploring serial crystallography for drug discovery. IUCRJ 2024; 11:831-842. [PMID: 39072424 PMCID: PMC11364032 DOI: 10.1107/s2052252524006134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/24/2024] [Indexed: 07/30/2024]
Abstract
Structure-based drug design is highly dependent on the availability of structures of the protein of interest in complex with lead compounds. Ideally, this information can be used to guide the chemical optimization of a compound into a pharmaceutical drug candidate. A limitation of the main structural method used today - conventional X-ray crystallography - is that it only provides structural information about the protein complex in its frozen state. Serial crystallography is a relatively new approach that offers the possibility to study protein structures at room temperature (RT). Here, we explore the use of serial crystallography to determine the structures of the pharmaceutical target, soluble epoxide hydrolase. We introduce a new method to screen for optimal microcrystallization conditions suitable for use in serial crystallography and present a number of RT ligand-bound structures of our target protein. From a comparison between the RT structural data and previously published cryo-temperature structures, we describe an example of a temperature-dependent difference in the ligand-binding mode and observe that flexible loops are better resolved at RT. Finally, we discuss the current limitations and potential future advances of serial crystallography for use within pharmaceutical drug discovery.
Collapse
Affiliation(s)
- A. Dunge
- Department of Chemistry and Molecular BiologyUniversity of GothenburgBox 462SE-405 30GothenburgSweden
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&DAstraZenecaPepparedsleden 1SE-431 83GothenburgSweden
| | - C. Phan
- Department of Chemistry and Molecular BiologyUniversity of GothenburgBox 462SE-405 30GothenburgSweden
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&DAstraZenecaPepparedsleden 1SE-431 83GothenburgSweden
| | - O. Uwangue
- Department of Chemistry and Molecular BiologyUniversity of GothenburgBox 462SE-405 30GothenburgSweden
| | - M. Bjelcic
- Department of Chemistry and Molecular BiologyUniversity of GothenburgBox 462SE-405 30GothenburgSweden
- MAX IV LaboratoryLund UniversityPO Box 118SE-221 00LundSweden
| | - J. Gunnarsson
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&DAstraZenecaPepparedsleden 1SE-431 83GothenburgSweden
| | - G. Wehlander
- Department of Chemistry and Molecular BiologyUniversity of GothenburgBox 462SE-405 30GothenburgSweden
| | - H. Käck
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&DAstraZenecaPepparedsleden 1SE-431 83GothenburgSweden
| | - G. Brändén
- Department of Chemistry and Molecular BiologyUniversity of GothenburgBox 462SE-405 30GothenburgSweden
| |
Collapse
|
10
|
Chavas LMG, Coulibaly F, Garriga D. Bridging the microscopic divide: a comprehensive overview of micro-crystallization and in vivo crystallography. IUCRJ 2024; 11:476-485. [PMID: 38958014 PMCID: PMC11220871 DOI: 10.1107/s205225252400513x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
A series of events underscoring the significant advancements in micro-crystallization and in vivo crystallography were held during the 26th IUCr Congress in Melbourne, positioning microcrystallography as a pivotal field within structural biology. Through collaborative discussions and the sharing of innovative methodologies, these sessions outlined frontier approaches in macromolecular crystallography. This review provides an overview of this rapidly moving field in light of the rich dialogues and forward-thinking proposals explored during the congress workshop and microsymposium. These advances in microcrystallography shed light on the potential to reshape current research paradigms and enhance our comprehension of biological mechanisms at the molecular scale.
Collapse
Affiliation(s)
| | - Fasséli Coulibaly
- Biomedicine Discovery Institute & Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | | |
Collapse
|
11
|
Baxter J, Hutchison CD, Fadini A, Maghlaoui K, Cordon-Preciado V, Morgan RML, Agthe M, Horrell S, Tellkamp F, Mehrabi P, Pfeifer Y, Müller-Werkmeister HM, von Stetten D, Pearson AR, van Thor JJ. Power Density Titration of Reversible Photoisomerization of a Fluorescent Protein Chromophore in the Presence of Thermally Driven Barrier Crossing Shown by Quantitative Millisecond Serial Synchrotron X-ray Crystallography. J Am Chem Soc 2024; 146:16394-16403. [PMID: 38848551 PMCID: PMC11191680 DOI: 10.1021/jacs.3c12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
We present millisecond quantitative serial X-ray crystallography at 1.7 Å resolution demonstrating precise optical control of reversible population transfer from Trans-Cis and Cis-Trans photoisomerization of a reversibly switchable fluorescent protein, rsKiiro. Quantitative results from the analysis of electron density differences, extrapolated structure factors, and occupancy refinements are shown to correspond to optical measurements of photoinduced population transfer and have sensitivity to a few percent in concentration differences. Millisecond time-resolved concentration differences are precisely and reversibly controlled through intense continuous wave laser illuminations at 405 and 473 nm for the Trans-to-Cis and Cis-to-Trans reactions, respectively, while the X-ray crystallographic measurement and laser illumination of the metastable Trans chromophore conformation causes partial thermally driven reconversion across a 91.5 kJ/mol thermal barrier from which a temperature jump between 112 and 128 K is extracted.
Collapse
Affiliation(s)
- James
M. Baxter
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | | | - Alisia Fadini
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Karim Maghlaoui
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | | | - R. Marc L. Morgan
- Center
for Structural Biology, Imperial College
London, London SW7 2AZ, U.K.
| | - Michael Agthe
- European
Molecular Biology Laboratory (EMBL), Hamburg 22607, Germany
| | - Sam Horrell
- Department
of Physics, Center for Free-Electron Laser Science, Institute for
Nanostructure and Solid State Physics, University
of Hamburg, Hamburg 22607, Germany
| | - Friedjof Tellkamp
- Scientific
Support Unit Machine Physics, Max-Planck-Institute
for Structure and Dynamics of Matter, Hamburg 22761, Germany
| | - Pedram Mehrabi
- Max
Planck Institute for the Structure and Dynamics of Matter, CFEL, Hamburg 22607, Germany
| | - Yannik Pfeifer
- Institute
of Chemistry—Physical Chemistry, University of Potsdam, Potsdam 14469, Germany
| | | | - David von Stetten
- European
Molecular Biology Laboratory (EMBL), Hamburg 22607, Germany
| | - Arwen R. Pearson
- Institute
for Nanostructure and Solid State Physics & The Hamburg Centre
for Ultrafast Imaging, HARBOR, Universität
Hamburg, Hamburg 22607, Germany
| | - Jasper J. van Thor
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| |
Collapse
|
12
|
Shelley KL, Garman EF. Identifying and avoiding radiation damage in macromolecular crystallography. Acta Crystallogr D Struct Biol 2024; 80:314-327. [PMID: 38700059 PMCID: PMC11066884 DOI: 10.1107/s2059798324003243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Radiation damage remains one of the major impediments to accurate structure solution in macromolecular crystallography. The artefacts of radiation damage can manifest as structural changes that result in incorrect biological interpretations being drawn from a model, they can reduce the resolution to which data can be collected and they can even prevent structure solution entirely. In this article, we discuss how to identify and mitigate against the effects of radiation damage at each stage in the macromolecular crystal structure-solution pipeline.
Collapse
Affiliation(s)
- Kathryn L. Shelley
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
13
|
Hill JA, Nyathi Y, Horrell S, von Stetten D, Axford D, Owen RL, Beddard GS, Pearson AR, Ginn HM, Yorke BA. An ultraviolet-driven rescue pathway for oxidative stress to eye lens protein human gamma-D crystallin. Commun Chem 2024; 7:81. [PMID: 38600176 PMCID: PMC11006947 DOI: 10.1038/s42004-024-01163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Human gamma-D crystallin (HGD) is a major constituent of the eye lens. Aggregation of HGD contributes to cataract formation, the leading cause of blindness worldwide. It is unique in its longevity, maintaining its folded and soluble state for 50-60 years. One outstanding question is the structural basis of this longevity despite oxidative aging and environmental stressors including ultraviolet radiation (UV). Here we present crystallographic structures evidencing a UV-induced crystallin redox switch mechanism. The room-temperature serial synchrotron crystallographic (SSX) structure of freshly prepared crystallin mutant (R36S) shows no post-translational modifications. After aging for nine months in the absence of light, a thiol-adduct (dithiothreitol) modifying surface cysteines is observed by low-dose SSX. This is shown to be UV-labile in an acutely light-exposed structure. This suggests a mechanism by which a major source of crystallin damage, UV, may also act as a rescuing factor in a finely balanced redox system.
Collapse
Affiliation(s)
- Jake A Hill
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, United Kingdom
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom
| | - Yvonne Nyathi
- Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom
| | - Sam Horrell
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - David von Stetten
- European Molecular Biology Laboratory, Notkestraße 85, 22607, Hamburg, Germany
| | - Danny Axford
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - Robin L Owen
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - Godfrey S Beddard
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Arwen R Pearson
- HARBOR, Institute for Nanostructure and Solid State Physics, Hamburg, 22761, Germany
| | - Helen M Ginn
- HARBOR, Institute for Nanostructure and Solid State Physics, Hamburg, 22761, Germany.
- Center for Free-Electron Laser Science, CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
| | - Briony A Yorke
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
14
|
Thompson AJ, Sanchez-Weatherby J, Williams LJ, Mikolajek H, Sandy J, Worrall JAR, Hough MA. Efficient in situ screening of and data collection from microcrystals in crystallization plates. Acta Crystallogr D Struct Biol 2024; 80:279-288. [PMID: 38488731 PMCID: PMC10994175 DOI: 10.1107/s2059798324001955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
A considerable bottleneck in serial crystallography at XFEL and synchrotron sources is the efficient production of large quantities of homogenous, well diffracting microcrystals. Efficient high-throughput screening of batch-grown microcrystals and the determination of ground-state structures from different conditions is thus of considerable value in the early stages of a project. Here, a highly sample-efficient methodology to measure serial crystallography data from microcrystals by raster scanning within standard in situ 96-well crystallization plates is described. Structures were determined from very small quantities of microcrystal suspension and the results were compared with those from other sample-delivery methods. The analysis of a two-dimensional batch crystallization screen using this method is also described as a useful guide for further optimization and the selection of appropriate conditions for scaling up microcrystallization.
Collapse
Affiliation(s)
- Amy J. Thompson
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Juan Sanchez-Weatherby
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Lewis J. Williams
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Halina Mikolajek
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - James Sandy
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Jonathan A. R. Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Michael A. Hough
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| |
Collapse
|
15
|
Stubbs J, Hornsey T, Hanrahan N, Esteban LB, Bolton R, Malý M, Basu S, Orlans J, de Sanctis D, Shim JU, Shaw Stewart PD, Orville AM, Tews I, West J. Droplet microfluidics for time-resolved serial crystallography. IUCRJ 2024; 11:237-248. [PMID: 38446456 PMCID: PMC10916287 DOI: 10.1107/s2052252524001799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Serial crystallography requires large numbers of microcrystals and robust strategies to rapidly apply substrates to initiate reactions in time-resolved studies. Here, we report the use of droplet miniaturization for the controlled production of uniform crystals, providing an avenue for controlled substrate addition and synchronous reaction initiation. The approach was evaluated using two enzymatic systems, yielding 3 µm crystals of lysozyme and 2 µm crystals of Pdx1, an Arabidopsis enzyme involved in vitamin B6 biosynthesis. A seeding strategy was used to overcome the improbability of Pdx1 nucleation occurring with diminishing droplet volumes. Convection within droplets was exploited for rapid crystal mixing with ligands. Mixing times of <2 ms were achieved. Droplet microfluidics for crystal size engineering and rapid micromixing can be utilized to advance time-resolved serial crystallography.
Collapse
Affiliation(s)
- Jack Stubbs
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Theo Hornsey
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Niall Hanrahan
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Luis Blay Esteban
- Universitat Carlemany, Avenida Verge de Canolich, 47, Sant Julia de Loria, Principat d’Andorra AD600, Spain
| | - Rachel Bolton
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Martin Malý
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Shibom Basu
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, Grenoble 38042, Cedex 9, France
| | - Julien Orlans
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, Grenoble 38042, Cedex 9, France
| | - Daniele de Sanctis
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, Grenoble 38042, Cedex 9, France
| | - Jung-uk Shim
- Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Allen M. Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Ivo Tews
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Jonathan West
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
16
|
Gu KK, Liu Z, Narayanasamy SR, Shelby ML, Chan N, Coleman MA, Frank M, Kuhl TL. All polymer microfluidic chips-A fixed target sample delivery workhorse for serial crystallography. BIOMICROFLUIDICS 2023; 17:051302. [PMID: 37840537 PMCID: PMC10576627 DOI: 10.1063/5.0167164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
The development of x-ray free electron laser (XFEL) light sources and serial crystallography methodologies has led to a revolution in protein crystallography, enabling the determination of previously unobtainable protein structures and near-atomic resolution of otherwise poorly diffracting protein crystals. However, to utilize XFEL sources efficiently demands the continuous, rapid delivery of a large number of difficult-to-handle microcrystals to the x-ray beam. A recently developed fixed-target system, in which crystals of interest are enclosed within a sample holder, which is rastered through the x-ray beam, is discussed in detail in this Perspective. The fixed target is easy to use, maintains sample hydration, and can be readily modified to allow a broad range of sample types and different beamline requirements. Recent innovations demonstrate the potential of such microfluidic-based fixed targets to be an all-around "workhorse" for serial crystallography measurements. This Perspective will summarize recent advancements in microfluidic fixed targets for serial crystallography, examine needs for future development, and guide users in designing, choosing, and utilizing a fixed-target sample delivery device for their system.
Collapse
Affiliation(s)
- Kevin K. Gu
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | - Zhongrui Liu
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | - Sankar Raju Narayanasamy
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Megan L. Shelby
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Nicholas Chan
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | | | | | - Tonya L. Kuhl
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
17
|
Thompson MC. Combining temperature perturbations with X-ray crystallography to study dynamic macromolecules: A thorough discussion of experimental methods. Methods Enzymol 2023; 688:255-305. [PMID: 37748829 DOI: 10.1016/bs.mie.2023.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Temperature is an important state variable that governs the behavior of microscopic systems, yet crystallographers rarely exploit temperature changes to study the structure and dynamics of biological macromolecules. In fact, approximately 90% of crystal structures in the Protein Data Bank were determined under cryogenic conditions, because sample cryocooling makes crystals robust to X-ray radiation damage and facilitates data collection. On the other hand, cryocooling can introduce artifacts into macromolecular structures, and can suppress conformational dynamics that are critical for function. Fortunately, recent advances in X-ray detector technology, X-ray sources, and computational data processing algorithms make non-cryogenic X-ray crystallography easier and more broadly applicable than ever before. Without the reliance on cryocooling, high-resolution crystallography can be combined with various temperature perturbations to gain deep insight into the conformational landscapes of macromolecules. This Chapter reviews the historical reasons for the prevalence of cryocooling in macromolecular crystallography, and discusses its potential drawbacks. Next, the Chapter summarizes technological developments and methodologies that facilitate non-cryogenic crystallography experiments. Finally, the chapter discusses the theoretical underpinnings and practical aspects of multi-temperature and temperature-jump crystallography experiments, which are powerful tools for understanding the relationship between the structure, dynamics, and function of proteins and other biological macromolecules.
Collapse
Affiliation(s)
- Michael C Thompson
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, United States.
| |
Collapse
|
18
|
Shoeman RL, Hartmann E, Schlichting I. Growing and making nano- and microcrystals. Nat Protoc 2023; 18:854-882. [PMID: 36451055 DOI: 10.1038/s41596-022-00777-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 08/22/2022] [Indexed: 12/02/2022]
Abstract
Thanks to recent technological advances in X-ray and micro-electron diffraction and solid-state NMR, structural information can be obtained by using much smaller crystals. Thus, microcrystals have become a valuable commodity rather than a mere stepping stone toward obtaining macroscopic crystals. Microcrystals are particularly useful for structure determination using serial data collection approaches at synchrotrons and X-ray free-electron lasers. The latter's enormous peak brilliance and short X-ray pulse duration mean that structural information can be obtained before the effects of radiation damage are seen; these properties also facilitate time-resolved crystallography. To establish defined reaction initiation conditions, microcrystals with a desired and narrow size distribution are critical. Here, we describe milling and seeding techniques as well as filtration approaches for the reproducible and size-adjustable preparation of homogeneous nano- and microcrystals. Nanocrystals and crystal seeds can be obtained by milling using zirconium beads and the BeadBug homogenizer; fragmentation of large crystals yields micro- or nanocrystals by flowing crystals through stainless steel filters by using an HPLC pump. The approaches can be scaled to generate micro- to milliliter quantities of microcrystals, starting from macroscopic crystals. The procedure typically takes 3-5 d, including the time required to grow the microcrystals.
Collapse
|
19
|
Hough MA, Prischi F, Worrall JAR. Perspective: Structure determination of protein-ligand complexes at room temperature using X-ray diffraction approaches. Front Mol Biosci 2023; 10:1113762. [PMID: 36756363 PMCID: PMC9899996 DOI: 10.3389/fmolb.2023.1113762] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
The interaction between macromolecular proteins and small molecule ligands is an essential component of cellular function. Such ligands may include enzyme substrates, molecules involved in cellular signalling or pharmaceutical drugs. Together with biophysical techniques used to assess the thermodynamic and kinetic properties of ligand binding to proteins, methodology to determine high-resolution structures that enable atomic level interactions between protein and ligand(s) to be directly visualised is required. Whilst such structural approaches are well established with high throughput X-ray crystallography routinely used in the pharmaceutical sector, they provide only a static view of the complex. Recent advances in X-ray structural biology methods offer several new possibilities that can examine protein-ligand complexes at ambient temperature rather than under cryogenic conditions, enable transient binding sites and interactions to be characterised using time-resolved approaches and combine spectroscopic measurements from the same crystal that the structures themselves are determined. This Perspective reviews several recent developments in these areas and discusses new possibilities for applications of these advanced methodologies to transform our understanding of protein-ligand interactions.
Collapse
Affiliation(s)
- Michael A. Hough
- School of Life Sciences, University of Essex, Colchester, United Kingdom
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Filippo Prischi
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | | |
Collapse
|
20
|
Sharma S, Ebrahim A, Keedy DA. Room-temperature serial synchrotron crystallography of the human phosphatase PTP1B. Acta Crystallogr F Struct Biol Commun 2023; 79:23-30. [PMID: 36598353 PMCID: PMC9813971 DOI: 10.1107/s2053230x22011645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022] Open
Abstract
Room-temperature X-ray crystallography provides unique insights into protein conformational heterogeneity, but obtaining sufficiently large protein crystals is a common hurdle. Serial synchrotron crystallography (SSX) helps to address this hurdle by allowing the use of many medium- to small-sized crystals. Here, a recently introduced serial sample-support chip system has been used to obtain the first SSX structure of a human phosphatase, specifically protein tyrosine phosphatase 1B (PTP1B) in the unliganded (apo) state. In previous apo room-temperature structures, the active site and allosteric sites adopted alternate conformations, including open and closed conformations of the active-site WPD loop and of a distal allosteric site. By contrast, in our SSX structure the active site is best fitted with a single conformation, but the distal allosteric site is best fitted with alternate conformations. This observation argues for additional nuance in interpreting the nature of allosteric coupling in this protein. Overall, our results illustrate the promise of serial methods for room-temperature crystallography, as well as future avant-garde crystallography experiments, for PTP1B and other proteins.
Collapse
Affiliation(s)
- Shivani Sharma
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
- PhD Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Ali Ebrahim
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA
- PhD Programs in Biochemistry, Biology and Chemistry, CUNY Graduate Center, New York, NY 10016, USA
| |
Collapse
|
21
|
Thorne RE. Determining biomolecular structures near room temperature using X-ray crystallography: concepts, methods and future optimization. Acta Crystallogr D Struct Biol 2023; 79:78-94. [PMID: 36601809 PMCID: PMC9815097 DOI: 10.1107/s2059798322011652] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/04/2022] [Indexed: 01/05/2023] Open
Abstract
For roughly two decades, cryocrystallography has been the overwhelmingly dominant method for determining high-resolution biomolecular structures. Competition from single-particle cryo-electron microscopy and micro-electron diffraction, increased interest in functionally relevant information that may be missing or corrupted in structures determined at cryogenic temperature, and interest in time-resolved studies of the biomolecular response to chemical and optical stimuli have driven renewed interest in data collection at room temperature and, more generally, at temperatures from the protein-solvent glass transition near 200 K to ∼350 K. Fischer has recently reviewed practical methods for room-temperature data collection and analysis [Fischer (2021), Q. Rev. Biophys. 54, e1]. Here, the key advantages and physical principles of, and methods for, crystallographic data collection at noncryogenic temperatures and some factors relevant to interpreting the resulting data are discussed. For room-temperature data collection to realize its potential within the structural biology toolkit, streamlined and standardized methods for delivering crystals prepared in the home laboratory to the synchrotron and for automated handling and data collection, similar to those for cryocrystallography, should be implemented.
Collapse
Affiliation(s)
- Robert E. Thorne
- Physics Department, Cornell University, Ithaca, NY 14853, USA
- MiTeGen LLC, PO Box 3867, Ithaca, NY 14850, USA
| |
Collapse
|
22
|
Wilamowski M, Sherrell DA, Kim Y, Lavens A, Henning RW, Lazarski K, Shigemoto A, Endres M, Maltseva N, Babnigg G, Burdette SC, Srajer V, Joachimiak A. Time-resolved β-lactam cleavage by L1 metallo-β-lactamase. Nat Commun 2022; 13:7379. [PMID: 36450742 PMCID: PMC9712583 DOI: 10.1038/s41467-022-35029-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Serial x-ray crystallography can uncover binding events, and subsequent chemical conversions occurring during enzymatic reaction. Here, we reveal the structure, binding and cleavage of moxalactam antibiotic bound to L1 metallo-β-lactamase (MBL) from Stenotrophomonas maltophilia. Using time-resolved serial synchrotron crystallography, we show the time course of β-lactam hydrolysis and determine ten snapshots (20, 40, 60, 80, 100, 150, 300, 500, 2000 and 4000 ms) at 2.20 Å resolution. The reaction is initiated by laser pulse releasing Zn2+ ions from a UV-labile photocage. Two metal ions bind to the active site, followed by binding of moxalactam and the intact β-lactam ring is observed for 100 ms after photolysis. Cleavage of β-lactam is detected at 150 ms and the ligand is significantly displaced. The reaction product adjusts its conformation reaching steady state at 2000 ms corresponding to the relaxed state of the enzyme. Only small changes are observed in the positions of Zn2+ ions and the active site residues. Mechanistic details captured here can be generalized to other MBLs.
Collapse
Affiliation(s)
- M Wilamowski
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, 30387, Krakow, Poland
| | - D A Sherrell
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Y Kim
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - A Lavens
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - R W Henning
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, 60637, USA
| | - K Lazarski
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - A Shigemoto
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - M Endres
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA
| | - N Maltseva
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA
| | - G Babnigg
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA
| | - S C Burdette
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - V Srajer
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, 60637, USA
| | - A Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA.
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA.
| |
Collapse
|
23
|
Lučić M, Wilson MT, Tosha T, Sugimoto H, Shilova A, Axford D, Owen RL, Hough MA, Worrall JAR. Serial Femtosecond Crystallography Reveals the Role of Water in the One- or Two-Electron Redox Chemistry of Compound I in the Catalytic Cycle of the B-Type Dye-Decolorizing Peroxidase DtpB. ACS Catal 2022; 12:13349-13359. [PMID: 36366763 PMCID: PMC9638988 DOI: 10.1021/acscatal.2c03754] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/05/2022] [Indexed: 11/30/2022]
Abstract
![]()
Controlling the reactivity
of high-valent Fe(IV)–O
catalytic
intermediates, Compounds I and II, generated in heme enzymes upon
reaction with dioxygen or hydrogen peroxide, is important for function.
It has been hypothesized that the presence (wet) or absence (dry)
of distal heme pocket water molecules can influence whether Compound
I undergoes sequential one-electron additions or a concerted two-electron
reduction. To test this hypothesis, we investigate the role of water
in the heme distal pocket of a dye-decolorizing peroxidase utilizing
a combination of serial femtosecond crystallography and rapid kinetic
studies. In a dry distal heme site, Compound I reduction proceeds
through a mechanism in which Compound II concentration is low. This
reaction shows a strong deuterium isotope effect, indicating that
reduction is coupled to proton uptake. The resulting protonated Compound
II (Fe(IV)–OH) rapidly reduces to the ferric state, giving
the appearance of a two-electron transfer process. In a wet site,
reduction of Compound I is faster, has no deuterium effect, and yields
highly populated Compound II, which is subsequently reduced to the
ferric form. This work provides a definitive experimental test of
the hypothesis advanced in the literature that relates sequential
or concerted electron transfer to Compound I in wet or dry distal
heme sites.
Collapse
Affiliation(s)
- Marina Lučić
- School of Life Sciences, University of Essex, Wivenhoe Park,
Essex, ColchesterCO4 3SQ, U.K
| | - Michael T. Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park,
Essex, ColchesterCO4 3SQ, U.K
| | - Takehiko Tosha
- RIKEN, Spring-8 Center, 1-1-1 Kouto, Sayo, Hyogo679-5148Japan
| | | | - Anastasya Shilova
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, DidcotOX11 0DE, U.K
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, DidcotOX11 0DE, U.K
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, DidcotOX11 0DE, U.K
| | - Michael A. Hough
- School of Life Sciences, University of Essex, Wivenhoe Park,
Essex, ColchesterCO4 3SQ, U.K
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, DidcotOX11 0DE, U.K
| | - Jonathan A. R. Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park,
Essex, ColchesterCO4 3SQ, U.K
| |
Collapse
|
24
|
Moreno-Chicano T, Carey LM, Axford D, Beale JH, Doak RB, Duyvesteyn HME, Ebrahim A, Henning RW, Monteiro DCF, Myles DA, Owada S, Sherrell DA, Straw ML, Šrajer V, Sugimoto H, Tono K, Tosha T, Tews I, Trebbin M, Strange RW, Weiss KL, Worrall JAR, Meilleur F, Owen RL, Ghiladi RA, Hough MA. Complementarity of neutron, XFEL and synchrotron crystallography for defining the structures of metalloenzymes at room temperature. IUCRJ 2022; 9:610-624. [PMID: 36071813 PMCID: PMC9438502 DOI: 10.1107/s2052252522006418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Room-temperature macromolecular crystallography allows protein structures to be determined under close-to-physiological conditions, permits dynamic freedom in protein motions and enables time-resolved studies. In the case of metalloenzymes that are highly sensitive to radiation damage, such room-temperature experiments can present challenges, including increased rates of X-ray reduction of metal centres and site-specific radiation-damage artefacts, as well as in devising appropriate sample-delivery and data-collection methods. It can also be problematic to compare structures measured using different crystal sizes and light sources. In this study, structures of a multifunctional globin, dehaloperoxidase B (DHP-B), obtained using several methods of room-temperature crystallographic structure determination are described and compared. Here, data were measured from large single crystals and multiple microcrystals using neutrons, X-ray free-electron laser pulses, monochromatic synchrotron radiation and polychromatic (Laue) radiation light sources. These approaches span a range of 18 orders of magnitude in measurement time per diffraction pattern and four orders of magnitude in crystal volume. The first room-temperature neutron structures of DHP-B are also presented, allowing the explicit identification of the hydrogen positions. The neutron data proved to be complementary to the serial femtosecond crystallography data, with both methods providing structures free of the effects of X-ray radiation damage when compared with standard cryo-crystallography. Comparison of these room-temperature methods demonstrated the large differences in sample requirements, data-collection time and the potential for radiation damage between them. With regard to the structure and function of DHP-B, despite the results being partly limited by differences in the underlying structures, new information was gained on the protonation states of active-site residues which may guide future studies of DHP-B.
Collapse
Affiliation(s)
- Tadeo Moreno-Chicano
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Leiah M. Carey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - John H. Beale
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - R. Bruce Doak
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Helen M. E. Duyvesteyn
- Division of Structural Biology (STRUBI), University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Ali Ebrahim
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Robert W. Henning
- BioCARS, University of Chicago, Building 434B, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Diana C. F. Monteiro
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203-1102, USA
| | - Dean A. Myles
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Darren A. Sherrell
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Megan L. Straw
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Vukica Šrajer
- BioCARS, University of Chicago, Building 434B, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | | | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Takehiko Tosha
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Ivo Tews
- Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
| | - Martin Trebbin
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203-1102, USA
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Richard W. Strange
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Kevin L. Weiss
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jonathan A. R. Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Flora Meilleur
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Michael A. Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
25
|
Sherrell DA, Lavens A, Wilamowski M, Kim Y, Chard R, Lazarski K, Rosenbaum G, Vescovi R, Johnson JL, Akins C, Chang C, Michalska K, Babnigg G, Foster I, Joachimiak A. Fixed-target serial crystallography at the Structural Biology Center. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1141-1151. [PMID: 36073872 PMCID: PMC9455217 DOI: 10.1107/s1600577522007895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/05/2022] [Indexed: 05/30/2023]
Abstract
Serial synchrotron crystallography enables the study of protein structures under physiological temperature and reduced radiation damage by collection of data from thousands of crystals. The Structural Biology Center at Sector 19 of the Advanced Photon Source has implemented a fixed-target approach with a new 3D-printed mesh-holder optimized for sample handling. The holder immobilizes a crystal suspension or droplet emulsion on a nylon mesh, trapping and sealing a near-monolayer of crystals in its mother liquor between two thin Mylar films. Data can be rapidly collected in scan mode and analyzed in near real-time using piezoelectric linear stages assembled in an XYZ arrangement, controlled with a graphical user interface and analyzed using a high-performance computing pipeline. Here, the system was applied to two β-lactamases: a class D serine β-lactamase from Chitinophaga pinensis DSM 2588 and L1 metallo-β-lactamase from Stenotrophomonas maltophilia K279a.
Collapse
Affiliation(s)
- Darren A. Sherrell
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Alex Lavens
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Mateusz Wilamowski
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
| | - Youngchang Kim
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
| | - Ryan Chard
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Krzysztof Lazarski
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Gerold Rosenbaum
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Rafael Vescovi
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jessica L. Johnson
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Chase Akins
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Changsoo Chang
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
| | - Karolina Michalska
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
| | - Gyorgy Babnigg
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Ian Foster
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| |
Collapse
|
26
|
Barends TR, Stauch B, Cherezov V, Schlichting I. Serial femtosecond crystallography. NATURE REVIEWS. METHODS PRIMERS 2022; 2:59. [PMID: 36643971 PMCID: PMC9833121 DOI: 10.1038/s43586-022-00141-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the advent of X-ray Free Electron Lasers (XFELs), new, high-throughput serial crystallography techniques for macromolecular structure determination have emerged. Serial femtosecond crystallography (SFX) and related methods provide possibilities beyond canonical, single-crystal rotation crystallography by mitigating radiation damage and allowing time-resolved studies with unprecedented temporal resolution. This primer aims to assist structural biology groups with little or no experience in serial crystallography planning and carrying out a successful SFX experiment. It discusses the background of serial crystallography and its possibilities. Microcrystal growth and characterization methods are discussed, alongside techniques for sample delivery and data processing. Moreover, it gives practical tips for preparing an experiment, what to consider and do during a beamtime and how to conduct the final data analysis. Finally, the Primer looks at various applications of SFX, including structure determination of membrane proteins, investigation of radiation damage-prone systems and time-resolved studies.
Collapse
Affiliation(s)
- Thomas R.M. Barends
- Department for Biological Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Benjamin Stauch
- Department of Chemistry, The Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Vadim Cherezov
- Department of Chemistry, The Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Ilme Schlichting
- Department for Biological Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany,
| |
Collapse
|
27
|
Yabukarski F, Doukov T, Mokhtari DA, Du S, Herschlag D. Evaluating the impact of X-ray damage on conformational heterogeneity in room-temperature (277 K) and cryo-cooled protein crystals. Acta Crystallogr D Struct Biol 2022; 78:945-963. [PMID: 35916220 PMCID: PMC9344472 DOI: 10.1107/s2059798322005939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
Cryo-cooling has been nearly universally adopted to mitigate X-ray damage and facilitate crystal handling in protein X-ray crystallography. However, cryo X-ray crystallographic data provide an incomplete window into the ensemble of conformations that is at the heart of protein function and energetics. Room-temperature (RT) X-ray crystallography provides accurate ensemble information, and recent developments allow conformational heterogeneity (the experimental manifestation of ensembles) to be extracted from single-crystal data. Nevertheless, high sensitivity to X-ray damage at RT raises concerns about data reliability. To systematically address this critical issue, increasingly X-ray-damaged high-resolution data sets (1.02-1.52 Å resolution) were obtained from single proteinase K, thaumatin and lysozyme crystals at RT (277 K). In each case a modest increase in conformational heterogeneity with X-ray damage was observed. Merging data with different extents of damage (as is typically carried out) had negligible effects on conformational heterogeneity until the overall diffraction intensity decayed to ∼70% of its initial value. These effects were compared with X-ray damage effects in cryo-cooled crystals by carrying out an analogous analysis of increasingly damaged proteinase K cryo data sets (0.9-1.16 Å resolution). X-ray damage-associated heterogeneity changes were found that were not observed at RT. This property renders it difficult to distinguish real from artefactual conformations and to determine the conformational response to changes in temperature. The ability to acquire reliable heterogeneity information from single crystals at RT, together with recent advances in RT data collection at accessible synchrotron beamlines, provides a strong motivation for the widespread adoption of RT X-ray crystallography to obtain conformational ensemble information.
Collapse
Affiliation(s)
- Filip Yabukarski
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Tzanko Doukov
- SMB, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Daniel A. Mokhtari
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Siyuan Du
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
28
|
Babnigg G, Sherrell D, Kim Y, Johnson JL, Nocek B, Tan K, Axford D, Li H, Bigelow L, Welk L, Endres M, Owen RL, Joachimiak A. Data collection from crystals grown in microfluidic droplets. Acta Crystallogr D Struct Biol 2022; 78:997-1009. [PMID: 35916224 PMCID: PMC9344473 DOI: 10.1107/s2059798322004661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/02/2022] [Indexed: 11/10/2022] Open
Abstract
Protein crystals grown in microfluidic droplets have been shown to be an effective and robust platform for storage, transport and serial crystallography data collection with a minimal impact on diffraction quality. Single macromolecular microcrystals grown in nanolitre-sized droplets allow the very efficient use of protein samples and can produce large quantities of high-quality samples for data collection. However, there are challenges not only in growing crystals in microfluidic droplets, but also in delivering the droplets into X-ray beams, including the physical arrangement, beamline and timing constraints and ease of use. Here, the crystallization of two human gut microbial hydrolases in microfluidic droplets is described: a sample-transport and data-collection approach that is inexpensive, is convenient, requires small amounts of protein and is forgiving. It is shown that crystals can be grown in 50-500 pl droplets when the crystallization conditions are compatible with the droplet environment. Local and remote data-collection methods are described and it is shown that crystals grown in microfluidics droplets and housed as an emulsion in an Eppendorf tube can be shipped from the US to the UK using a FedEx envelope, and data can be collected successfully. Details of how crystals were delivered to the X-ray beam by depositing an emulsion of droplets onto a silicon fixed-target serial device are provided. After three months of storage at 4°C, the crystals endured and diffracted well, showing only a slight decrease in diffracting power, demonstrating a suitable way to grow crystals, and to store and collect the droplets with crystals for data collection. This sample-delivery and data-collection strategy allows crystal droplets to be shipped and set aside until beamtime is available.
Collapse
Affiliation(s)
- Gyorgy Babnigg
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Darren Sherrell
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Youngchang Kim
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Jessica L. Johnson
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Boguslaw Nocek
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Kemin Tan
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Danny Axford
- Harwell Science and Innovation Campus, Diamond Light Source, Fermi Avenue, Didcot OX11 0DE, United Kingdom
| | - Hui Li
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Lance Bigelow
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Lukas Welk
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Michael Endres
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Robin L. Owen
- Harwell Science and Innovation Campus, Diamond Light Source, Fermi Avenue, Didcot OX11 0DE, United Kingdom
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| |
Collapse
|
29
|
Batey D, Rau C, Cipiccia S. High-speed X-ray ptychographic tomography. Sci Rep 2022; 12:7846. [PMID: 35551474 PMCID: PMC9098852 DOI: 10.1038/s41598-022-11292-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/05/2022] [Indexed: 11/09/2022] Open
Abstract
X-ray ptychography is a coherent scanning imaging technique widely used at synchrotron facilities for producing quantitative phase images beyond the resolution limit of conventional x-ray optics. The scanning nature of the technique introduces an inherent overhead to the collection at every scan position and limits the acquisition time of each 2D projection. The overhead associated with motion can be minimised with a continuous-scanning approach. Here we present an acquisition architecture based on continuous-scanning and up-triggering which allows to record ptychographic datasets at up to 9 kHz. We demonstrate the method by applying it to record 2D scans at up to 273 µm2/s and 3D scans of a (20 µm)3 volume in less than three hours. We discuss the current limitations and the outlook toward the development of sub-second 2D acquisition and minutes-long 3D ptychographic tomograms.
Collapse
Affiliation(s)
- Darren Batey
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0DE, UK.
| | - Christoph Rau
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0DE, UK
| | - Silvia Cipiccia
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0DE, UK.,Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
30
|
Chaussavoine I, Isabet T, Lener R, Montaville P, Vasireddi R, Chavas LMG. Implementation of wedged-serial protein crystallography at PROXIMA-1. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:439-446. [PMID: 35254307 PMCID: PMC8900848 DOI: 10.1107/s1600577521013242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
An approach for serial crystallography experiments based on wedged-data collection is described. This is an alternative method for recording in situ X-ray diffraction data on crystalline samples efficiently loaded in an X-ray compatible microfluidic chip. Proper handling of the microfluidic chip places crystalline samples at geometrically known positions with respect to the focused X-ray interaction area for serial data collection of small wedges. The integration of this strategy takes advantage of the greatly modular sample environment available on the endstation, which allows access to both in situ and more classical cryo-crystallography with minimum time loss. The method represents another optional data collection approach that adds up to the already large set of methods made available to users. Coupled with the advances in processing serial crystallography data, the wedged-data collection strategy proves highly efficient in minimizing the amount of required sample crystals for recording a complete dataset. From the advances in microfluidic technology presented here, high-throughput room-temperature crystallography experiments may become routine and should be easily extended to industrial use.
Collapse
Affiliation(s)
| | | | - Robin Lener
- Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
31
|
Nam KH. Beef tallow injection matrix for serial crystallography. Sci Rep 2022; 12:694. [PMID: 35027663 PMCID: PMC8758675 DOI: 10.1038/s41598-021-04714-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
Serial crystallography (SX) enables the visualization of the time-resolved molecular dynamics of macromolecular structures at room temperature while minimizing radiation damage. In SX experiments, the delivery of a large number of crystals into an X-ray interaction point in a serial and stable manner is key. Sample delivery using viscous medium maintains the stable injection stream at low flow rates, markedly reducing sample consumption compared with that of a liquid jet injector and is widely applied in SX experiments with low repetition rates. As the sample properties and experimental environment can affect the stability of the injection stream of a viscous medium, it is important to develop sample delivery media with various characteristics to optimize the experimental environment. In this study, a beef tallow injection matrix possessing a higher melting temperature than previously reported fat-based shortening and lard media was introduced as a sample delivery medium and applied to SX. Beef tallow was prepared by heat treating fats from cattle, followed by the removal of soluble impurities from the extract by phase separation. Beef tallow exhibited a very stable injection stream at room temperature and a flow rate of < 10 nL/min. The room-temperature structures of lysozyme and glucose isomerase embedded in beef tallow were successfully determined at 1.55 and 1.60 Å, respectively. The background scattering of beef tallow was higher than that of previously reported fat-based shortening and lard media but negligible for data processing. In conclusion, the beef tallow matrix can be employed for sample delivery in SX experiments conducted at temperatures exceeding room temperature.
Collapse
Affiliation(s)
- Ki Hyun Nam
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea. .,POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea.
| |
Collapse
|
32
|
Grünbein ML, Kovacs GN, Kloos M, Gorel A, Doak RB, Shoeman RL, Barends TRM, Schlichting I. Crystallographic Studies of Rhodopsins: Structure and Dynamics. Methods Mol Biol 2022; 2501:147-168. [PMID: 35857227 DOI: 10.1007/978-1-0716-2329-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Crystal structures have provided detailed insight in the architecture of rhodopsin photoreceptors. Of particular interest are the protein-chromophore interactions that govern the light-induced retinal isomerization and ultimately induce the large structural changes important for the various biological functions of the family. The reaction intermediates occurring along the rhodopsin photocycle have vastly differing lifetimes, from hundreds of femtoseconds to milliseconds. Detailed insight at high spatial and temporal resolution can be obtained by time-resolved crystallography using pump-probe approaches at X-ray free-electron lasers. Alternatively, cryotrapping approaches can be used. Both the approaches are described, including illumination and sample delivery. The importance of appropriate photoexcitation avoiding multiphoton absorption is stressed.
Collapse
Affiliation(s)
| | | | - Marco Kloos
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Alexander Gorel
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - R Bruce Doak
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | | |
Collapse
|
33
|
Baba S, Matsuura H, Kawamura T, Sakai N, Nakamura Y, Kawano Y, Mizuno N, Kumasaka T, Yamamoto M, Hirata K. Guidelines for de novo phasing using multiple small-wedge data collection. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1284-1295. [PMID: 34475278 PMCID: PMC8415328 DOI: 10.1107/s1600577521008067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/05/2021] [Indexed: 05/30/2023]
Abstract
Intense micro-focus X-ray beamlines available at synchrotron facilities have achieved high-quality data collection even from the microcrystals of membrane proteins. The automatic data collection system developed at SPring-8, named ZOO, has contributed to many structure determinations of membrane proteins using small-wedge synchrotron crystallography (SWSX) datasets. The `small-wedge' (5-20°) datasets are collected from multiple crystals and then merged to obtain the final structure factors. To our knowledge, no systematic investigation on the dose dependence of data accuracy has so far been reported for SWSX, which is between `serial crystallography' and `rotation crystallography'. Thus, herein, we investigated the optimal dose conditions for experimental phasing with SWSX. Phase determination using anomalous scattering signals was found to be more difficult at higher doses. Furthermore, merging more homogeneous datasets grouped by hierarchical clustering with controlled doses mildly reduced the negative factors in data collection, such as `lack of signal' and `radiation damage'. In turn, as more datasets were merged, more probable phases could be obtained across a wider range of doses. Therefore, our findings show that it is essential to choose a lower dose than 10 MGy for de novo structure determination by SWSX. In particular, data collection using a dose of 5 MGy proved to be optimal in balancing the amount of signal available while reducing the amount of damage as much as possible.
Collapse
Affiliation(s)
- Seiki Baba
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Hiroaki Matsuura
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Takashi Kawamura
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Naoki Sakai
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yuki Nakamura
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Yoshiaki Kawano
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Nobuhiro Mizuno
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Takashi Kumasaka
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Masaki Yamamoto
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kunio Hirata
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
34
|
Rabe P, Kamps JJAG, Sutherlin KD, Linyard JDS, Aller P, Pham CC, Makita H, Clifton I, McDonough MA, Leissing TM, Shutin D, Lang PA, Butryn A, Brem J, Gul S, Fuller FD, Kim IS, Cheah MH, Fransson T, Bhowmick A, Young ID, O'Riordan L, Brewster AS, Pettinati I, Doyle M, Joti Y, Owada S, Tono K, Batyuk A, Hunter MS, Alonso-Mori R, Bergmann U, Owen RL, Sauter NK, Claridge TDW, Robinson CV, Yachandra VK, Yano J, Kern JF, Orville AM, Schofield CJ. X-ray free-electron laser studies reveal correlated motion during isopenicillin N synthase catalysis. SCIENCE ADVANCES 2021; 7:eabh0250. [PMID: 34417180 PMCID: PMC8378823 DOI: 10.1126/sciadv.abh0250] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/29/2021] [Indexed: 05/23/2023]
Abstract
Isopenicillin N synthase (IPNS) catalyzes the unique reaction of l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) with dioxygen giving isopenicillin N (IPN), the precursor of all natural penicillins and cephalosporins. X-ray free-electron laser studies including time-resolved crystallography and emission spectroscopy reveal how reaction of IPNS:Fe(II):ACV with dioxygen to yield an Fe(III) superoxide causes differences in active site volume and unexpected conformational changes that propagate to structurally remote regions. Combined with solution studies, the results reveal the importance of protein dynamics in regulating intermediate conformations during conversion of ACV to IPN. The results have implications for catalysis by multiple IPNS-related oxygenases, including those involved in the human hypoxic response, and highlight the power of serial femtosecond crystallography to provide insight into long-range enzyme dynamics during reactions presently impossible for nonprotein catalysts.
Collapse
Affiliation(s)
- Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jos J A G Kamps
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Kyle D Sutherlin
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - James D S Linyard
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Pierre Aller
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Cindy C Pham
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ian Clifton
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Thomas M Leissing
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Denis Shutin
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Pauline A Lang
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Agata Butryn
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Sheraz Gul
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Franklin D Fuller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - In-Sik Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Mun Hon Cheah
- Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 751 20 Uppsala, Sweden
| | - Thomas Fransson
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, 69120 Heidelberg, Germany
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Iris D Young
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | - Lee O'Riordan
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Aaron S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ilaria Pettinati
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Margaret Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706, USA
| | - Robin L Owen
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Nicholas K Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Timothy D W Claridge
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Carol V Robinson
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| | - Allen M Orville
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
35
|
Lahey-Rudolph JM, Schönherr R, Barthelmess M, Fischer P, Seuring C, Wagner A, Meents A, Redecke L. Fixed-target serial femtosecond crystallography using in cellulo grown microcrystals. IUCRJ 2021; 8:665-677. [PMID: 34258014 PMCID: PMC8256716 DOI: 10.1107/s2052252521005297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/18/2021] [Indexed: 05/05/2023]
Abstract
The crystallization of recombinant proteins in living cells is an exciting new approach in structural biology. Recent success has highlighted the need for fast and efficient diffraction data collection, optimally directly exposing intact crystal-containing cells to the X-ray beam, thus protecting the in cellulo crystals from environmental challenges. Serial femtosecond crystallography (SFX) at free-electron lasers (XFELs) allows the collection of detectable diffraction even from tiny protein crystals, but requires very fast sample exchange to utilize each XFEL pulse. Here, an efficient approach is presented for high-resolution structure elucidation using serial femtosecond in cellulo diffraction of micometre-sized crystals of the protein HEX-1 from the fungus Neurospora crassa on a fixed target. Employing the fast and highly accurate Roadrunner II translation-stage system allowed efficient raster scanning of the pores of micro-patterned, single-crystalline silicon chips loaded with living, crystal-containing insect cells. Compared with liquid-jet and LCP injection systems, the increased hit rates of up to 30% and reduced background scattering enabled elucidation of the HEX-1 structure. Using diffraction data from only a single chip collected within 12 min at the Linac Coherent Light Source, a 1.8 Å resolution structure was obtained with significantly reduced sample consumption compared with previous SFX experiments using liquid-jet injection. This HEX-1 structure is almost superimposable with that previously determined using synchrotron radiation from single HEX-1 crystals grown by sitting-drop vapour diffusion, validating the approach. This study demonstrates that fixed-target SFX using micro-patterned silicon chips is ideally suited for efficient in cellulo diffraction data collection using living, crystal-containing cells, and offers huge potential for the straightforward structure elucidation of proteins that form intracellular crystals at both XFELs and synchrotron sources.
Collapse
Affiliation(s)
- J. Mia Lahey-Rudolph
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Robert Schönherr
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Photon Science, Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Miriam Barthelmess
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Pontus Fischer
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Carolin Seuring
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, 22671 Hamburg, Germany
| | - Armin Wagner
- Diamond Light Source, Diamond House DH2-52, Chilton, Didcot OX11 0DE, United Kingdom
| | - Alke Meents
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- Photon Science, Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Lars Redecke
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Photon Science, Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
36
|
How Does Bacillus thuringiensis Crystallize Such a Large Diversity of Toxins? Toxins (Basel) 2021; 13:toxins13070443. [PMID: 34206796 PMCID: PMC8309854 DOI: 10.3390/toxins13070443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/31/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a natural crystal-making bacterium. Bt diversified into many subspecies that have evolved to produce crystals of hundreds of pesticidal proteins with radically different structures. Their crystalline form ensures stability and controlled release of these major virulence factors. They are responsible for the toxicity and host specificity of Bt, explaining its worldwide use as a biological insecticide. Most research has been devoted to understanding the mechanisms of toxicity of these toxins while the features driving their crystallization have long remained elusive, essentially due to technical limitations. The evolution of methods in structural biology, pushing back the limits in size of amenable protein crystals now allows access to be gained to structural information hidden within natural crystals of such toxins. In this review, we present the main parameters that have been identified as key drivers of toxin crystallization in Bt, notably in the light of recent discoveries driven by structural biology studies. Then, we develop how the future evolution of structural biology will hopefully unveil new mechanisms of Bt toxin crystallization, opening the door to their hijacking with the aim of developing a versatile in vivo crystallization platform of high academic and industrial interest.
Collapse
|
37
|
Polyimide mesh-based sample holder with irregular crystal mounting holes for fixed-target serial crystallography. Sci Rep 2021; 11:13115. [PMID: 34162965 PMCID: PMC8222285 DOI: 10.1038/s41598-021-92687-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/11/2021] [Indexed: 01/07/2023] Open
Abstract
The serial crystallography (SX) technique enables the determination of the room-temperature structure of a macromolecule while causing minimal radiation damage, as well as the visualization of the molecular dynamics by time-resolved studies. The fixed-target (FT) scanning approach is one method for SX sample delivery that minimizes sample consumption and minimizes physical damage to crystals during data collection. Settling of the crystals on the sample holder in random orientation is important for complete three dimensional data collection. To increase the random orientation of crystals on the sample holder, we developed a polyimide mesh-based sample holder with irregular crystal mounting holes for FT-SX. The polyimide mesh was fabricated using a picosecond laser. Each hole in the polyimide mesh has irregularly shaped holes because of laser thermal damage, which may cause more crystals to settle at random orientations compared to regular shaped sample holders. A crystal sample was spread onto a polyimide-mesh, and a polyimide film was added to both sides to prevent dehydration. Using this sample holder, FT-SX was performed at synchrotron and determined the room-temperature lysozyme structure at 1.65 Å. The polyimide mesh with irregularly shaped holes will allow for expanded applications in sample delivery for FT-SX experiments.
Collapse
|
38
|
Norton-Baker B, Mehrabi P, Boger J, Schönherr R, von Stetten D, Schikora H, Kwok AO, Martin RW, Miller RJD, Redecke L, Schulz EC. A simple vapor-diffusion method enables protein crystallization inside the HARE serial crystallography chip. Acta Crystallogr D Struct Biol 2021; 77:820-834. [PMID: 34076595 PMCID: PMC8171066 DOI: 10.1107/s2059798321003855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/10/2021] [Indexed: 11/12/2022] Open
Abstract
Fixed-target serial crystallography has become an important method for the study of protein structure and dynamics at synchrotrons and X-ray free-electron lasers. However, sample homogeneity, consumption and the physical stress on samples remain major challenges for these high-throughput experiments, which depend on high-quality protein microcrystals. The batch crystallization procedures that are typically applied require time- and sample-intensive screening and optimization. Here, a simple protein crystallization method inside the features of the HARE serial crystallography chips is reported that circumvents batch crystallization and allows the direct transfer of canonical vapor-diffusion conditions to in-chip crystallization. Based on conventional hanging-drop vapor-diffusion experiments, the crystallization solution is distributed into the wells of the HARE chip and equilibrated against a reservoir with mother liquor. Using this simple method, high-quality microcrystals were generated with sufficient density for the structure determination of four different proteins. A new protein variant was crystallized using the protein concentrations encountered during canonical crystallization experiments, enabling structure determination from ∼55 µg of protein. Additionally, structure determination from intracellular crystals grown in insect cells cultured directly in the features of the HARE chips is demonstrated. In cellulo crystallization represents a comparatively unexplored space in crystallization, especially for proteins that are resistant to crystallization using conventional techniques, and eliminates any need for laborious protein purification. This in-chip technique avoids harvesting the sensitive crystals or any further physical handling of the crystal-containing cells. These proof-of-principle experiments indicate the potential of this method to become a simple alternative to batch crystallization approaches and also as a convenient extension to canonical crystallization screens.
Collapse
Affiliation(s)
- Brenna Norton-Baker
- Department for Atomically Resolved Dynamics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Pedram Mehrabi
- Department for Atomically Resolved Dynamics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Juliane Boger
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Robert Schönherr
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - David von Stetten
- European Molecular Biology Laboratory, Hamburg Unit c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - Hendrik Schikora
- Scientific Support Unit Machine Physics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Ashley O. Kwok
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - R. J. Dwayne Miller
- Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
- Departments of Chemistry and Physics, University of Toronto, 80 St George Street, Toronto, ON M5S 3H6, Canada
| | - Lars Redecke
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Eike C. Schulz
- Department for Atomically Resolved Dynamics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
39
|
Wilamowski M, Sherrell DA, Minasov G, Kim Y, Shuvalova L, Lavens A, Chard R, Maltseva N, Jedrzejczak R, Rosas-Lemus M, Saint N, Foster IT, Michalska K, Satchell KJF, Joachimiak A. 2'-O methylation of RNA cap in SARS-CoV-2 captured by serial crystallography. Proc Natl Acad Sci U S A 2021; 118:e2100170118. [PMID: 33972410 PMCID: PMC8166198 DOI: 10.1073/pnas.2100170118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The genome of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus has a capping modification at the 5'-untranslated region (UTR) to prevent its degradation by host nucleases. These modifications are performed by the Nsp10/14 and Nsp10/16 heterodimers using S-adenosylmethionine as the methyl donor. Nsp10/16 heterodimer is responsible for the methylation at the ribose 2'-O position of the first nucleotide. To investigate the conformational changes of the complex during 2'-O methyltransferase activity, we used a fixed-target serial synchrotron crystallography method at room temperature. We determined crystal structures of Nsp10/16 with substrates and products that revealed the states before and after methylation, occurring within the crystals during the experiments. Here we report the crystal structure of Nsp10/16 in complex with Cap-1 analog (m7GpppAm2'-O). Inhibition of Nsp16 activity may reduce viral proliferation, making this protein an attractive drug target.
Collapse
Affiliation(s)
- Mateusz Wilamowski
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Krakow 30387, Poland
| | - Darren A Sherrell
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL 60439
| | - George Minasov
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL 60439
| | - Ludmilla Shuvalova
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Alex Lavens
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL 60439
| | - Ryan Chard
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439
| | - Natalia Maltseva
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL 60439
| | - Robert Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL 60439
| | - Monica Rosas-Lemus
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Nickolaus Saint
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439
| | - Ian T Foster
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439
| | - Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL 60439
| | - Karla J F Satchell
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637;
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL 60439
| |
Collapse
|
40
|
Hasegawa K, Baba S, Kawamura T, Yamamoto M, Kumasaka T. Evaluation of the data-collection strategy for room-temperature micro-crystallography studied by serial synchrotron rotation crystallography combined with the humid air and glue-coating method. Acta Crystallogr D Struct Biol 2021; 77:300-312. [PMID: 33645534 PMCID: PMC7919407 DOI: 10.1107/s2059798321001686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/11/2021] [Indexed: 11/11/2023] Open
Abstract
Synchrotron serial crystallography (SSX) is an emerging data-collection method for micro-crystallography on synchrotron macromolecular (MX) crystallography beamlines. At SPring-8, the feasibility of the fixed-target approach was examined by collecting data using a 2D raster scan combined with goniometer rotation. Results at cryogenic temperatures demonstrated that rotation is effective for efficient data collection in SSX and the method was named serial synchrotron rotation crystallography (SS-ROX). To use this method for room-temperature (RT) data collection, a humid air and glue-coating (HAG) method was developed in which data were collected from polyvinyl alcohol-coated microcrystals fixed on a loop under humidity-controlled air. The performance and the RT data-collection strategy for micro-crystallography were evaluated using microcrystals of lysozyme. Although a change in unit-cell dimensions of up to 1% was observed during data collection, the impact on data quality was marginal. A comparison of data obtained at various absorbed doses revealed that absorbed doses of up to 210 kGy were tolerable in both global and local damage. Although this limits the number of photons deposited on each crystal, increasing the number of merged images improved the resolution. On the basis of these results, an equation was proposed that relates the achievable resolution to the total photon flux used to obtain a data set.
Collapse
Affiliation(s)
- Kazuya Hasegawa
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Seiki Baba
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takashi Kawamura
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Masaki Yamamoto
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Takashi Kumasaka
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
41
|
Mehrabi P, Bücker R, Bourenkov G, Ginn HM, von Stetten D, Müller-Werkmeister HM, Kuo A, Morizumi T, Eger BT, Ou WL, Oghbaey S, Sarracini A, Besaw JE, Pare-Labrosse O, Meier S, Schikora H, Tellkamp F, Marx A, Sherrell DA, Axford D, Owen RL, Ernst OP, Pai EF, Schulz EC, Miller RJD. Serial femtosecond and serial synchrotron crystallography can yield data of equivalent quality: A systematic comparison. SCIENCE ADVANCES 2021; 7:7/12/eabf1380. [PMID: 33731353 PMCID: PMC7968842 DOI: 10.1126/sciadv.abf1380] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/28/2021] [Indexed: 05/09/2023]
Abstract
For the two proteins myoglobin and fluoroacetate dehalogenase, we present a systematic comparison of crystallographic diffraction data collected by serial femtosecond (SFX) and serial synchrotron crystallography (SSX). To maximize comparability, we used the same batch of micron-sized crystals, the same sample delivery device, and the same data analysis software. Overall figures of merit indicate that the data of both radiation sources are of equivalent quality. For both proteins, reasonable data statistics can be obtained with approximately 5000 room-temperature diffraction images irrespective of the radiation source. The direct comparability of SSX and SFX data indicates that the quality of diffraction data obtained from these samples is linked to the properties of the crystals rather than to the radiation source. Therefore, for other systems with similar properties, time-resolved experiments can be conducted at the radiation source that best matches the desired time resolution.
Collapse
Affiliation(s)
- P Mehrabi
- Department for Atomically Resolved Dynamics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany.
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R Bücker
- Department for Atomically Resolved Dynamics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Centre for Structural Systems Biology, Department of Chemistry, University of Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - G Bourenkov
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22603 Hamburg, Germany
| | - H M Ginn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - D von Stetten
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22603 Hamburg, Germany
| | - H M Müller-Werkmeister
- Institute of Chemistry-Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - A Kuo
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - T Morizumi
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - B T Eger
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - W-L Ou
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - S Oghbaey
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - A Sarracini
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - J E Besaw
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - O Pare-Labrosse
- Department for Atomically Resolved Dynamics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - S Meier
- Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| | - H Schikora
- Scientific Support Unit Machine Physics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - F Tellkamp
- Scientific Support Unit Machine Physics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - A Marx
- Department for Atomically Resolved Dynamics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - D A Sherrell
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - D Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - R L Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - O P Ernst
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - E F Pai
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - E C Schulz
- Department for Atomically Resolved Dynamics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany.
- Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R J D Miller
- Department for Atomically Resolved Dynamics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| |
Collapse
|
42
|
Schneider DK, Shi W, Andi B, Jakoncic J, Gao Y, Bhogadi DK, Myers SF, Martins B, Skinner JM, Aishima J, Qian K, Bernstein HJ, Lazo EO, Langdon T, Lara J, Shea-McCarthy G, Idir M, Huang L, Chubar O, Sweet RM, Berman LE, McSweeney S, Fuchs MR. FMX - the Frontier Microfocusing Macromolecular Crystallography Beamline at the National Synchrotron Light Source II. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:650-665. [PMID: 33650577 PMCID: PMC7941291 DOI: 10.1107/s1600577520016173] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/11/2020] [Indexed: 05/26/2023]
Abstract
Two new macromolecular crystallography (MX) beamlines at the National Synchrotron Light Source II, FMX and AMX, opened for general user operation in February 2017 [Schneider et al. (2013). J. Phys. Conf. Ser. 425, 012003; Fuchs et al. (2014). J. Phys. Conf. Ser. 493, 012021; Fuchs et al. (2016). AIP Conf. Proc. SRI2015, 1741, 030006]. FMX, the micro-focusing Frontier MX beamline in sector 17-ID-2 at NSLS-II, covers a 5-30 keV photon energy range and delivers a flux of 4.0 × 1012 photons s-1 at 1 Å into a 1 µm × 1.5 µm to 10 µm × 10 µm (V × H) variable focus, expected to reach 5 × 1012 photons s-1 at final storage-ring current. This flux density surpasses most MX beamlines by nearly two orders of magnitude. The high brightness and microbeam capability of FMX are focused on solving difficult crystallographic challenges. The beamline's flexible design supports a wide range of structure determination methods - serial crystallography on micrometre-sized crystals, raster optimization of diffraction from inhomogeneous crystals, high-resolution data collection from large-unit-cell crystals, room-temperature data collection for crystals that are difficult to freeze and for studying conformational dynamics, and fully automated data collection for sample-screening and ligand-binding studies. FMX's high dose rate reduces data collection times for applications like serial crystallography to minutes rather than hours. With associated sample lifetimes as short as a few milliseconds, new rapid sample-delivery methods have been implemented, such as an ultra-high-speed high-precision piezo scanner goniometer [Gao et al. (2018). J. Synchrotron Rad. 25, 1362-1370], new microcrystal-optimized micromesh well sample holders [Guo et al. (2018). IUCrJ, 5, 238-246] and highly viscous media injectors [Weierstall et al. (2014). Nat. Commun. 5, 3309]. The new beamline pushes the frontier of synchrotron crystallography and enables users to determine structures from difficult-to-crystallize targets like membrane proteins, using previously intractable crystals of a few micrometres in size, and to obtain quality structures from irregular larger crystals.
Collapse
Affiliation(s)
| | - Wuxian Shi
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Babak Andi
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jean Jakoncic
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yuan Gao
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Stuart F. Myers
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Bruno Martins
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA
| | - John M. Skinner
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jun Aishima
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kun Qian
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Herbert J. Bernstein
- Ronin Institute for Independent Scholarship, c/o NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Edwin O. Lazo
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Thomas Langdon
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - John Lara
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Mourad Idir
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Lei Huang
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Oleg Chubar
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Robert M. Sweet
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Lonny E. Berman
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sean McSweeney
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Martin R. Fuchs
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
43
|
Abstract
X-ray crystallography enables detailed structural studies of proteins to understand and modulate their function. Conducting crystallographic experiments at cryogenic temperatures has practical benefits but potentially limits the identification of functionally important alternative protein conformations that can be revealed only at room temperature (RT). This review discusses practical aspects of preparing, acquiring, and analyzing X-ray crystallography data at RT to demystify preconceived impracticalities that freeze progress of routine RT data collection at synchrotron sources. Examples are presented as conceptual and experimental templates to enable the design of RT-inspired studies; they illustrate the diversity and utility of gaining novel insights into protein conformational landscapes. An integrative view of protein conformational dynamics enables opportunities to advance basic and biomedical research.
Collapse
|
44
|
Dynamic Structural Biology Experiments at XFEL or Synchrotron Sources. Methods Mol Biol 2021; 2305:203-228. [PMID: 33950392 DOI: 10.1007/978-1-0716-1406-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Macromolecular crystallography (MX) leverages the methods of physics and the language of chemistry to reveal fundamental insights into biology. Often beautifully artistic images present MX results to support profound functional hypotheses that are vital to entire life science research community. Over the past several decades, synchrotrons around the world have been the workhorses for X-ray diffraction data collection at many highly automated beamlines. The newest tools include X-ray-free electron lasers (XFELs) located at facilities in the USA, Japan, Korea, Switzerland, and Germany that deliver about nine orders of magnitude higher brightness in discrete femtosecond long pulses. At each of these facilities, new serial femtosecond crystallography (SFX) strategies exploit slurries of micron-size crystals by rapidly delivering individual crystals into the XFEL X-ray interaction region, from which one diffraction pattern is collected per crystal before it is destroyed by the intense X-ray pulse. Relatively simple adaptions to SFX methods produce time-resolved data collection strategies wherein reactions are triggered by visible light illumination or by chemical diffusion/mixing. Thus, XFELs provide new opportunities for high temporal and spatial resolution studies of systems engaged in function at physiological temperature. In this chapter, we summarize various issues related to microcrystal slurry preparation, sample delivery into the X-ray interaction region, and some emerging strategies for time-resolved SFX data collection.
Collapse
|
45
|
A comprehensive approach to X-ray crystallography for drug discovery at a synchrotron facility - The example of Diamond Light Source. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 37:83-92. [PMID: 34895658 DOI: 10.1016/j.ddtec.2020.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 11/21/2022]
Abstract
A detailed understanding of the interactions between drugs and their targets is crucial to develop the best possible therapeutic agents. Structure-based drug design relies on the availability of high-resolution structures obtained primarily through X-ray crystallography. Collecting and analysing quickly a large quantity of structural data is crucial to accelerate drug discovery pipelines. Researchers from academia and industry can access the highly automated macromolecular crystallography (MX) beamlines of Diamond Light Source, the UK national synchrotron, to rapidly collect diffraction data from large numbers of crystals. With seven beamlines dedicated to MX, Diamond offers bespoke solutions for a wide variety of user requirements. Working in synergy with state-of-the-art laboratories and other life science instruments to provide an integrated offering, the MX beamlines provide innovative and multidisciplinary approaches to the determination of structures of new pharmacological targets as well as the efficient study of protein-ligand complexes.
Collapse
|
46
|
Membrane protein crystallography in the era of modern structural biology. Biochem Soc Trans 2020; 48:2505-2524. [DOI: 10.1042/bst20200066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
The aim of structural biology has been always the study of biological macromolecules structures and their mechanistic behaviour at molecular level. To achieve its goal, multiple biophysical methods and approaches have become part of the structural biology toolbox. Considered as one of the pillars of structural biology, X-ray crystallography has been the most successful method for solving three-dimensional protein structures at atomic level to date. It is however limited by the success in obtaining well-ordered protein crystals that diffract at high resolution. This is especially true for challenging targets such as membrane proteins (MPs). Understanding structure-function relationships of MPs at the biochemical level is vital for medicine and drug discovery as they play critical roles in many cellular processes. Though difficult, structure determination of MPs by X-ray crystallography has significantly improved in the last two decades, mainly due to many relevant technological and methodological developments. Today, numerous MP crystal structures have been solved, revealing many of their mechanisms of action. Yet the field of structural biology has also been through significant technological breakthroughs in recent years, particularly in the fields of single particle electron microscopy (cryo-EM) and X-ray free electron lasers (XFELs). Here we summarise the most important advancements in the field of MP crystallography and the significance of these developments in the present era of modern structural biology.
Collapse
|
47
|
Martiel I, Huang CY, Villanueva-Perez P, Panepucci E, Basu S, Caffrey M, Pedrini B, Bunk O, Stampanoni M, Wang M. Low-dose in situ prelocation of protein microcrystals by 2D X-ray phase-contrast imaging for serial crystallography. IUCRJ 2020; 7:1131-1141. [PMID: 33209324 PMCID: PMC7642777 DOI: 10.1107/s2052252520013238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Serial protein crystallography has emerged as a powerful method of data collection on small crystals from challenging targets, such as membrane proteins. Multiple microcrystals need to be located on large and often flat mounts while exposing them to an X-ray dose that is as low as possible. A crystal-prelocation method is demonstrated here using low-dose 2D full-field propagation-based X-ray phase-contrast imaging at the X-ray imaging beamline TOMCAT at the Swiss Light Source (SLS). This imaging step provides microcrystal coordinates for automated serial data collection at a microfocus macromolecular crystallography beamline on samples with an essentially flat geometry. This prelocation method was applied to microcrystals of a soluble protein and a membrane protein, grown in a commonly used double-sandwich in situ crystallization plate. The inner sandwiches of thin plastic film enclosing the microcrystals in lipid cubic phase were flash cooled and imaged at TOMCAT. Based on the obtained crystal coordinates, both still and rotation wedge serial data were collected automatically at the SLS PXI beamline, yielding in both cases a high indexing rate. This workflow can be easily implemented at many synchrotron facilities using existing equipment, or potentially integrated as an online technique in the next-generation macromolecular crystallography beamline, and thus benefit a number of dose-sensitive challenging protein targets.
Collapse
Affiliation(s)
- Isabelle Martiel
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Chia-Ying Huang
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Pablo Villanueva-Perez
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund, 221 00, Sweden
| | - Ezequiel Panepucci
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Shibom Basu
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
- EMBL Grenoble, 71 avenue des Martyrs, Grenoble, 38042, France
| | - Martin Caffrey
- School of Medicine and School of Biochemistry and Immunology, Trinity College, Dublin 2, D02 R590, Ireland
| | - Bill Pedrini
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Oliver Bunk
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Marco Stampanoni
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
- Institute of Biomedical Engineering, University and ETH Zurich, Zurich, 8092, Switzerland
| | - Meitian Wang
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| |
Collapse
|
48
|
Zhao FZ, Sun B, Yu L, Xiao QJ, Wang ZJ, Chen LL, Liang H, Wang QS, He JH, Yin DC. A novel sample delivery system based on circular motion for in situ serial synchrotron crystallography. LAB ON A CHIP 2020; 20:3888-3898. [PMID: 32966481 DOI: 10.1039/d0lc00443j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A sample delivery system is one of the key parts of serial crystallography. It is the main limiting factor affecting the application of serial crystallography. At present, although a variety of useful sample delivery systems have been developed for serial crystallography, it still remains the focus of the field to further improve the performance and efficiency of sample delivery. In existing sample delivery technologies, samples are usually delivered in linear motion. Here we show that the samples can also be delivered using circular motion, which is a novel motion mode never tested before. In this paper, we report a microfluidic rotating-target sample delivery device, which is characterized by the circular motion of the samples, and verify the performance of the device at a synchrotron radiation facility. The microfluidic rotating-target sample delivery device consists of two parts: a microfluidic sample plate and a motion control system. Sample delivery is realized by rotating the microfluidic sample plate containing in situ grown crystals. This device offers significant advantages, including a very wide adjustable range of delivery speed, low background noise, and low sample consumption. Using the microfluidic rotating-target device, we carried out in situ serial crystallography experiments with lysozyme and proteinase K as model samples at the Shanghai Synchrotron Radiation Facility, and performed structural determination based on the serial crystallographic data. The results showed that the designed device is fully compatible with the synchrotron radiation facility, and the structure determination of proteins is successful using the serial crystallographic data obtained with the device.
Collapse
Affiliation(s)
- Feng-Zhu Zhao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Bo Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Li Yu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.
| | - Qing-Jie Xiao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China. and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zhi-Jun Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Liang-Liang Chen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Huan Liang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Qi-Sheng Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Hua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China. and The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Da-Chuan Yin
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China. and Shenzhen Research Institute, Northwestern Polytechnical University, Shenzhen, China
| |
Collapse
|
49
|
Abstract
Radiation damage and cryogenic sample environment are an experimental limitation observed in the traditional X-ray crystallography technique. However, the serial crystallography (SX) technique not only helps to determine structures at room temperature with minimal radiation damage, but it is also a useful tool for profound understanding of macromolecules. Moreover, it is a new tool for time-resolved studies. Over the past 10 years, various sample delivery techniques and data collection strategies have been developed in the SX field. It also has a wide range of applications in instruments ranging from the X-ray free electron laser (XFEL) facility to synchrotrons. The importance of the various approaches in terms of the experimental techniques and a brief review of the research carried out in the field of SX has been highlighted in this editorial.
Collapse
|
50
|
Fixed-Target Serial Synchrotron Crystallography Using Nylon Mesh and Enclosed Film-Based Sample Holder. CRYSTALS 2020. [DOI: 10.3390/cryst10090803] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Serial crystallography (SX) technique using synchrotron X-ray allows the visualization of room-temperature crystal structures with low-dose data collection as well as time-resolved molecular dynamics. In an SX experiment, delivery of numerous crystals for X-ray interaction, in a serial manner, is very important. Fixed-target scanning approach has the advantage of dramatically minimizing sample consumption as well as any physical damage to crystal sample, compared to other sample delivery methods. Here, we introduce the simple approach of fixed-target serial synchrotron crystallography (FT-SSX) using nylon mesh and enclosed film (NAM)-based sample holder. The NAM-based sample holder consisted of X-ray-transparent nylon-mesh and polyimide film, attached to a magnetic base. This sample holder was mounted to a goniometer head on macromolecular crystallography beamline, and translated along vertical and horizontal directions for raster scanning by the goniometer. Diffraction data were collected in two raster scanning approaches: (i) 100 ms X-ray exposure and 0.011° oscillation at each scan point and (ii) 500 ms X-ray exposure and 0.222° oscillation at each scan point. Using this approach, we determined the room-temperature crystal structures of lysozyme and glucose isomerase at 1.5–2.0 Å resolution. The sample holder produced negligible X-ray background scattering for data processing. Therefore, the new approach provided an opportunity to perform FT-SSX with high accessibility using macromolecular crystallography beamlines at synchrotron without any special equipment.
Collapse
|