1
|
Parves MR, Solares MJ, Dearnaley WJ, Kelly DF. Elucidating structural variability in p53 conformers using combinatorial refinement strategies and molecular dynamics. Cancer Biol Ther 2024; 25:2290732. [PMID: 38073067 PMCID: PMC10732606 DOI: 10.1080/15384047.2023.2290732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Low molecular weight proteins and protein assemblies can now be investigated using cryo-electron microscopy (EM) as a complement to traditional structural biology techniques. It is important, however, to not lose sight of the dynamic information inherent in macromolecules that give rise to their exquisite functionality. As computational methods continue to advance the field of biomedical imaging, so must strategies to resolve the minute details of disease-related entities. Here, we employed combinatorial modeling approaches to assess flexible properties among low molecular weight proteins (~100 kDa or less). Through a blend of rigid body refinement and simulated annealing, we determined new hidden conformations for wild type p53 monomer and dimer forms. Structures for both states converged to yield new conformers, each revealing good stereochemistry and dynamic information about the protein. Based on these insights, we identified fluid parts of p53 that complement the stable central core of the protein responsible for engaging DNA. Molecular dynamics simulations corroborated the modeling results and helped pinpoint the more flexible residues in wild type p53. Overall, the new computational methods may be used to shed light on other small protein features in a vast ensemble of structural data that cannot be easily delineated by other algorithms.
Collapse
Affiliation(s)
- Md Rimon Parves
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA, USA
- Biochemistry, Microbiology, and Molecular Biology Graduate Program, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Maria J. Solares
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - William J. Dearnaley
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
2
|
Lytje K, Pedersen JS. Validation of electron-microscopy maps using solution small-angle X-ray scattering. Acta Crystallogr D Struct Biol 2024; 80:493-505. [PMID: 38935344 PMCID: PMC11220840 DOI: 10.1107/s2059798324005497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
The determination of the atomic resolution structure of biomacromolecules is essential for understanding details of their function. Traditionally, such a structure determination has been performed with crystallographic or nuclear resonance methods, but during the last decade, cryogenic transmission electron microscopy (cryo-TEM) has become an equally important tool. As the blotting and flash-freezing of the samples can induce conformational changes, external validation tools are required to ensure that the vitrified samples are representative of the solution. Although many validation tools have already been developed, most of them rely on fully resolved atomic models, which prevents early screening of the cryo-TEM maps. Here, a novel and automated method for performing such a validation utilizing small-angle X-ray scattering measurements, publicly available through the new software package AUSAXS, is introduced and implemented. The method has been tested on both simulated and experimental data, where it was shown to work remarkably well as a validation tool. The method provides a dummy atomic model derived from the EM map which best represents the solution structure.
Collapse
Affiliation(s)
- Kristian Lytje
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 148000AarhusDenmark
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 148000AarhusDenmark
| |
Collapse
|
3
|
Handa S, Biswas T, Chakraborty J, Ghosh G, Paul BG, Ghosh P. Structural Requirements for Reverse Transcription by a Diversity-generating Retroelement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.23.563531. [PMID: 37961358 PMCID: PMC10634737 DOI: 10.1101/2023.10.23.563531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Diversity-generating retroelements (DGRs) create massive protein sequence variation in ecologically diverse microbes. Variation occurs during reverse transcription of a protein-encoding RNA template coupled to misincorporation at adenosines. In the prototypical Bordetella bacteriophage DGR, the template must be surrounded by upstream and downstream RNA segments for cDNA synthesis by the reverse transcriptase bRT and associated protein Avd. The function of the surrounding RNA was unknown. Cryo-EM revealed that this RNA enveloped bRT and lay over barrel-shaped Avd, forming an intimate ribonucleoprotein (RNP). An abundance of essential interactions between RNA structural elements and bRT-Avd precisely positioned an RNA homoduplex for initiation of cDNA synthesis by cis -priming. Our results explain how the surrounding RNA primes cDNA synthesis, promotes processivity, terminates polymerization, and strictly limits mutagenesis to select proteins through mechanisms that are likely conserved in DGRs from distant taxa.
Collapse
|
4
|
Pirona L, Ballabio F, Alfonso-Prieto M, Capelli R. Calcium-Driven In Silico Inactivation of a Human Olfactory Receptor. J Chem Inf Model 2024; 64:2971-2978. [PMID: 38523266 DOI: 10.1021/acs.jcim.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Conformational changes as well as molecular determinants related to the activation and inactivation of olfactory receptors are still poorly understood due to the intrinsic difficulties in the structural determination of this GPCR family. Here, we perform, for the first time, the in silico inactivation of human olfactory receptor OR51E2, highlighting the possible role of calcium in this receptor state transition. Using molecular dynamics simulations, we show that a divalent ion in the ion binding site, coordinated by two acidic residues at positions 2.50 and 3.39 conserved across most ORs, stabilizes the receptor in its inactive state. In contrast, protonation of the same two acidic residues is not sufficient to drive inactivation within the microsecond timescale of our simulations. Our findings suggest a novel molecular mechanism for OR inactivation, potentially guiding experimental validation and offering insights into the possible broader role of divalent ions in GPCR signaling.
Collapse
Affiliation(s)
- Lorenza Pirona
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, I-20133 Milano, Italy
| | - Federico Ballabio
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, I-20133 Milano, Italy
| | - Mercedes Alfonso-Prieto
- Computational Biomedicine, Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, D-54248 Jülich, Germany
| | - Riccardo Capelli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, I-20133 Milano, Italy
| |
Collapse
|
5
|
Vergara S, Zhou X, Santiago U, Conway JF, Sluis-Cremer N, Calero G. Structures of kinetic intermediate states of HIV-1 reverse transcriptase DNA synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572243. [PMID: 38187617 PMCID: PMC10769260 DOI: 10.1101/2023.12.18.572243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Reverse transcription of the retroviral single-stranded RNA into double-stranded DNA is an integral step during HIV-1 replication, and reverse transcriptase (RT) is a primary target for antiviral therapy. Despite a wealth of structural information on RT, we lack critical insight into the intermediate kinetic states of DNA synthesis. Using catalytically active substrates, and a novel blot/diffusion cryo-electron microscopy approach, we captured 11 structures that define the substrate binding, reactant, transition and product states of dATP addition by RT at 1.9 to 2.4 Å resolution in the active site. Initial dATP binding to RT-template/primer complex involves a single Mg 2+ (site B), and promotes partial closure of the active site pocket by a large conformational change in the β3-β4 loop in the Fingers domain, and formation of a negatively charged pocket where a second "drifting" Mg 2+ can bind (site A). During the transition state, the α-phosphate oxygen from a previously unobserved dATP conformer aligns with the site A Mg 2+ and the primer 3'-OH for nucleophilic attack. In the product state, we captured two substrate conformations in the active site: 1) dATP that had yet to be incorporated into the nascent DNA, and 2) an incorporated dAMP with the pyrophosphate leaving group coordinated by metal B and stabilized through H- bonds in the active site of RT. This study provides insights into a fundamental chemical reaction that impacts polymerase fidelity, nucleoside inhibitor drug design, and mechanisms of drug resistance.
Collapse
|
6
|
Kelly DF, Jonaid GM, Kaylor L, Solares MJ, Berry S, DiCecco LA, Dearnaley W, Casasanta M. Delineating Conformational Variability in Small Protein Structures Using Combinatorial Refinement Strategies. MICROMACHINES 2023; 14:1869. [PMID: 37893306 PMCID: PMC10609307 DOI: 10.3390/mi14101869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
As small protein assemblies and even small proteins are becoming more amenable to cryo-Electron Microscopy (EM) structural studies, it is important to consider the complementary dynamic information present in the data. Current computational strategies are limited in their ability to resolve minute differences among low molecular weight entities. Here, we demonstrate a new combinatorial approach to delineate flexible conformations among small proteins using real-space refinement applications. We performed a meta-analysis of structural data for the SARS CoV-2 Nucleocapsid (N) protein using a combination of rigid-body refinement and simulated annealing methods. For the N protein monomer, we determined three new flexible conformers with good stereochemistry and quantitative comparisons provided new evidence of their dynamic properties. A similar analysis performed for the N protein dimer showed only minor structural differences among the flexible models. These results suggested a more stable view of the N protein dimer than the monomer structure. Taken together, the new computational strategies can delineate conformational changes in low molecular weight proteins that may go unnoticed by conventional assessments. The results also suggest that small proteins may be further stabilized for structural studies through the use of solution components that limit the movement of external flexible regions.
Collapse
Affiliation(s)
- Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - G M Jonaid
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Liam Kaylor
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Maria J. Solares
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Samantha Berry
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - Liza-Anastasia DiCecco
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - William Dearnaley
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael Casasanta
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
7
|
Zsidó BZ, Bayarsaikhan B, Börzsei R, Szél V, Mohos V, Hetényi C. The Advances and Limitations of the Determination and Applications of Water Structure in Molecular Engineering. Int J Mol Sci 2023; 24:11784. [PMID: 37511543 PMCID: PMC10381018 DOI: 10.3390/ijms241411784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Water is a key actor of various processes of nature and, therefore, molecular engineering has to take the structural and energetic consequences of hydration into account. While the present review focuses on the target-ligand interactions in drug design, with a focus on biomolecules, these methods and applications can be easily adapted to other fields of the molecular engineering of molecular complexes, including solid hydrates. The review starts with the problems and solutions of the determination of water structures. The experimental approaches and theoretical calculations are summarized, including conceptual classifications. The implementations and applications of water models are featured for the calculation of the binding thermodynamics and computational ligand docking. It is concluded that theoretical approaches not only reproduce or complete experimental water structures, but also provide key information on the contribution of individual water molecules and are indispensable tools in molecular engineering.
Collapse
Affiliation(s)
- Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Bayartsetseg Bayarsaikhan
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Rita Börzsei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Viktor Szél
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Violetta Mohos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| |
Collapse
|
8
|
Pintilie G. Diagnosing and treating issues in cryo-EM map-derived models. Structure 2023; 31:759-761. [PMID: 37419099 DOI: 10.1016/j.str.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
In this issue of Structure, Reggiano et al.1 take the evaluation of cryo-EM models to the next level, combining several metrics into one. The new method, MEDIC, evaluates models at the residue level, helping to guide improvements and interpretation of models derived from cryo-EM maps.
Collapse
Affiliation(s)
- Grigore Pintilie
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Reggiano G, Lugmayr W, Farrell D, Marlovits TC, DiMaio F. Residue-level error detection in cryoelectron microscopy models. Structure 2023; 31:860-869.e4. [PMID: 37253357 PMCID: PMC10330749 DOI: 10.1016/j.str.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023]
Abstract
Building accurate protein models into moderate resolution (3-5 Å) cryoelectron microscopy (cryo-EM) maps is challenging and error prone. We have developed MEDIC (Model Error Detection in Cryo-EM), a robust statistical model that identifies local backbone errors in protein structures built into cryo-EM maps by combining local fit-to-density with deep-learning-derived structural information. MEDIC is validated on a set of 28 structures that were subsequently solved to higher resolutions, where we identify the differences between low- and high-resolution structures with 68% precision and 60% recall. We additionally use this model to fix over 100 errors in 12 deposited structures and to identify errors in 4 refined AlphaFold predictions with 80% precision and 60% recall. As modelers more frequently use deep learning predictions as a starting point for refinement and rebuilding, MEDIC's ability to handle errors in structures derived from hand-building and machine learning methods makes it a powerful tool for structural biologists.
Collapse
Affiliation(s)
- Gabriella Reggiano
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Wolfgang Lugmayr
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany; CSSB Centre for Structural Systems Biology, Hamburg, Germany; Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
| | | | - Thomas C Marlovits
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany; CSSB Centre for Structural Systems Biology, Hamburg, Germany; Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
10
|
Chen M, Toader B, Lederman R. Integrating Molecular Models Into CryoEM Heterogeneity Analysis Using Scalable High-resolution Deep Gaussian Mixture Models. J Mol Biol 2023; 435:168014. [PMID: 36806476 PMCID: PMC10164680 DOI: 10.1016/j.jmb.2023.168014] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Resolving the structural variability of proteins is often key to understanding the structure-function relationship of those macromolecular machines. Single particle analysis using Cryogenic electron microscopy (CryoEM), combined with machine learning algorithms, provides a way to reveal the dynamics within the protein system from noisy micrographs. Here, we introduce an improved computational method that uses Gaussian mixture models for protein structure representation and deep neural networks for conformation space embedding. By integrating information from molecular models into the heterogeneity analysis, we can analyze continuous protein conformational changes using structural information at the frequency of 1/3 Å-1, and present the results in a more interpretable form.
Collapse
Affiliation(s)
- Muyuan Chen
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Bogdan Toader
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
| | - Roy Lederman
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Beton JG, Cragnolini T, Kaleel M, Mulvaney T, Sweeney A, Topf M. Integrating model simulation tools and
cryo‐electron
microscopy. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Joseph George Beton
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Tristan Cragnolini
- Institute of Structural and Molecular Biology, Birkbeck and University College London London UK
| | - Manaz Kaleel
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Thomas Mulvaney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Aaron Sweeney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| |
Collapse
|
12
|
Sorzano COS, Vilas JL, Ramírez-Aportela E, Krieger J, Del Hoyo D, Herreros D, Fernandez-Giménez E, Marchán D, Macías JR, Sánchez I, Del Caño L, Fonseca-Reyna Y, Conesa P, García-Mena A, Burguet J, García Condado J, Méndez García J, Martínez M, Muñoz-Barrutia A, Marabini R, Vargas J, Carazo JM. Image processing tools for the validation of CryoEM maps. Faraday Discuss 2022; 240:210-227. [PMID: 35861059 DOI: 10.1039/d2fd00059h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The number of maps deposited in public databases (Electron Microscopy Data Bank, EMDB) determined by cryo-electron microscopy has quickly grown in recent years. With this rapid growth, it is critical to guarantee their quality. So far, map validation has primarily focused on the agreement between maps and models. From the image processing perspective, the validation has been mostly restricted to using two half-maps and the measurement of their internal consistency. In this article, we suggest that map validation can be taken much further from the point of view of image processing if 2D classes, particles, angles, coordinates, defoci, and micrographs are also provided. We present a progressive validation scheme that qualifies a result validation status from 0 to 5 and offers three optional qualifiers (A, W, and O) that can be added. The simplest validation state is 0, while the most complete would be 5AWO. This scheme has been implemented in a website https://biocomp.cnb.csic.es/EMValidationService/ to which reconstructed maps and their ESI can be uploaded.
Collapse
Affiliation(s)
- C O S Sorzano
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - J L Vilas
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | | | - J Krieger
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - D Del Hoyo
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - D Herreros
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | | | - D Marchán
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - J R Macías
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - I Sánchez
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - L Del Caño
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - Y Fonseca-Reyna
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - P Conesa
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - A García-Mena
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - J Burguet
- Depto. de Óptica, Univ. Complutense de Madrid, Pl. Ciencias, 1, 28040, Madrid, Spain
| | - J García Condado
- Biocruces Bizkaia Instituto Investigación Sanitaria, Cruces Plaza, 48903, Barakaldo, Bizkaia, Spain
| | | | - M Martínez
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - A Muñoz-Barrutia
- Univ. Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain
| | - R Marabini
- Escuela Politécnica Superior, Univ. Autónoma de Madrid, CSIC, C. Francisco Tomás y Valiente, 11, 28049, Madrid, Spain
| | - J Vargas
- Depto. de Óptica, Univ. Complutense de Madrid, Pl. Ciencias, 1, 28040, Madrid, Spain
| | - J M Carazo
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| |
Collapse
|