1
|
Lokras AG, Bobak TR, Baghel SS, Sebastiani F, Foged C. Advances in the design and delivery of RNA vaccines for infectious diseases. Adv Drug Deliv Rev 2024; 213:115419. [PMID: 39111358 DOI: 10.1016/j.addr.2024.115419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
RNA medicines represent a paradigm shift in treatment and prevention of critical diseases of global significance, e.g., infectious diseases. The highly successful messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were developed at record speed during the coronavirus disease 2019 pandemic. A consequence of this is exceptionally shortened vaccine development times, which in combination with adaptability makes the RNA vaccine technology highly attractive against infectious diseases and for pandemic preparedness. Here, we review state of the art in the design and delivery of RNA vaccines for infectious diseases based on different RNA modalities, including linear mRNA, self-amplifying RNA, trans-amplifying RNA, and circular RNA. We provide an overview of the clinical pipeline of RNA vaccines for infectious diseases, and present analytical procedures, which are paramount for characterizing quality attributes and guaranteeing their quality, and we discuss future perspectives for using RNA vaccines to combat pathogens beyond SARS-CoV-2.
Collapse
Affiliation(s)
- Abhijeet Girish Lokras
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Thomas Rønnemoes Bobak
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Saahil Sandeep Baghel
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Federica Sebastiani
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark; Division of Physical Chemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
2
|
Munsayac A, Leite WC, Hopkins JB, Hall I, O’Neill HM, Keane SC. Selective deuteration of an RNA:RNA complex for structural analysis using small-angle scattering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612093. [PMID: 39314299 PMCID: PMC11419110 DOI: 10.1101/2024.09.09.612093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The structures of RNA:RNA complexes regulate many biological processes. Despite their importance, protein-free RNA:RNA complexes represent a tiny fraction of experimentally-determined structures. Here, we describe a joint small-angle X-ray and neutron scattering (SAXS/SANS) approach to structurally interrogate conformational changes in a model RNA:RNA complex. Using SAXS, we measured the solution structures of the individual RNAs in their free state and of the overall RNA:RNA complex. With SANS, we demonstrate, as a proof-of-principle, that isotope labeling and contrast matching (CM) can be combined to probe the bound state structure of an RNA within a selectively deuterated RNA:RNA complex. Furthermore, we show that experimental scattering data can validate and improve predicted AlphaFold 3 RNA:RNA complex structures to reflect its solution structure. Our work demonstrates that in silico modeling, SAXS, and CM-SANS can be used in concert to directly analyze conformational changes within RNAs when in complex, enhancing our understanding of RNA structure in functional assemblies.
Collapse
Affiliation(s)
- Aldrex Munsayac
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Wellington C. Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Jesse B. Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hugh M. O’Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Sarah C. Keane
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
3
|
Thomas GM, Wu Y, Leite W, Pingali SV, Weiss KL, Grant AJ, Diggs MW, Schmidt-Krey I, Gutishvili G, Gumbart JC, Urban VS, Lieberman RL. SANS reveals lipid-dependent oligomerization of an intramembrane aspartyl protease from H. volcanii. Biophys J 2024; 123:1846-1856. [PMID: 38824390 PMCID: PMC11267423 DOI: 10.1016/j.bpj.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/05/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
Reactions that occur within the lipid membrane involve, at minimum, ternary complexes among the enzyme, substrate, and lipid. For many systems, the impact of the lipid in regulating activity or oligomerization state is poorly understood. Here, we used small-angle neutron scattering (SANS) to structurally characterize an intramembrane aspartyl protease (IAP), a class of membrane-bound enzymes that use membrane-embedded aspartate residues to hydrolyze transmembrane segments of biologically relevant substrates. We focused on an IAP ortholog from the halophilic archaeon Haloferax volcanii (HvoIAP). HvoIAP purified in n-dodecyl-β-D-maltoside (DDM) fractionates on size-exclusion chromatography (SEC) as two fractions. We show that, in DDM, the smaller SEC fraction is consistent with a compact HvoIAP monomer. Molecular dynamics flexible fitting conducted on an AlphaFold2-generated monomer produces a model in which loops are compact alongside the membrane-embedded helices. In contrast, SANS data collected on the second SEC fraction indicate an oligomer consistent with an elongated assembly of discrete HvoIAP monomers. Analysis of in-line SEC-SANS data of the HvoIAP oligomer, the first such experiment to be conducted on a membrane protein at Oak Ridge National Lab (ORNL), shows a diversity of elongated and spherical species, including one consistent with the tetrameric assembly reported for the Methanoculleus marisnigri JR1 IAP crystal structure not observed previously in solution. Reconstitution of monomeric HvoIAP into bicelles increases enzyme activity and results in the assembly of HvoIAP into a species with similar dimensions as the ensemble of oligomers isolated from DDM. Our study reveals lipid-mediated HvoIAP self-assembly and demonstrates the utility of in-line SEC-SANS in elucidating oligomerization states of small membrane proteins.
Collapse
Affiliation(s)
- Gwendell M Thomas
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Yuqi Wu
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Wellington Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | | | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Arshay J Grant
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Monneh W Diggs
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Ingeborg Schmidt-Krey
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia; School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | | | - James C Gumbart
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia; School of Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - Volker S Urban
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
4
|
Caselli L, Conti L, De Santis I, Berti D. Small-angle X-ray and neutron scattering applied to lipid-based nanoparticles: Recent advancements across different length scales. Adv Colloid Interface Sci 2024; 327:103156. [PMID: 38643519 DOI: 10.1016/j.cis.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Lipid-based nanoparticles (LNPs), ranging from nanovesicles to non-lamellar assemblies, have gained significant attention in recent years, as versatile carriers for delivering drugs, vaccines, and nutrients. Small-angle scattering methods, employing X-rays (SAXS) or neutrons (SANS), represent unique tools to unveil structure, dynamics, and interactions of such particles on different length scales, spanning from the nano to the molecular scale. This review explores the state-of-the-art on scattering methods applied to unveil the structure of lipid-based nanoparticles and their interactions with drugs and bioactive molecules, to inform their rational design and formulation for medical applications. We will focus on complementary information accessible with X-rays or neutrons, ranging from insights on the structure and colloidal processes at a nanoscale level (SAXS) to details on the lipid organization and molecular interactions of LNPs (SANS). In addition, we will review new opportunities offered by Time-resolved (TR)-SAXS and -SANS for the investigation of dynamic processes involving LNPs. These span from real-time monitoring of LNPs structural evolution in response to endogenous or external stimuli (TR-SANS), to the investigation of the kinetics of lipid diffusion and exchange upon interaction with biomolecules (TR-SANS). Finally, we will spotlight novel combinations of SAXS and SANS with complementary on-line techniques, recently enabled at Large Scale Facilities for X-rays and neutrons. This emerging technology enables synchronized multi-method investigation, offering exciting opportunities for the simultaneous characterization of the structure and chemical or mechanical properties of LNPs.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| | - Laura Conti
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Ilaria De Santis
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Debora Berti
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
5
|
Le Brun AP, Gilbert EP. Advances in sample environments for neutron scattering for colloid and interface science. Adv Colloid Interface Sci 2024; 327:103141. [PMID: 38631095 DOI: 10.1016/j.cis.2024.103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
This review describes recent advances in sample environments across the full complement of applicable neutron scattering techniques to colloid and interface science. Temperature, pressure, flow, tensile testing, ultrasound, chemical reactions, IR/visible/UV light, confinement, humidity and electric and magnetic field application, as well as tandem X-ray methods, are all addressed. Consideration for material choices in sample environments and data acquisition methods are also covered as well as discussion of current and potential future use of machine learning and artificial intelligence.
Collapse
Affiliation(s)
- Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Elliot Paul Gilbert
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia.
| |
Collapse
|
6
|
Graewert MA, Wilhelmy C, Bacic T, Schumacher J, Blanchet C, Meier F, Drexel R, Welz R, Kolb B, Bartels K, Nawroth T, Klein T, Svergun D, Langguth P, Haas H. Quantitative size-resolved characterization of mRNA nanoparticles by in-line coupling of asymmetrical-flow field-flow fractionation with small angle X-ray scattering. Sci Rep 2023; 13:15764. [PMID: 37737457 PMCID: PMC10516866 DOI: 10.1038/s41598-023-42274-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
We present a generically applicable approach to determine an extensive set of size-dependent critical quality attributes inside nanoparticulate pharmaceutical products. By coupling asymmetrical-flow field-flow fractionation (AF4) measurements directly in-line with solution small angle X-ray scattering (SAXS), vital information such as (i) quantitative, absolute size distribution profiles, (ii) drug loading, (iii) size-dependent internal structures, and (iv) quantitative information on free drug is obtained. Here the validity of the method was demonstrated by characterizing complex mRNA-based lipid nanoparticle products. The approach is particularly applicable to particles in the size range of 100 nm and below, which is highly relevant for pharmaceutical products-both biologics and nanoparticles. The method can be applied as well in other fields, including structural biology and environmental sciences.
Collapse
Affiliation(s)
| | - Christoph Wilhelmy
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | | | | | - Clement Blanchet
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | | | | | - Roland Welz
- Postnova Analytics GmbH, Landsberg am Lech, Germany
| | - Bastian Kolb
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | - Kim Bartels
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | - Thomas Nawroth
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | | | - Dmitri Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
- BIOSAXS GmbH, Hamburg, Germany
| | - Peter Langguth
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | - Heinrich Haas
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany.
- BioNTech SE, Mainz, Germany.
| |
Collapse
|
7
|
Martel A, Cocho C, Caporaletti F, Jacques M, El Aazzouzi A, Lapeyre F, Porcar L. Upgraded D22 SEC-SANS setup dedicated to the biology community. J Appl Crystallogr 2023; 56:994-1001. [PMID: 37555207 PMCID: PMC10405598 DOI: 10.1107/s1600576723004119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/09/2023] [Indexed: 08/10/2023] Open
Abstract
Described here is the current status of the upgraded in situ size-exclusion chromatography (SEC) system implemented with the D22 small-angle neutron scattering (SANS) instrument at the Institut Laue-Langevin. Since its initial proof of principle in 2016, this SEC-SANS arrangement has been continuously requested by the user community, leading to the design of an upgraded version. A detailed description of the setup and its control is provided, and a few examples of protein structural investigations are presented, which will highlight the various possibilities and limitations of the setup to optimize experimental success.
Collapse
Affiliation(s)
- Anne Martel
- Institut Laue-Langevin, 71 avenue de Martyrs, Grenoble 38042, France
| | - Cristina Cocho
- Institut Laue-Langevin, 71 avenue de Martyrs, Grenoble 38042, France
| | - Francesca Caporaletti
- Institut Laue-Langevin, 71 avenue de Martyrs, Grenoble 38042, France
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Mark Jacques
- Institut Laue-Langevin, 71 avenue de Martyrs, Grenoble 38042, France
| | | | - Franck Lapeyre
- Institut Laue-Langevin, 71 avenue de Martyrs, Grenoble 38042, France
| | - Lionel Porcar
- Institut Laue-Langevin, 71 avenue de Martyrs, Grenoble 38042, France
| |
Collapse
|
8
|
Shi B, Matsui T, Qian S, Weiss TM, Nicholl ID, Callaway DJE, Bu Z. An ensemble of cadherin-catenin-vinculin complex employs vinculin as the major F-actin binding mode. Biophys J 2023; 122:2456-2474. [PMID: 37147801 PMCID: PMC10323030 DOI: 10.1016/j.bpj.2023.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/14/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
The cell-cell adhesion cadherin-catenin complexes recruit vinculin to the adherens junction (AJ) to modulate the mechanical couplings between neighboring cells. However, it is unclear how vinculin influences the AJ structure and function. Here, we identified two patches of salt bridges that lock vinculin in the head-tail autoinhibited conformation and reconstituted the full-length vinculin activation mimetics bound to the cadherin-catenin complex. The cadherin-catenin-vinculin complex contains multiple disordered linkers and is highly dynamic, which poses a challenge for structural studies. We determined the ensemble conformation of this complex using small-angle x-ray and selective deuteration/contrast variation small-angle neutron scattering. In the complex, both α-catenin and vinculin adopt an ensemble of flexible conformations, but vinculin has fully open conformations with the vinculin head and actin-binding tail domains well separated from each other. F-actin binding experiments show that the cadherin-catenin-vinculin complex binds and bundles F-actin. However, when the vinculin actin-binding domain is removed from the complex, only a minor fraction of the complex binds to F-actin. The results show that the dynamic cadherin-catenin-vinculin complex employs vinculin as the primary F-actin binding mode to strengthen AJ-cytoskeleton interactions.
Collapse
Affiliation(s)
- Bright Shi
- Department of Chemistry and Biochemistry, City College of New York, City University of New York (CUNY), New York; PhD Programs in Chemistry and Biochemistry, CUNY Graduate Center, New York
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Light Source, Menlo Park, California
| | - Shuo Qian
- Second Target Station Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Light Source, Menlo Park, California
| | - Iain D Nicholl
- Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - David J E Callaway
- Department of Chemistry and Biochemistry, City College of New York, City University of New York (CUNY), New York.
| | - Zimei Bu
- Department of Chemistry and Biochemistry, City College of New York, City University of New York (CUNY), New York; PhD Programs in Chemistry and Biochemistry, CUNY Graduate Center, New York.
| |
Collapse
|
9
|
Morishima K, Inoue R, Sugiyama M. Derivation of the small-angle scattering profile of a target biomacromolecule from a profile deteriorated by aggregates. AUC-SAS. J Appl Crystallogr 2023; 56:624-632. [PMID: 37284265 PMCID: PMC10241049 DOI: 10.1107/s1600576723002406] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/12/2023] [Indexed: 06/08/2023] Open
Abstract
Aggregates cause a fatal problem in the structural analysis of a biomacro-mol-ecule in solution using small-angle X-ray or neutron scattering (SAS): they deteriorate the scattering profile of the target molecule and lead to an incorrect structure. Recently, an integrated method of analytical ultracentrifugation (AUC) and SAS, abbreviated AUC-SAS, was developed as a new approach to overcome this problem. However, the original version of AUC-SAS does not offer a correct scattering profile of the target molecule when the weight fraction of aggregates is higher than ca 10%. In this study, the obstacle point in the original AUC-SAS approach is identified. The improved AUC-SAS method is then applicable to a solution with a relatively larger weight fraction of aggregates (≤20%).
Collapse
Affiliation(s)
- Ken Morishima
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashironishi, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashironishi, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashironishi, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| |
Collapse
|
10
|
Golub M, Moldenhauer M, Matsarskaia O, Martel A, Grudinin S, Soloviov D, Kuklin A, Maksimov EG, Friedrich T, Pieper J. Stages of OCP-FRP Interactions in the Regulation of Photoprotection in Cyanobacteria, Part 2: Small-Angle Neutron Scattering with Partial Deuteration. J Phys Chem B 2023; 127:1901-1913. [PMID: 36815674 DOI: 10.1021/acs.jpcb.2c07182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We used small-angle neutron scattering partially coupled with size-exclusion chromatography to unravel the solution structures of two variants of the Orange Carotenoid Protein (OCP) lacking the N-terminal extension (OCP-ΔNTE) and its complex formation with the Fluorescence Recovery Protein (FRP). The dark-adapted, orange form OCP-ΔNTEO is fully photoswitchable and preferentially binds the pigment echinenone. Its complex with FRP consists of a monomeric OCP component, which closely resembles the compact structure expected for the OCP ground state, OCPO. In contrast, the pink form OCP-ΔNTEP, preferentially binding the pigment canthaxanthin, is mostly nonswitchable. The pink OCP form appears to occur as a dimer and is characterized by a separation of the N- and C-terminal domains, with the canthaxanthin embedded only into the N-terminal domain. Therefore, OCP-ΔNTEP can be viewed as a prototypical model system for the active, spectrally red-shifted state of OCP, OCPR. The dimeric structure of OCP-ΔNTEP is retained in its complex with FRP. Small-angle neutron scattering using partially deuterated OCP-FRP complexes reveals that FRP undergoes significant structural changes upon complex formation with OCP. The observed structures are assigned to individual intermediates of the OCP photocycle in the presence of FRP.
Collapse
Affiliation(s)
- Maksym Golub
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia
| | - Marcus Moldenhauer
- Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Olga Matsarskaia
- Institut Laue-Langevin, Avenue des Martyrs 71, 38042 Cedex 9 Grenoble, France
| | - Anne Martel
- Institut Laue-Langevin, Avenue des Martyrs 71, 38042 Cedex 9 Grenoble, France
| | - Sergei Grudinin
- Université Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
| | - Dmytro Soloviov
- Faculty of Physics, Adam Mickiewicz University, ul. Wieniawskiego 1, 61-712 Poznan, Poland.,Institute for Safety Problems of Nuclear Power Plants, NAS of Ukraine, Kirova 36a, 07270 Chornobyl, Ukraine
| | - Alexander Kuklin
- Joint Institute for Nuclear Research, Joliot-Curie str. 6, 141980 Dubna, Russia.,Moscow Institute of Physics and Technology, Institutskiy per. 9, 141701 Dolgoprudny, Russia
| | - Eugene G Maksimov
- Department of Biophysics, M. V. Lomonosov Moscow State University, Vorob'jovy Gory 1-12, 119899 Moscow, Russia
| | - Thomas Friedrich
- Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Jörg Pieper
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
11
|
Combet S, Bonneté F, Finet S, Pozza A, Saade C, Martel A, Koutsioubas A, Lacapère JJ. Effect of amphiphilic environment on the solution structure of mouse TSPO translocator protein. Biochimie 2023; 205:61-72. [PMID: 36460205 DOI: 10.1016/j.biochi.2022.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
The translocator protein (TSPO) is a ubiquitous transmembrane protein of great pharmacological interest thanks to its high affinity to many drug ligands. The only high-resolution 3D-structure known for mammalian TSPO was obtained by NMR for the mouse mTSPO in DPC detergent only in presence of the high-affinity PK 11195 ligand. An atomic structure of free-ligand mTSPO is still missing to better understand the interaction of ligands with mTSPO and their effects on the protein conformation. Here, we decipher the solution structures of the recombinant mTSPO without ligand both in (i) SDS, the detergent used to extract and purify the protein from E. coli inclusion bodies, and (ii) DPC, the detergent used to solve the PK 11195-binding mTSPO NMR structure. We report partially refolded and less flexible mTSPO helices in DPC compared to SDS. Besides, DPC stabilizes the tertiary structure of mTSPO, as shown by a higher intrinsic Trp fluorescence and changes in indole environment. We evaluate by SEC-MALLS that ∼135 SDS and ∼100 DPC molecules are bound to mTSPO. SEC-small-angle X-ray (SAXS) and neutron (SANS) scattering confirm a larger mTSPO-detergent complex in SDS than in DPC. Using the contrast-matching technique in SEC-SANS, we demonstrate that mTSPO conformation is more compact and less flexible in DPC than in SDS. Combining ab initio modeling with SANS, we confirm that mTSPO conformation is less elongated in DPC than in SDS. However, the free-ligand mTSPO envelope in DPC is not as compact as the PK 11195-binding protein NMR structure, the ligand stiffening the protein.
Collapse
Affiliation(s)
- Sophie Combet
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, F-91191, Gif-sur-Yvette CEDEX, France.
| | - Françoise Bonneté
- Université Paris Cité, CNRS, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires (IBPC), F-75005, Paris, France.
| | - Stéphanie Finet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS, Sorbonne Université, MNHN, IRD, F-75005, Paris, France
| | - Alexandre Pozza
- Université Paris Cité, CNRS, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires (IBPC), F-75005, Paris, France
| | - Christelle Saade
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, F-91191, Gif-sur-Yvette CEDEX, France
| | - Anne Martel
- Institut Laue-Langevin (ILL), F-38042, Grenoble, France
| | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, D-85748, Garching, Germany
| | - Jean-Jacques Lacapère
- Laboratoire des BioMolécules (LBM), UMR 7203, Sorbonne Université, Ecole Normale Supérieure, PSL Université, CNRS, 4 place Jussieu, F-75005, Paris, France
| |
Collapse
|
12
|
Johansen NT, Tidemand FG, Pedersen MC, Arleth L. Travel light: Essential packing for membrane proteins with an active lifestyle. Biochimie 2023; 205:3-26. [PMID: 35963461 DOI: 10.1016/j.biochi.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
We review the considerable progress during the recent decade in the endeavours of designing, optimising, and utilising carrier particle systems for structural and functional studies of membrane proteins in near-native environments. New and improved systems are constantly emerging, novel studies push the perceived limits of a given carrier system, and specific carrier systems consolidate and entrench themselves as the system of choice for particular classes of target membrane protein systems. This review covers the most frequently used carrier systems for such studies and emphasises similarities and differences between these systems as well as current trends and future directions for the field. Particular interest is devoted to the biophysical properties and membrane mimicking ability of each system and the manner in which this may impact an embedded membrane protein and an eventual structural or functional study.
Collapse
Affiliation(s)
- Nicolai Tidemand Johansen
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark.
| | - Frederik Grønbæk Tidemand
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| |
Collapse
|
13
|
Trewhella J, Vachette P, Bierma J, Blanchet C, Brookes E, Chakravarthy S, Chatzimagas L, Cleveland TE, Cowieson N, Crossett B, Duff AP, Franke D, Gabel F, Gillilan RE, Graewert M, Grishaev A, Guss JM, Hammel M, Hopkins J, Huang Q, Hub JS, Hura GL, Irving TC, Jeffries CM, Jeong C, Kirby N, Krueger S, Martel A, Matsui T, Li N, Pérez J, Porcar L, Prangé T, Rajkovic I, Rocco M, Rosenberg DJ, Ryan TM, Seifert S, Sekiguchi H, Svergun D, Teixeira S, Thureau A, Weiss TM, Whitten AE, Wood K, Zuo X. A round-robin approach provides a detailed assessment of biomolecular small-angle scattering data reproducibility and yields consensus curves for benchmarking. Acta Crystallogr D Struct Biol 2022; 78:1315-1336. [PMID: 36322416 PMCID: PMC9629491 DOI: 10.1107/s2059798322009184] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022] Open
Abstract
Through an expansive international effort that involved data collection on 12 small-angle X-ray scattering (SAXS) and four small-angle neutron scattering (SANS) instruments, 171 SAXS and 76 SANS measurements for five proteins (ribonuclease A, lysozyme, xylanase, urate oxidase and xylose isomerase) were acquired. From these data, the solvent-subtracted protein scattering profiles were shown to be reproducible, with the caveat that an additive constant adjustment was required to account for small errors in solvent subtraction. Further, the major features of the obtained consensus SAXS data over the q measurement range 0-1 Å-1 are consistent with theoretical prediction. The inherently lower statistical precision for SANS limited the reliably measured q-range to <0.5 Å-1, but within the limits of experimental uncertainties the major features of the consensus SANS data were also consistent with prediction for all five proteins measured in H2O and in D2O. Thus, a foundation set of consensus SAS profiles has been obtained for benchmarking scattering-profile prediction from atomic coordinates. Additionally, two sets of SAXS data measured at different facilities to q > 2.2 Å-1 showed good mutual agreement, affirming that this region has interpretable features for structural modelling. SAS measurements with inline size-exclusion chromatography (SEC) proved to be generally superior for eliminating sample heterogeneity, but with unavoidable sample dilution during column elution, while batch SAS data collected at higher concentrations and for longer times provided superior statistical precision. Careful merging of data measured using inline SEC and batch modes, or low- and high-concentration data from batch measurements, was successful in eliminating small amounts of aggregate or interparticle interference from the scattering while providing improved statistical precision overall for the benchmarking data set.
Collapse
Affiliation(s)
- Jill Trewhella
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Patrice Vachette
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Paris, 91198 Gif-sur-Yvette, France
| | - Jan Bierma
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Clement Blanchet
- European Molecular Biology Laboratory (EMBL) Hamburg Unit, Notkestrasse 85, c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - Emre Brookes
- Chemistry and Biochemistry, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Srinivas Chakravarthy
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Leonie Chatzimagas
- Theoretical Physics and Center for Biophysics, Saarland University, Campus E2.6, 66123 Saarbrücken, Germany
| | - Thomas E. Cleveland
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Nathan Cowieson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Ben Crossett
- Sydney Mass Spectrometry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Anthony P. Duff
- Australian Nuclear Science and Technology Organisation, New Illawara Road, Lucas Heights, NSW 2234, Australia
| | - Daniel Franke
- European Molecular Biology Laboratory (EMBL) Hamburg Unit, Notkestrasse 85, c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - Frank Gabel
- Institut de Biologie Structurale, CEA, CNRS, Université Grenoblé Alpes, 41 Rue Jules Horowitz, 38027 Grenoble, France
| | - Richard E. Gillilan
- Cornell High-Energy Synchrotron Source, 161 Synchrotron Drive, Ithaca, NY 14853, USA
| | - Melissa Graewert
- European Molecular Biology Laboratory (EMBL) Hamburg Unit, Notkestrasse 85, c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - Alexander Grishaev
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - J. Mitchell Guss
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jesse Hopkins
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Qingqui Huang
- Cornell High-Energy Synchrotron Source, 161 Synchrotron Drive, Ithaca, NY 14853, USA
| | - Jochen S. Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Campus E2.6, 66123 Saarbrücken, Germany
| | - Greg L. Hura
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Thomas C. Irving
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Cy Michael Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg Unit, Notkestrasse 85, c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - Cheol Jeong
- Department of Physics, Wesleyan University, Middletown, CT 06459, USA
| | - Nigel Kirby
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3158, Australia
| | - Susan Krueger
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Anne Martel
- Institut Laue–Langevin, 71 Avenue des Martyrs, 38042 Grenoble CEDEX 9, France
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Na Li
- National Facility for Protein Science in Shanghai, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Road No. 333, Haike Road, Shanghai 201210, People’s Republic of China
| | - Javier Pérez
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette, France
| | - Lionel Porcar
- Institut Laue–Langevin, 71 Avenue des Martyrs, 38042 Grenoble CEDEX 9, France
| | - Thierry Prangé
- CITCoM (UMR 8038 CNRS), Faculté de Pharmacie, 4 Avenue de l’Observatoire, 75006 Paris, France
| | - Ivan Rajkovic
- Stanford Synchrotron Radiation Lightsource, Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Mattia Rocco
- Proteomica e Spettrometria di Massa, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Daniel J. Rosenberg
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Timothy M. Ryan
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3158, Australia
| | - Soenke Seifert
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Hiroshi Sekiguchi
- SPring-8, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyōgo 679-5198, Japan
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Unit, Notkestrasse 85, c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - Susana Teixeira
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - Aurelien Thureau
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette, France
| | - Thomas M. Weiss
- Stanford Synchrotron Radiation Lightsource, Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Andrew E. Whitten
- Australian Nuclear Science and Technology Organisation, New Illawara Road, Lucas Heights, NSW 2234, Australia
| | - Kathleen Wood
- Australian Nuclear Science and Technology Organisation, New Illawara Road, Lucas Heights, NSW 2234, Australia
| | - Xiaobing Zuo
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
14
|
Ruskamo S, Raasakka A, Pedersen JS, Martel A, Škubník K, Darwish T, Porcar L, Kursula P. Human myelin proteolipid protein structure and lipid bilayer stacking. Cell Mol Life Sci 2022; 79:419. [PMID: 35829923 PMCID: PMC9279222 DOI: 10.1007/s00018-022-04428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/28/2022] [Accepted: 06/13/2022] [Indexed: 11/03/2022]
Abstract
The myelin sheath is an essential, multilayered membrane structure that insulates axons, enabling the rapid transmission of nerve impulses. The tetraspan myelin proteolipid protein (PLP) is the most abundant protein of compact myelin in the central nervous system (CNS). The integral membrane protein PLP adheres myelin membranes together and enhances the compaction of myelin, having a fundamental role in myelin stability and axonal support. PLP is linked to severe CNS neuropathies, including inherited Pelizaeus-Merzbacher disease and spastic paraplegia type 2, as well as multiple sclerosis. Nevertheless, the structure, lipid interaction properties, and membrane organization mechanisms of PLP have remained unidentified. We expressed, purified, and structurally characterized human PLP and its shorter isoform DM20. Synchrotron radiation circular dichroism spectroscopy and small-angle X-ray and neutron scattering revealed a dimeric, α-helical conformation for both PLP and DM20 in detergent complexes, and pinpoint structural variations between the isoforms and their influence on protein function. In phosphatidylcholine membranes, reconstituted PLP and DM20 spontaneously induced formation of multilamellar myelin-like membrane assemblies. Cholesterol and sphingomyelin enhanced the membrane organization but were not crucial for membrane stacking. Electron cryomicroscopy, atomic force microscopy, and X-ray diffraction experiments for membrane-embedded PLP/DM20 illustrated effective membrane stacking and ordered organization of membrane assemblies with a repeat distance in line with CNS myelin. Our results shed light on the 3D structure of myelin PLP and DM20, their structure-function differences, as well as fundamental protein-lipid interplay in CNS compact myelin.
Collapse
Affiliation(s)
- Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Anne Martel
- Institut Laue-Langevin (ILL), Grenoble, France
| | - Karel Škubník
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tamim Darwish
- National Deuteration Facility, The Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW, 2232, Australia
| | | | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
15
|
Tidemand FG, Blemmer S, Johansen NT, Arleth L, Pedersen MC. Non-ionic detergent assists formation of supercharged nanodiscs and insertion of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183884. [PMID: 35182589 DOI: 10.1016/j.bbamem.2022.183884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 12/12/2022]
Abstract
Nanodiscs are used to stabilize membrane proteins in a lipid environment and enable investigations of the function and structure of these. Membrane proteins are often only available in small amounts, and thus the stability and ease of use of the nanodiscs are essential. We have recently explored circularizing and supercharging membrane scaffolding proteins (MSPs) for nanodisc formation and found increased temporal stability at elevated temperatures. In the present study, we investigate six different supercharged MSPs and their ability to form nanodiscs: three covalently circularized and the three non-circularized, linear versions. Using standard reconstitution protocols using cholate as the reconstitution detergent, we found that two of the linear constructs formed multiple lipid-protein species, whereas adding n-Dodecyl-B-D-maltoside (DDM) with the cholate in the reconstitution gave rise to single-species nanodisc formation for these MSPs. For all MSPs, the formed nanodiscs were analyzed by small-angle X-ray scattering (SAXS), which showed similar structures for each MSP, respectively, suggesting that the structures of the formed nanodiscs are independent of the initial DDM content, as long as cholate is present. Lastly, we incorporated the membrane protein proteorhodopsin into the supercharged nanodiscs and observed a considerable increase in incorporation yield with the addition of DDM. For the three circularized MSPs, a single major species appeared in the size exclusion chromatography (SEC) chromatogram, suggesting monodisperse nanodiscs with proteorhodopsin incorporated, which is in strong contrast to the samples without DDM showing almost no incorporation and high polydispersity.
Collapse
Affiliation(s)
- Frederik G Tidemand
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Sara Blemmer
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Nicolai T Johansen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark; Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Martin Cramer Pedersen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
| |
Collapse
|
16
|
The changing face of SDS denaturation: Complexes of Thermomyces lanuginosus lipase with SDS at pH 4.0, 6.0 and 8.0. J Colloid Interface Sci 2022; 614:214-232. [DOI: 10.1016/j.jcis.2021.12.188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
|
17
|
Barclay A, Tidemand Johansen N, Tidemand FG, Arleth L, Pedersen MC. Global fitting of multiple data frames from SEC-SAXS to investigate the structure of next-generation nanodiscs. Acta Crystallogr D Struct Biol 2022; 78:483-493. [PMID: 35362471 PMCID: PMC8972807 DOI: 10.1107/s2059798322001838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
The combination of online size-exclusion chromatography and small-angle X-ray scattering (SEC-SAXS) is rapidly becoming a key technique for structural investigations of elaborate biophysical samples in solution. Here, a novel model-refinement strategy centred around the technique is outlined and its utility is demonstrated by analysing data series from several SEC-SAXS experiments on phospholipid bilayer nanodiscs. Using this method, a single model was globally refined against many frames from the same data series, thereby capturing the frame-to-frame tendencies of the irradiated sample. These are compared with models refined in the traditional manner, in which refinement is based on the average profile of a set of consecutive frames from the same data series without an in-depth comparison of individual frames. This is considered to be an attractive model-refinement scheme as it considerably lowers the total number of parameters refined from the data series, produces tendencies that are automatically consistent between frames, and utilizes a considerably larger portion of the recorded data than is often performed in such experiments. Additionally, a method is outlined for correcting a measured UV absorption signal by accounting for potential peak broadening by the experimental setup.
Collapse
Affiliation(s)
- Abigail Barclay
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen E, Denmark
| | - Nicolai Tidemand Johansen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen E, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | | | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen E, Denmark
| | - Martin Cramer Pedersen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen E, Denmark
| |
Collapse
|
18
|
Yunoki Y, Matsumoto A, Morishima K, Martel A, Porcar L, Sato N, Yogo R, Tominaga T, Inoue R, Yagi-Utsumi M, Okuda A, Shimizu M, Urade R, Terauchi K, Kono H, Yagi H, Kato K, Sugiyama M. Overall structure of fully assembled cyanobacterial KaiABC circadian clock complex by an integrated experimental-computational approach. Commun Biol 2022; 5:184. [PMID: 35273347 PMCID: PMC8913699 DOI: 10.1038/s42003-022-03143-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
In the cyanobacterial circadian clock system, KaiA, KaiB and KaiC periodically assemble into a large complex. Here we determined the overall structure of their fully assembled complex by integrating experimental and computational approaches. Small-angle X-ray and inverse contrast matching small-angle neutron scatterings coupled with size-exclusion chromatography provided constraints to highlight the spatial arrangements of the N-terminal domains of KaiA, which were not resolved in the previous structural analyses. Computationally built 20 million structural models of the complex were screened out utilizing the constrains and then subjected to molecular dynamics simulations to examine their stabilities. The final model suggests that, despite large fluctuation of the KaiA N-terminal domains, their preferential positionings mask the hydrophobic surface of the KaiA C-terminal domains, hindering additional KaiA-KaiC interactions. Thus, our integrative approach provides a useful tool to resolve large complex structures harboring dynamically fluctuating domains. The revealed full KaiA12B6C6 complex is assembled including the dynamic and asynchronous KaiA N-terminal domains that have been missing in cryo-EM structures.
Collapse
Affiliation(s)
- Yasuhiro Yunoki
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya, 467-8603, Japan.,Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashironishi, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Atsushi Matsumoto
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Umemidai, Kizu, Kyoto, 619-0215, Japan
| | - Ken Morishima
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashironishi, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Anne Martel
- Institut Laue-Langevin, 71, avenue des martyrs, 38042, Grenoble, France
| | - Lionel Porcar
- Institut Laue-Langevin, 71, avenue des martyrs, 38042, Grenoble, France
| | - Nobuhiro Sato
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashironishi, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Rina Yogo
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya, 467-8603, Japan.,Biomedical Research Centre, School of Biomedical Engineering, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Taiki Tominaga
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki, 319-1106, Japan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashironishi, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya, 467-8603, Japan
| | - Aya Okuda
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashironishi, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Masahiro Shimizu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashironishi, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Reiko Urade
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashironishi, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Kazuki Terauchi
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Umemidai, Kizu, Kyoto, 619-0215, Japan.
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya, 467-8603, Japan.
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787, Japan. .,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya, 467-8603, Japan.
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashironishi, Kumatori, Sennan-gun, Osaka, 590-0494, Japan.
| |
Collapse
|
19
|
Johansen NT, Bonaccorsi M, Bengtsen T, Larsen AH, Tidemand FG, Pedersen MC, Huda P, Berndtsson J, Darwish T, Yepuri NR, Martel A, Pomorski TG, Bertarello A, Sansom MS, Rapp M, Crehuet R, Schubeis T, Lindorff-Larsen K, Pintacuda G, Arleth L. Mg 2+-dependent conformational equilibria in CorA and an integrated view on transport regulation. eLife 2022; 11:71887. [PMID: 35129435 PMCID: PMC8865849 DOI: 10.7554/elife.71887] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
The CorA family of proteins regulates the homeostasis of divalent metal ions in many bacteria, archaea, and eukaryotic mitochondria, making it an important target in the investigation of the mechanisms of transport and its functional regulation. Although numerous structures of open and closed channels are now available for the CorA family, the mechanism of the transport regulation remains elusive. Here, we investigated the conformational distribution and associated dynamic behaviour of the pentameric Mg2+ channel CorA at room temperature using small-angle neutron scattering (SANS) in combination with molecular dynamics (MD) simulations and solid-state nuclear magnetic resonance spectroscopy (NMR). We find that neither the Mg2+-bound closed structure nor the Mg2+-free open forms are sufficient to explain the average conformation of CorA. Our data support the presence of conformational equilibria between multiple states, and we further find a variation in the behaviour of the backbone dynamics with and without Mg2+. We propose that CorA must be in a dynamic equilibrium between different non-conducting states, both symmetric and asymmetric, regardless of bound Mg2+ but that conducting states become more populated in Mg2+-free conditions. These properties are regulated by backbone dynamics and are key to understanding the functional regulation of CorA.
Collapse
Affiliation(s)
| | - Marta Bonaccorsi
- Centre de RMN à Très hauts Champs de Lyon, UMR 5280, CNRS, University of Lyon, Villeurbanne, France
| | - Tone Bengtsen
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Andreas Haahr Larsen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Copenhagen E, Denmark
| | | | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Copenhagen E, Denmark
| | - Pie Huda
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Jens Berndtsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Tamim Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, Lucas Heights, Australia
| | - Nageshewar Rao Yepuri
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, Lucas Heights, Australia
| | | | - Thomas Günther Pomorski
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrea Bertarello
- Centre de RMN à Très hauts Champs de Lyon, UMR 5280, CNRS, University of Lyon, Villeurbanne, France
| | - Mark Sp Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mikaela Rapp
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ramon Crehuet
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Tobias Schubeis
- Centre de RMN à Très hauts Champs de Lyon, UMR 5280, CNRS, University of Lyon, Villeurbanne, France
| | | | - Guido Pintacuda
- Centre de RMN à Très hauts Champs de Lyon, UMR 5280, CNRS, University of Lyon, Villeurbanne, France
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Trewhella J. Recent advances in small-angle scattering and its expanding impact in structural biology. Structure 2022; 30:15-23. [PMID: 34995477 DOI: 10.1016/j.str.2021.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 09/20/2021] [Indexed: 10/19/2022]
Abstract
Applications of small-angle scattering (SAS) in structural biology have benefited from continuing developments in instrumentation, tools for data analysis, modeling capabilities, standards for data and model presentation, and data archiving. The interplay of these capabilities has enabled SAS to contribute to advances in structural biology as the field pushes the boundaries in studies of biomolecular complexes and assemblies as large as whole cells, membrane proteins in lipid environments, and dynamic systems on time scales ranging from femtoseconds to hours. This review covers some of the important advances in biomolecular SAS capabilities for structural biology focused on over the last 5 years and presents highlights of recent applications that demonstrate how the technique is exploring new territories.
Collapse
Affiliation(s)
- Jill Trewhella
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
21
|
Graewert MA, Svergun DI. Advanced sample environments and sample requirements for biological SAXS. Methods Enzymol 2022; 677:1-39. [DOI: 10.1016/bs.mie.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Perez-Salas U, Garg S, Gerelli Y, Porcar L. Deciphering lipid transfer between and within membranes with time-resolved small-angle neutron scattering. CURRENT TOPICS IN MEMBRANES 2021; 88:359-412. [PMID: 34862031 DOI: 10.1016/bs.ctm.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review focuses on time-resolved neutron scattering, particularly time-resolved small angle neutron scattering (TR-SANS), as a powerful in situ noninvasive technique to investigate intra- and intermembrane transport and distribution of lipids and sterols in lipid membranes. In contrast to using molecular analogues with potentially large chemical tags that can significantly alter transport properties, small angle neutron scattering relies on the relative amounts of the two most abundant isotope forms of hydrogen: protium and deuterium to detect complex membrane architectures and transport processes unambiguously. This review discusses advances in our understanding of the mechanisms that sustain lipid asymmetry in membranes-a key feature of the plasma membrane of cells-as well as the transport of lipids between membranes, which is an essential metabolic process.
Collapse
Affiliation(s)
- Ursula Perez-Salas
- Physics Department, University of Illinois at Chicago, Chicago, IL, United States.
| | - Sumit Garg
- Physics Department, University of Illinois at Chicago, Chicago, IL, United States
| | - Yuri Gerelli
- Department of Life and Environmental Sciences, Universita` Politecnica delle Marche, Ancona, Italy
| | | |
Collapse
|
23
|
Abstract
Small-angle X-ray scattering (SAXS) of proteins in solution has become a key tool for biochemists and structural biologists, thanks especially to the availability of beamlines with high-throughput capabilities at synchrotron sources. Despite the large spectrum of scientific disciplines tackled on the SWING beamline since its opening in 2008, there has always been a strong commitment to offering state-of-the-art biological SAXS (BioSAXS) instrumentation and data reduction methods to the scientific community. The extremely reliable in-vacuum EigerX-4M detector allows collection of an unlimited number of frames without noise. A small beamstop including a diamond diode-based monitor enables measurements of the transmitted intensity with 0.1% precision as well as a q
max/q
min ratio as large as 140 at a single distance. The parasitic scattering has been strongly reduced by the installation of new hybrid blades. A new thermally controlled in-vacuum capillary holder including fibre-optics-based spectroscopic functionalities allows the simultaneous use of three spectroscopic techniques in addition to SAXS measurements. The addition of a second high-performance liquid chromatography (HPLC) circuit has virtually eliminated the waiting time associated with column equilibration. The easy in-line connection of a multi-angle light scattering spectrometer and a refractometer allows for an independent determination of the molecular mass and of the concentration of low-UV-absorption samples such as detergents and sugars, respectively. These instrumental improvements are combined with important software developments. The HPLC injection Agilent software is controlled by the SAXS beamline acquisition software, allowing a virtually unlimited series of automated SAXS measurements to be synchronized with the sample injections. All data-containing files and reports are automatically stored in the same folders, with names related to both the user and sample. In addition, all raw SAXS images are processed automatically on the fly, and the analysed data are stored in the ISPyB database and made accessible via a web page.
Collapse
|
24
|
Lycksell M, Rovšnik U, Bergh C, Johansen NT, Martel A, Porcar L, Arleth L, Howard RJ, Lindahl E. Probing solution structure of the pentameric ligand-gated ion channel GLIC by small-angle neutron scattering. Proc Natl Acad Sci U S A 2021; 118:e2108006118. [PMID: 34504004 PMCID: PMC8449418 DOI: 10.1073/pnas.2108006118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 02/03/2023] Open
Abstract
Pentameric ligand-gated ion channels undergo subtle conformational cycling to control electrochemical signal transduction in many kingdoms of life. Several crystal structures have now been reported in this family, but the functional relevance of such models remains unclear. Here, we used small-angle neutron scattering (SANS) to probe ambient solution-phase properties of the pH-gated bacterial ion channel GLIC under resting and activating conditions. Data collection was optimized by inline paused-flow size-exclusion chromatography, and exchanging into deuterated detergent to hide the micelle contribution. Resting-state GLIC was the best-fit crystal structure to SANS curves, with no evidence for divergent mechanisms. Moreover, enhanced-sampling molecular-dynamics simulations enabled differential modeling in resting versus activating conditions, with the latter corresponding to an intermediate ensemble of both the extracellular and transmembrane domains. This work demonstrates state-dependent changes in a pentameric ion channel by SANS, an increasingly accessible method for macromolecular characterization with the coming generation of neutron sources.
Collapse
Affiliation(s)
- Marie Lycksell
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Urška Rovšnik
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Cathrine Bergh
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Nicolai T Johansen
- Structural Biophysics, X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anne Martel
- Institut Laue-Langevin, 38042 Grenoble, France
| | | | - Lise Arleth
- Structural Biophysics, X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden;
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| |
Collapse
|
25
|
Kursula P. Small-angle X-ray scattering for the proteomics community: current overview and future potential. Expert Rev Proteomics 2021; 18:415-422. [PMID: 34210208 DOI: 10.1080/14789450.2021.1951242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Proteins are biological nanoparticles. For structural proteomics and hybrid structural biology, complementary methods are required that allow both high throughput and accurate automated data analysis. Small-angle X-ray scattering (SAXS) is a method for observing the size and shape of particles, such as proteins and complexes, in solution. SAXS data can be used to model both the structure, oligomeric state, conformational changes, and flexibility of biomolecular samples.Areas covered: The key principles of SAXS, its sample requirements, and its current and future applications for structural proteomics are briefly reviewed. Recent technical developments in SAXS experiments are discussed, and future potential of the method in structural proteomics is evaluated.Expert opinion: SAXS is a method suitable for several aspects of integrative structural proteomics, with current technical developments allowing for higher throughput and time-resolved studies, as well as the analysis of complex samples, such as membrane proteins. Increasing automation and streamlined data analysis are expected to equip SAXS for structure-based screening workflows. Originally, structural genomics had a heavy focus on folded, crystallizable proteins and complexes - SAXS is a method allowing an expansion of this focus to flexible and disordered systems.
Collapse
Affiliation(s)
- Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
26
|
Kassem N, Araya-Secchi R, Bugge K, Barclay A, Steinocher H, Khondker A, Wang Y, Lenard AJ, Bürck J, Sahin C, Ulrich AS, Landreh M, Pedersen MC, Rheinstädter MC, Pedersen PA, Lindorff-Larsen K, Arleth L, Kragelund BB. Order and disorder-An integrative structure of the full-length human growth hormone receptor. SCIENCE ADVANCES 2021; 7:7/27/eabh3805. [PMID: 34193419 PMCID: PMC8245047 DOI: 10.1126/sciadv.abh3805] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/18/2021] [Indexed: 05/13/2023]
Abstract
Because of its small size (70 kilodalton) and large content of structural disorder (>50%), the human growth hormone receptor (hGHR) falls between the cracks of conventional high-resolution structural biology methods. Here, we study the structure of the full-length hGHR in nanodiscs with small-angle x-ray scattering (SAXS) as the foundation. We develop an approach that combines SAXS, x-ray diffraction, and NMR spectroscopy data obtained on individual domains and integrate these through molecular dynamics simulations to interpret SAXS data on the full-length hGHR in nanodiscs. The hGHR domains reorient freely, resulting in a broad structural ensemble, emphasizing the need to take an ensemble view on signaling of relevance to disease states. The structure provides the first experimental model of any full-length cytokine receptor in a lipid membrane and exemplifies how integrating experimental data from several techniques computationally may access structures of membrane proteins with long, disordered regions, a widespread phenomenon in biology.
Collapse
Affiliation(s)
- Noah Kassem
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Raul Araya-Secchi
- X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Bugge
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Abigail Barclay
- X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Helena Steinocher
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Adree Khondker
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Yong Wang
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Aneta J Lenard
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
| | - Cagla Sahin
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
| | - Michael Landreh
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Martin Cramer Pedersen
- X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Per Amstrup Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark.
| | - Lise Arleth
- X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark.
| |
Collapse
|
27
|
Sato N, Yogo R, Yanaka S, Martel A, Porcar L, Morishima K, Inoue R, Tominaga T, Arimori T, Takagi J, Sugiyama M, Kato K. A feasibility study of inverse contrast-matching small-angle neutron scattering method combined with size exclusion chromatography using antibody interactions as model systems. J Biochem 2021; 169:701-708. [PMID: 33585933 DOI: 10.1093/jb/mvab012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/24/2021] [Indexed: 01/06/2023] Open
Abstract
Small-angle neutron scattering (SANS) and small- angle X-ray scattering (SAXS) are powerful techniques for the structural characterization of biomolecular complexes. In particular, SANS enables a selective observation of specific components in complexes by selective deuteration with contrast-matching techniques. In most cases, however, biomolecular interaction systems with heterogeneous oligomers often contain unfavorable aggregates and unbound species, hampering data interpretation. To overcome these problems, SAXS has been recently combined with size exclusion chromatography (SEC), which enables the isolation of the target complex in a multi-component system. By contrast, SEC-SANS is only at a preliminary stage. Hence, we herein perform a feasibility study of this method based on our newly developed inverse contrast-matching (iCM) SANS technique using antibody interactions as model systems. Immunoglobulin G (IgG) or its Fc fragment was mixed with 75% deuterated Fc-binding proteins, i.e. a mutated form of IgG-degrading enzyme of Streptococcus pyogenes and a soluble form of Fcγ receptor IIIb, and subjected to SEC-SANS as well as SEC-SAXS as reference. We successfully observe SANS from the non-deuterated IgG or Fc formed in complex with these binding partners, which were unobservable in terms of SANS in D2O, hence demonstrating the potential utility of the SEC-iCM-SANS approach.
Collapse
Affiliation(s)
- Nobuhiro Sato
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Osaka 590-0494, Japan
| | - Rina Yogo
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Saeko Yanaka
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Anne Martel
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042, Grenoble, France
| | - Lionel Porcar
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042, Grenoble, France
| | - Ken Morishima
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Osaka 590-0494, Japan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Osaka 590-0494, Japan
| | - Taiki Tominaga
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki 319-1106, Japan
| | - Takao Arimori
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Osaka 590-0494, Japan
| | - Koichi Kato
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
28
|
Manalastas-Cantos K, Konarev PV, Hajizadeh NR, Kikhney AG, Petoukhov MV, Molodenskiy DS, Panjkovich A, Mertens HDT, Gruzinov A, Borges C, Jeffries CM, Svergun DI, Franke D. ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. J Appl Crystallogr 2021; 54:343-355. [PMID: 33833657 PMCID: PMC7941305 DOI: 10.1107/s1600576720013412] [Citation(s) in RCA: 460] [Impact Index Per Article: 153.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/06/2020] [Indexed: 11/11/2022] Open
Abstract
The ATSAS software suite encompasses a number of programs for the processing, visualization, analysis and modelling of small-angle scattering data, with a focus on the data measured from biological macromolecules. Here, new developments in the ATSAS 3.0 package are described. They include IMSIM, for simulating isotropic 2D scattering patterns; IMOP, to perform operations on 2D images and masks; DATRESAMPLE, a method for variance estimation of structural invariants through parametric resampling; DATFT, which computes the pair distance distribution function by a direct Fourier transform of the scattering data; PDDFFIT, to compute the scattering data from a pair distance distribution function, allowing comparison with the experimental data; a new module in DATMW for Bayesian consensus-based concentration-independent molecular weight estimation; DATMIF, an ab initio shape analysis method that optimizes the search model directly against the scattering data; DAMEMB, an application to set up the initial search volume for multiphase modelling of membrane proteins; ELLLIP, to perform quasi-atomistic modelling of liposomes with elliptical shapes; NMATOR, which models conformational changes in nucleic acid structures through normal mode analysis in torsion angle space; DAMMIX, which reconstructs the shape of an unknown intermediate in an evolving system; and LIPMIX and BILMIX, for modelling multilamellar and asymmetric lipid vesicles, respectively. In addition, technical updates were deployed to facilitate maintainability of the package, which include porting the PRIMUS graphical interface to Qt5, updating SASpy - a PyMOL plugin to run a subset of ATSAS tools - to be both Python 2 and 3 compatible, and adding utilities to facilitate mmCIF compatibility in future ATSAS releases. All these features are implemented in ATSAS 3.0, freely available for academic users at https://www.embl-hamburg.de/biosaxs/software.html.
Collapse
Affiliation(s)
- Karen Manalastas-Cantos
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Petr V. Konarev
- A.V. Shubnikov Institute of Crystallography, Federal Scientific Research Centre ‘Crystallography and Photonics’ of Russian Academy of Sciences, Leninsky prospekt 59, Moscow, 119333, Russian Federation
| | - Nelly R. Hajizadeh
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Alexey G. Kikhney
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Maxim V. Petoukhov
- A.V. Shubnikov Institute of Crystallography, Federal Scientific Research Centre ‘Crystallography and Photonics’ of Russian Academy of Sciences, Leninsky prospekt 59, Moscow, 119333, Russian Federation
| | - Dmitry S. Molodenskiy
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Alejandro Panjkovich
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Haydyn D. T. Mertens
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Andrey Gruzinov
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Clemente Borges
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Cy M. Jeffries
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Daniel Franke
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| |
Collapse
|
29
|
Adding Size Exclusion Chromatography (SEC) and Light Scattering (LS) Devices to Obtain High-Quality Small Angle X-Ray Scattering (SAXS) Data. CRYSTALS 2020. [DOI: 10.3390/cryst10110975] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We describe the updated size-exclusion chromatography small angle X-ray scattering (SEC-SAXS) set-up used at the P12 bioSAXS beam line of the European Molecular Biology Laboratory (EMBL) at the PETRAIII synchrotron, DESY Hamburg (Germany). The addition of size exclusion chromatography (SEC) directly on-line to the SAXS capillary has become a well-established approach to reduce the effects of the sample heterogeneity on the SAXS measurements. The additional use of multi-angle laser light scattering (MALLS), UV absorption spectroscopy, refractive index (RI), and quasi-elastic light scattering (QELS) in parallel to the SAXS measurements enables independent molecular weight validation and hydrodynamic radius estimates. This allows one to address sample monodispersity as well as conformational heterogeneity. The benefits of the current SEC-SAXS set-up are demonstrated on a set of selected standard proteins. The processed SEC-SAXS data and models are provided in the Small Angle Scattering Biological Data Bank (SASBDB) and are labeled as “bench-marked” datasets that include the unsubtracted data frames spanning the respective SEC elution profiles and corresponding MALLS-UV-RI-QELS data. These entries provide method developers with datasets suitable for testing purposes, in addition to an educational resource for SAS data analysis and modeling.
Collapse
|
30
|
Vermot A, Petit-Härtlein I, Breyton C, Le Roy A, Thépaut M, Vivès C, Moulin M, Härtlein M, Grudinin S, Smith SME, Ebel C, Martel A, Fieschi F. Interdomain Flexibility within NADPH Oxidase Suggested by SANS Using LMNG Stealth Carrier. Biophys J 2020; 119:605-618. [PMID: 32668232 PMCID: PMC7399496 DOI: 10.1016/j.bpj.2020.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/26/2020] [Accepted: 06/23/2020] [Indexed: 11/12/2022] Open
Abstract
Small angle neutron scattering (SANS) provides a method to obtain important low-resolution information for integral membrane proteins (IMPs), challenging targets for structural determination. Specific deuteration furnishes a "stealth" carrier for the solubilized IMP. We used SANS to determine a structural envelope of SpNOX, the Streptococcus pneumoniae NADPH oxidase (NOX), a prokaryotic model system for exploring structure and function of eukaryotic NOXes. SpNOX was solubilized in the detergent lauryl maltose neopentyl glycol, which provides optimal SpNOX stability and activity. Using deuterated solvent and protein, the lauryl maltose neopentyl glycol was experimentally undetected in SANS. This affords a cost-effective SANS approach for obtaining novel structural information on IMPs. Combining SANS data with molecular modeling provided a first, to our knowledge, structural characterization of an entire NOX enzyme. It revealed a distinctly less compact structure than that predicted from the docking of homologous crystal structures of the separate transmembrane and dehydrogenase domains, consistent with a flexible linker connecting the two domains.
Collapse
Affiliation(s)
- Annelise Vermot
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | | | - Cécile Breyton
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Aline Le Roy
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Michel Thépaut
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Corinne Vivès
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | | | | | | | - Susan M E Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia
| | - Christine Ebel
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | | | - Franck Fieschi
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France.
| |
Collapse
|
31
|
Bengtsen T, Holm VL, Kjølbye LR, Midtgaard SR, Johansen NT, Tesei G, Bottaro S, Schiøtt B, Arleth L, Lindorff-Larsen K. Structure and dynamics of a nanodisc by integrating NMR, SAXS and SANS experiments with molecular dynamics simulations. eLife 2020; 9:e56518. [PMID: 32729831 PMCID: PMC7426092 DOI: 10.7554/elife.56518] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Nanodiscs are membrane mimetics that consist of a protein belt surrounding a lipid bilayer, and are broadly used for characterization of membrane proteins. Here, we investigate the structure, dynamics and biophysical properties of two small nanodiscs, MSP1D1ΔH5 and ΔH4H5. We combine our SAXS and SANS experiments with molecular dynamics simulations and previously obtained NMR and EPR data to derive and validate a conformational ensemble that represents the structure and dynamics of the nanodisc. We find that it displays conformational heterogeneity with various elliptical shapes, and with substantial differences in lipid ordering in the centre and rim of the discs. Together, our results reconcile previous apparently conflicting observations about the shape of nanodiscs, and pave the way for future integrative studies of larger complex systems such as membrane proteins embedded in nanodiscs.
Collapse
Affiliation(s)
- Tone Bengtsen
- Structural Biology and NMR Laboratory and Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Viktor L Holm
- Structural Biophysics, X-ray and Neutron Science, Niels Bohr Institute, University of CopenhagenCopenhagenDenmark
| | | | - Søren R Midtgaard
- Structural Biophysics, X-ray and Neutron Science, Niels Bohr Institute, University of CopenhagenCopenhagenDenmark
| | - Nicolai Tidemand Johansen
- Structural Biophysics, X-ray and Neutron Science, Niels Bohr Institute, University of CopenhagenCopenhagenDenmark
| | - Giulio Tesei
- Structural Biology and NMR Laboratory and Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory and Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of CopenhagenCopenhagenDenmark
| | | | - Lise Arleth
- Structural Biophysics, X-ray and Neutron Science, Niels Bohr Institute, University of CopenhagenCopenhagenDenmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory and Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
32
|
Kassem N, Kassem MM, Pedersen SF, Pedersen PA, Kragelund BB. Yeast recombinant production of intact human membrane proteins with long intrinsically disordered intracellular regions for structural studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183272. [PMID: 32169592 DOI: 10.1016/j.bbamem.2020.183272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 01/07/2023]
Abstract
Membrane proteins exist in lipid bilayers and mediate solute transport, signal transduction, cell-cell communication and energy conversion. Their activities are fundamental for life, which make them prominent subjects of study, but access to only a limited number of high-resolution structures complicates their mechanistic understanding. The absence of such structures relates mainly to difficulties in expressing and purifying high quality membrane protein samples in large quantities. An additional layer of complexity stems from the presence of intra- and/or extra-cellular domains constituted by unstructured intrinsically disordered regions (IDR), which can be hundreds of residues long. Although IDRs form key interaction hubs that facilitate biological processes, these are regularly removed to enable structural studies. To advance mechanistic insight into intact intrinsically disordered membrane proteins, we have developed a protocol for their purification. Using engineered yeast cells for optimized expression and purification, we have purified to homogeneity two very different human membrane proteins each with >300 residues long IDRs; the sodium proton exchanger 1 and the growth hormone receptor. Subsequent to their purification we have further explored their incorporation into membrane scaffolding protein nanodiscs, which will enable future structural studies.
Collapse
Affiliation(s)
- Noah Kassem
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Maher M Kassem
- Machine Learning, Department of Computer Science, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Stine F Pedersen
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | - Per Amstrup Pedersen
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
33
|
Luchini A, Tidemand FG, Johansen NT, Campana M, Sotres J, Ploug M, Cárdenas M, Arleth L. Peptide Disc Mediated Control of Membrane Protein Orientation in Supported Lipid Bilayers for Surface-Sensitive Investigations. Anal Chem 2019; 92:1081-1088. [DOI: 10.1021/acs.analchem.9b04125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Alessandra Luchini
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | | | | - Mario Campana
- ISIS-STFC, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX, United Kingdom
| | - Javier Sotres
- Biofilms Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, Per Albin Hanssons Väg 35, 214 32 Malmö, Sweden
| | - Michael Ploug
- Biotech Research and Innovation Center, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
- Finsen Laboratory, Rigshospitalet, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Marité Cárdenas
- Biofilms Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, Per Albin Hanssons Väg 35, 214 32 Malmö, Sweden
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
34
|
Pedersen MC, Wang Y, Tidemand FG, Martel A, Lindorff-Larsen K, Arleth L. PSX, Protein–Solvent Exchange: software for calculation of deuterium-exchange effects in small-angle neutron scattering measurements from protein coordinates. J Appl Crystallogr 2019. [DOI: 10.1107/s1600576719012469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Recent developments in neutron scattering instrumentation and sample handling have enabled studies of more complex biological samples and measurements at shorter exposure times. The experiments are typically conducted in D2O-based buffers to emphasize or diminish scattering from a particular component or to minimize background noise in the experiment. To extract most information from such experiments it is thus desirable to determine accurate estimates of how and when closely bound hydrogen atoms from the biomolecule exchange with the deuterium in the solvent. This article introduces and documents software, PSX, for exploring the effect of hydrogen–deuterium exchange for proteins solubilized in D2O as well as the underlying bioinformatical models. The software aims to be generally applicable for any atomistic structure of a protein and its surrounding environment, and thus captures effects of both heterogenous exchange rates throughout the protein structure and varying the experimental conditions such as pH and temperature. The paper concludes with examples of applications and estimates of the effect in typical scenarios emerging in small-angle neutron scattering on biological macromolecules in solution. The analysis presented here suggests that the common assumption of 90% exchange is in many cases an overestimate with the rapid sample handling systems currently available, which leads to fitting and calibration issues when analysing the data. Source code for the presented software is available from an online repository in which it is published under version 3 of the GNU publishing licence.
Collapse
|
35
|
Johansen NT, Tidemand FG, Nguyen TTTN, Rand KD, Pedersen MC, Arleth L. Circularized and solubility‐enhanced
MSP
s facilitate simple and high‐yield production of stable nanodiscs for studies of membrane proteins in solution. FEBS J 2019; 286:1734-1751. [DOI: 10.1111/febs.14766] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/10/2018] [Accepted: 01/22/2019] [Indexed: 01/13/2023]
Affiliation(s)
| | | | - Tam T. T. N. Nguyen
- Protein Analysis Group Department of Pharmacy University of Copenhagen Denmark
| | - Kasper Dyrberg Rand
- Protein Analysis Group Department of Pharmacy University of Copenhagen Denmark
| | | | - Lise Arleth
- Structural Biophysics Niels Bohr Institute University of Copenhagen Denmark
| |
Collapse
|
36
|
Forsyth VT, Moody P. Neutron scattering for the study of biological systems - major opportunities within a rapidly changing landscape. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:1126-1128. [PMID: 30605129 DOI: 10.1107/s2059798318017886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- V Trevor Forsyth
- Partnership for Structural Biology, Institut Laue-Langevin, 6 rue Jules Horowitz, 38042 Grenoble CEDEX 9 France
| | - Peter Moody
- Henry Wellcome Laboratories for Structural Biology, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7RH, UK
| |
Collapse
|