1
|
Yang Y, Bradley C, Li G, Monfort-Ortiz R, Nieto-Del-Amor F, Hao D, Ye-Lin Y. A computationally efficient anisotropic electrophysiological multiscale uterus model: From cell to organ and myometrium to abdominal surface. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108487. [PMID: 39504714 DOI: 10.1016/j.cmpb.2024.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND AND OBJECTIVE Preterm labor is a global problem affecting the health of newborns. Despite numerous studies reporting electrophysiological changes throughout pregnancy, the underlying mechanism that triggers labor remains unclear. Electrophysiological modeling can provide additional information to better understand the physiological transition from pregnancy to labor. Previous uterine electrophysiological models do not consider either the tissue thickness or fiber structure, which have both been shown to significantly impact propagation patterns. METHODS This paper presents a parallel computational model of the uterus using the bioengineering modeling environment OpenCMISS. This model is a multiscale anisotropic model that spans different levels from cell to organ. At the cellular level, the model utilizes a mathematical representation of uterine myocytes based on multiple ion channels. In the 3D uterine model, fiber structures are added, ranging from horizontal rings in the inner layer to vertically downward fibers in the outer layer, to more accurately depict the electrophysiological activities of the uterus. Additionally, we have developed a multilayer volume conduction model based on the boundary element method to describe the propagation of electrical signals from the myometrium to the abdominal surface. RESULTS Our model can not only reproduce faithfully both local non-propagated and global propagated electrical activity, but also simulate the fast wave low and fast wave high components of the electrohysterogram (EHG) on the abdominal surface. The model results support the hypothesis that the fast wave high of the EHG signal is related to uterine excitability and fast wave low is related to signal propagation. The amplitude of the simulated signal on the abdominal surface falls in the ranges of real EHG data, which is inversely proportional to the abdominal subcutaneous fat thickness, and the signal waveform highly depends on electrode position and the relative distance to the pacemaker. In addition, the propagation velocity is highly dependent on the uterus geometry and falls in the real-world data range CONCLUSIONS: Our models facilitate a better understanding of the electrophysiological changes of the uterus during pregnancy and labor, and allow for an investigation of drug effects and/or structural or anatomical abnormalities.
Collapse
Affiliation(s)
- Yongxiu Yang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China; BJUT-UPV Joint Research Laboratory in Biomedical Engineering, Beijing, China
| | - Chris Bradley
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Guangfei Li
- College of Chemistry and Life Science, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China; Auckland Bioengineering Institute, University of Auckland, New Zealand
| | | | - Felix Nieto-Del-Amor
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València (Ci2B), Valencia 46022, Spain; BJUT-UPV Joint Research Laboratory in Biomedical Engineering, Beijing, China
| | - Dongmei Hao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China; BJUT-UPV Joint Research Laboratory in Biomedical Engineering, Beijing, China.
| | - Yiyao Ye-Lin
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València (Ci2B), Valencia 46022, Spain; BJUT-UPV Joint Research Laboratory in Biomedical Engineering, Beijing, China.
| |
Collapse
|
2
|
Yarici M, Von Rosenberg W, Hammour G, Davies H, Amadori P, Ling N, Demiris Y, Mandic DP. Hearables: feasibility of recording cardiac rhythms from single in-ear locations. ROYAL SOCIETY OPEN SCIENCE 2024; 11:221620. [PMID: 38179073 PMCID: PMC10762432 DOI: 10.1098/rsos.221620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
The ear is well positioned to accommodate both brain and vital signs monitoring, via so-called hearable devices. Consequently, ear-based electroencephalography has recently garnered great interest. However, despite the considerable potential of hearable based cardiac monitoring, the biophysics and characteristic cardiac rhythm of ear-based electrocardiography (ECG) are not yet well understood. To this end, we map the cardiac potential on the ear through volume conductor modelling and measurements on multiple subjects. In addition, in order to demonstrate real-world feasibility of in-ear ECG, measurements are conducted throughout a long-time simulated driving task. As a means of evaluation, the correspondence between the cardiac rhythms obtained via the ear-based and standard Lead I measurements, with respect to the shape and timing of the cardiac rhythm, is verified through three measures of similarity: the Pearson correlation, and measures of amplitude and timing deviations. A high correspondence between the cardiac rhythms obtained via the ear-based and Lead I measurements is rigorously confirmed through agreement between simulation and measurement, while the real-world feasibility was conclusively demonstrated through efficacious cardiac rhythm monitoring during prolonged driving. This work opens new avenues for seamless, hearable-based cardiac monitoring that extends beyond heart rate detection to offer cardiac rhythm examination in the community.
Collapse
Affiliation(s)
- Metin Yarici
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
| | - Wilhelm Von Rosenberg
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
| | - Ghena Hammour
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
| | - Harry Davies
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
| | - Pierluigi Amadori
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
| | - Nico Ling
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
| | - Yiannis Demiris
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
| | - Danilo P. Mandic
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
3
|
Li S, Cui J, Hao A, Zhang S, Zhao Q. Design and Evaluation of Personalized Percutaneous Coronary Intervention Surgery Simulation System. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:4150-4160. [PMID: 34449371 DOI: 10.1109/tvcg.2021.3106478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In recent years, medical simulators have been widely applied to a broad range of surgery training tasks. However, most of the existing surgery simulators can only provide limited immersive environments with a few pre-processed organ models, while ignoring the instant modeling of various personalized clinical cases, which brings substantive differences between training experiences and real surgery situations. To this end, we present a virtual reality (VR) based surgery simulation system for personalized percutaneous coronary intervention (PCI). The simulation system can directly take patient-specific clinical data as input and generate virtual 3D intervention scenarios. Specially, we introduce a fiber-based patient-specific cardiac dynamic model to simulate the nonlinear deformation among the multiple layers of the cardiac structure, which can well respect and correlate the atriums, ventricles and vessels, and thus gives rise to more effective visualization and interaction. Meanwhile, we design a tracking and haptic feedback hardware, which can enable users to manipulate physical intervention instruments and interact with virtual scenarios. We conduct quantitative analysis on deformation precision and modeling efficiency, and evaluate the simulation system based on the user studies from 16 cardiologists and 20 intervention trainees, comparing it to traditional desktop intervention simulators. The results confirm that our simulation system can provide a better user experience, and is a suitable platform for PCI surgery training and rehearsal.
Collapse
|
4
|
von Rosenberg W, Chanwimalueang T, Goverdovsky V, Peters NS, Papavassiliou C, Mandic DP. Hearables: feasibility of recording cardiac rhythms from head and in-ear locations. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171214. [PMID: 29291107 PMCID: PMC5717682 DOI: 10.1098/rsos.171214] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
Mobile technologies for the recording of vital signs and neural signals are envisaged to underpin the operation of future health services. For practical purposes, unobtrusive devices are favoured, such as those embedded in a helmet or incorporated onto an earplug. However, these locations have so far been underexplored, as the comparably narrow neck impedes the propagation of vital signals from the torso to the head surface. To establish the principles behind electrocardiogram (ECG) recordings from head and ear locations, we first introduce a realistic three-dimensional biophysics model for the propagation of cardiac electric potentials to the head surface, which demonstrates the feasibility of head-ECG recordings. Next, the proposed biophysics propagation model is verified over comprehensive real-world experiments based on head- and in-ear-ECG measurements. It is shown both that the proposed model is an excellent match for the recordings, and that the quality of head- and ear-ECG is sufficient for a reliable identification of the timing and shape of the characteristic P-, Q-, R-, S- and T-waves within the cardiac cycle. This opens up a range of new possibilities in the identification and management of heart conditions, such as myocardial infarction and atrial fibrillation, based on 24/7 continuous in-ear measurements. The study therefore paves the way for the incorporation of the cardiac modality into future 'hearables', unobtrusive devices for health monitoring.
Collapse
Affiliation(s)
- Wilhelm von Rosenberg
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | | | - Valentin Goverdovsky
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Nicholas S. Peters
- ElectroCardioMaths Programme, Myocardial Function Section, Imperial College and Imperial NHS Trust, London, UK
| | - Christos Papavassiliou
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Danilo P. Mandic
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| |
Collapse
|
5
|
Schenone E, Collin A, Gerbeau JF. Numerical simulation of electrocardiograms for full cardiac cycles in healthy and pathological conditions. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2016; 32:e02744. [PMID: 26249327 DOI: 10.1002/cnm.2744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 06/04/2023]
Abstract
This work is dedicated to the simulation of full cycles of the electrical activity of the heart and the corresponding body surface potential. The model is based on a realistic torso and heart anatomy, including ventricles and atria. One of the specificities of our approach is to model the atria as a surface, which is the kind of data typically provided by medical imaging for thin volumes. The bidomain equations are considered in their usual formulation in the ventricles, and in a surface formulation on the atria. Two ionic models are used: the Courtemanche-Ramirez-Nattel model on the atria and the 'minimal model for human ventricular action potentials' by Bueno-Orovio, Cherry, and Fenton in the ventricles. The heart is weakly coupled to the torso by a Robin boundary condition based on a resistor-capacitor transmission condition. Various electrocardiograms (ECGs) are simulated in healthy and pathological conditions (left and right bundle branch blocks, Bachmann's bundle block, and Wolff-Parkinson-White syndrome). To assess the numerical ECGs, we use several qualitative and quantitative criteria found in the medical literature. Our simulator can also be used to generate the signals measured by a vest of electrodes. This capability is illustrated at the end of the article. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Elisa Schenone
- Sorbonne Universités UPMC, Paris, France
- Inria Paris-Rocquencourt, Paris, France
| | | | | |
Collapse
|
6
|
Transmural, interventricular, apicobasal and anteroposterior action potential duration gradients are all essential to the genesis of the concordant and realistic T wave: A whole-heart model study. J Electrocardiol 2016; 49:569-78. [PMID: 27034121 DOI: 10.1016/j.jelectrocard.2016.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND It has been reported that ventricular repolarization dispersion resulting from transmural, apicobasal and interventricular action potential duration (APD) gradients makes the T wave concordant with the QRS complex. METHOD AND RESULTS A whole-heart model integrating transmural, apicobasal, interventricular and anteroposterior APD gradients was used, and the corresponding electrocardiograms were simulated to study the influence of these APD gradients on the T-wave amplitudes. The simulation results showed that changing a single APD gradient (e.g., interventricular APD gradient alone) only made substantial changes to the T-wave amplitudes in a limited number of leads and was not able to generate T waves with amplitudes comparable with clinical findings in all leads. A combination of transmural, apicobasal and interventricular APD gradients could simulate T waves with amplitudes similar to clinical values in the limb leads only. Adding the anteroposterior APD gradient into the model greatly improved the consistency between the simulated T-wave amplitudes and the clinical values. CONCLUSION The simulation results support that the transmural, apicobasal, interventricular and the anteroposterior APD gradient are all essential to the genesis of the clinical T wave.
Collapse
|
7
|
Zheng Y, Wei D, Zhu X, Chen W, Fukuda K, Shimokawa H. Ventricular fibrillation mechanisms and cardiac restitutions: An investigation by simulation study on whole-heart model. Comput Biol Med 2015; 63:261-8. [DOI: 10.1016/j.compbiomed.2014.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/14/2014] [Accepted: 06/23/2014] [Indexed: 11/27/2022]
|
8
|
Galeotti L, van Dam PM, Loring Z, Chan D, Strauss DG. Evaluating strict and conventional left bundle branch block criteria using electrocardiographic simulations. Europace 2013; 15:1816-21. [DOI: 10.1093/europace/eut132] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Vadakkumpadan F, Arevalo H, Trayanova NA. Patient-specific modeling of the heart: estimation of ventricular fiber orientations. J Vis Exp 2013:50125. [PMID: 23329052 DOI: 10.3791/50125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Patient-specific simulations of heart (dys)function aimed at personalizing cardiac therapy are hampered by the absence of in vivo imaging technology for clinically acquiring myocardial fiber orientations. The objective of this project was to develop a methodology to estimate cardiac fiber orientations from in vivo images of patient heart geometries. An accurate representation of ventricular geometry and fiber orientations was reconstructed, respectively, from high-resolution ex vivo structural magnetic resonance (MR) and diffusion tensor (DT) MR images of a normal human heart, referred to as the atlas. Ventricular geometry of a patient heart was extracted, via semiautomatic segmentation, from an in vivo computed tomography (CT) image. Using image transformation algorithms, the atlas ventricular geometry was deformed to match that of the patient. Finally, the deformation field was applied to the atlas fiber orientations to obtain an estimate of patient fiber orientations. The accuracy of the fiber estimates was assessed using six normal and three failing canine hearts. The mean absolute difference between inclination angles of acquired and estimated fiber orientations was 15.4 °. Computational simulations of ventricular activation maps and pseudo-ECGs in sinus rhythm and ventricular tachycardia indicated that there are no significant differences between estimated and acquired fiber orientations at a clinically observable level.The new insights obtained from the project will pave the way for the development of patient-specific models of the heart that can aid physicians in personalized diagnosis and decisions regarding electrophysiological interventions.
Collapse
Affiliation(s)
- Fijoy Vadakkumpadan
- Institute for Computational Medicine and the Department of Biomedical Engineering, Johns Hopkins University, USA.
| | | | | |
Collapse
|
10
|
Han C, Pogwizd SM, Killingsworth CR, He B. Noninvasive reconstruction of the three-dimensional ventricular activation sequence during pacing and ventricular tachycardia in the canine heart. Am J Physiol Heart Circ Physiol 2011; 302:H244-52. [PMID: 21984548 DOI: 10.1152/ajpheart.00618.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Single-beat imaging of myocardial activation promises to aid in both cardiovascular research and clinical medicine. In the present study we validate a three-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of simultaneous 3D intracardiac mapping to assess its capability to localize endocardial and epicardial initiation sites and image global activation sequences during pacing and ventricular tachycardia (VT) in the canine heart. Body surface potentials were measured simultaneously with bipolar electrical recordings in a closed-chest condition in healthy canines. Computed tomography images were obtained after the mapping study to construct realistic geometry models. Data analysis was performed on paced rhythms and VTs induced by norepinephrine (NE). The noninvasively reconstructed activation sequence was in good agreement with the simultaneous measurements from 3D cardiac mapping with a correlation coefficient of 0.74 ± 0.06, a relative error of 0.29 ± 0.05, and a root mean square error of 9 ± 3 ms averaged over 460 paced beats and 96 ectopic beats including premature ventricular complexes, couplets, and nonsustained monomorphic VTs and polymorphic VTs. Endocardial and epicardial origins of paced beats were successfully predicted in 72% and 86% of cases, respectively, during left ventricular pacing. The NE-induced ectopic beats initiated in the subendocardium by a focal mechanism. Sites of initial activation were estimated to be ∼7 mm from the measured initiation sites for both the paced beats and ectopic beats. For the polymorphic VTs, beat-to-beat dynamic shifts of initiation site and activation pattern were characterized by the reconstruction. The present results suggest that 3DCEI can noninvasively image the 3D activation sequence and localize the origin of activation of paced beats and NE-induced VTs in the canine heart with good accuracy. This 3DCEI technique offers the potential to aid interventional therapeutic procedures for treating ventricular arrhythmias arising from epicardial or endocardial sites and to noninvasively assess the mechanisms of these arrhythmias.
Collapse
Affiliation(s)
- Chengzong Han
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA
| | | | | | | |
Collapse
|
11
|
Zheng Y, Wei D, Fang Z, Zhu X. Influences of sites and protocols on inducing ventricular fibrillation: A computer simulation study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:2005-8. [PMID: 21097216 DOI: 10.1109/iembs.2010.5627858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In cardiac electrophysiological study, several electrical stimulation protocols have been employed to induce ventricular fibrillations (VF). In addition, sites of inducing may have different impacts on inducing results as well as different inducing protocols. To study whether VF inducing method is determinant of induced outcome, we simulated VFs induced with different protocols at different sites based on the Wei-Harumi whole heart model. Simulations showed that only certain combinations of pacing protocols and sites could induce sustainable VFs, which had similar frequency distributions. This result suggested that the interactions between protocols and sites determine the odds of successful inducing but once the VF was induced, the pattern was solely determined by inner cardiac properties.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Electronic Engineering, Fudan University, Shanghai, China.
| | | | | | | |
Collapse
|
12
|
Shen W, Wei D, Xu W, Zhu X, Yuan S. Parallelized computation for computer simulation of electrocardiograms using personal computers with multi-core CPU and general-purpose GPU. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2010; 100:87-96. [PMID: 20674066 DOI: 10.1016/j.cmpb.2010.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 06/08/2010] [Accepted: 06/25/2010] [Indexed: 05/29/2023]
Abstract
Biological computations like electrocardiological modelling and simulation usually require high-performance computing environments. This paper introduces an implementation of parallel computation for computer simulation of electrocardiograms (ECGs) in a personal computer environment with an Intel CPU of Core (TM) 2 Quad Q6600 and a GPU of Geforce 8800GT, with software support by OpenMP and CUDA. It was tested in three parallelization device setups: (a) a four-core CPU without a general-purpose GPU, (b) a general-purpose GPU plus 1 core of CPU, and (c) a four-core CPU plus a general-purpose GPU. To effectively take advantage of a multi-core CPU and a general-purpose GPU, an algorithm based on load-prediction dynamic scheduling was developed and applied to setting (c). In the simulation with 1600 time steps, the speedup of the parallel computation as compared to the serial computation was 3.9 in setting (a), 16.8 in setting (b), and 20.0 in setting (c). This study demonstrates that a current PC with a multi-core CPU and a general-purpose GPU provides a good environment for parallel computations in biological modelling and simulation studies.
Collapse
Affiliation(s)
- Wenfeng Shen
- Biomedical Information Technology Lab, The University of Aizu, Uegami 90, Tsuruga, Ikki-machi, Aizu-Wakamatsu, Fukushima 965-8580, Japan
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Region of Interest Sensitivity Ratio in Analyzing Sensitivity Distributions of Electrocardiographic Measurements. Ann Biomed Eng 2009; 37:692-701. [DOI: 10.1007/s10439-009-9657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 02/10/2009] [Indexed: 10/21/2022]
|
15
|
Cardiac anisotropy in boundary-element models for the electrocardiogram. Med Biol Eng Comput 2009; 47:719-29. [PMID: 19306030 PMCID: PMC2688616 DOI: 10.1007/s11517-009-0472-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 01/22/2009] [Indexed: 11/18/2022]
Abstract
The boundary-element method (BEM) is widely used for electrocardiogram (ECG) simulation. Its major disadvantage is its perceived inability to deal with the anisotropic electric conductivity of the myocardial interstitium, which led researchers to represent only intracellular anisotropy or neglect anisotropy altogether. We computed ECGs with a BEM model based on dipole sources that accounted for a “compound” anisotropy ratio. The ECGs were compared with those computed by a finite-difference model, in which intracellular and interstitial anisotropy could be represented without compromise. For a given set of conductivities, we always found a compound anisotropy value that led to acceptable differences between BEM and finite-difference results. In contrast, a fully isotropic model produced unacceptably large differences. A model that accounted only for intracellular anisotropy showed intermediate performance. We conclude that using a compound anisotropy ratio allows BEM-based ECG models to more accurately represent both anisotropies.
Collapse
|
16
|
Dou J, Xia L, Zhang Y, Shou G, Wei Q, Liu F, Crozier S. Mechanical analysis of congestive heart failure caused by bundle branch block based on an electromechanical canine heart model. Phys Med Biol 2008; 54:353-71. [PMID: 19098354 DOI: 10.1088/0031-9155/54/2/012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Asynchronous electrical activation, induced by bundle branch block (BBB), can cause reduced ventricular function. However, the effects of BBB on the mechanical function of heart are difficult to assess experimentally. Many heart models have been developed to investigate cardiac properties during BBB but have mainly focused on the electrophysiological properties. To date, the mechanical function of BBB has not been well investigated. Based on a three-dimensional electromechanical canine heart model, the mechanical properties of complete left and right bundle branch block (LBBB and RBBB) were simulated. The anatomical model as well as the fiber orientations of a dog heart was reconstructed from magnetic resonance imaging (MRI) and diffusion tensor MRI (DT-MRI). Using the solutions of reaction-diffusion equations and with a strategy of parallel computation, the asynchronous excitation propagation and intraventricular conduction in BBB was simulated. The mechanics of myocardial tissues were computed with time-, sarcomere length-dependent uniaxial active stress initiated at the time of depolarization. The quantification of mechanical intra- and interventricular asynchrony of BBB was then investigated using the finite-element method with an eight-node isoparametric element. The simulation results show that (1) there exists inter- and intraventricular systolic dyssynchrony during BBB; (2) RBBB may have more mechanical synchrony and better systolic function of the left ventricle (LV) than LBBB; (3) the ventricles always move toward the early-activated ventricle; and (4) the septum experiences higher stress than left and right ventricular free walls in BBB. The simulation results validate clinical and experimental recordings of heart deformation and provide regional quantitative estimates of ventricular wall strain and stress. The present work suggests that an electromechanical heart model, incorporating real geometry and fiber orientations, may be helpful for better understanding of the mechanical implications of congestive heart failure (CHF) caused by BBB.
Collapse
Affiliation(s)
- Jianhong Dou
- Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China. Guangzhou General Army Hospital, Guangzhou 510010, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Şengül G, Liehr M, Haueisen J, Baysal U. An Experimental Study on the Effect of the Anisotropic Regions in a Realistically Shaped Torso Phantom. Ann Biomed Eng 2008; 36:1836-43. [DOI: 10.1007/s10439-008-9551-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 08/04/2008] [Indexed: 12/01/2022]
|
18
|
Yaguchi A, Nagase K, Ishikawa M, Iwasaka T, Odagaki M, Hosaka H. Basic study on a lower-energy defibrillation method using computer simulation and cultured myocardial cell models. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; Suppl:6540-3. [PMID: 17959447 DOI: 10.1109/iembs.2006.260872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Computer simulation and myocardial cell models were used to evaluate a low-energy defibrillation technique. A generated spiral wave, considered to be a mechanism of fibrillation, and fibrillation were investigated using two myocardial sheet models: a two-dimensional computer simulation model and a two-dimensional experimental model. A new defibrillation technique that has few side effects, which are induced by the current passing into the patient's body, on cardiac muscle is desired. The purpose of the present study is to conduct a basic investigation into an efficient defibrillation method. In order to evaluate the defibrillation method, the propagation of excitation in the myocardial sheet is measured during the normal state and during fibrillation, respectively. The advantages of the low-energy defibrillation technique are then discussed based on the stimulation timing.
Collapse
Affiliation(s)
- A Yaguchi
- Tokyo Denki University, Saitama, 3500394 JAPAN
| | | | | | | | | | | |
Collapse
|
19
|
Potse M, Coronel R, LeBlanc AR, Vinet A. The role of extracellular potassium transport in computer models of the ischemic zone. Med Biol Eng Comput 2007; 45:1187-99. [PMID: 17968605 DOI: 10.1007/s11517-007-0276-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 10/04/2007] [Indexed: 11/25/2022]
Abstract
Ischemic heart disease is associated with large mortality and morbidity. Understanding of the relations between coronary artery occlusion, geometry of the ischemic region, physiology of ischemia, and the resulting changes in electrocardiogram (ECG) leads and catheter signals is important to support diagnosis and treatment. Computer models play an important role in understanding ischemia, by linking experimental to clinical results. In this paper we argue that the observed transport of extracellular potassium should be represented in such models. We used a diffusion equation to describe the transport mechanism. This model reproduced the measured spatial distribution of potassium, and its temporal development. We discuss the role of potassium transport next to other aspects of ischemia: the mechanism of changes in action potential and ECG, cellular coupling, anisotropic bidomain tissue conductivity, and the geometry of the ischemic zone.
Collapse
Affiliation(s)
- Mark Potse
- Research Center, Sacré-Coeur hospital, 5400 Boulevard Gouin Ouest, Montreal, QC, Canada, H4J 1C5.
| | | | | | | |
Collapse
|
20
|
He B. Electrophysiological Source Imaging of the Brain and Heart: Past, Present and Future. 2007 JOINT MEETING OF THE 6TH INTERNATIONAL SYMPOSIUM ON NONINVASIVE FUNCTIONAL SOURCE IMAGING OF THE BRAIN AND HEART AND THE INTERNATIONAL CONFERENCE ON FUNCTIONAL BIOMEDICAL IMAGING 2007. [DOI: 10.1109/nfsi-icfbi.2007.4387672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
21
|
Tusscher KHWJT, Panfilov AV. Modelling of the ventricular conduction system. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 96:152-70. [PMID: 17910889 DOI: 10.1016/j.pbiomolbio.2007.07.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The His-Purkinje conduction system initiates the normal excitation of the ventricles and is a major component of the specialized conduction system of the heart. Abnormalities and propagation blocks in the Purkinje system result in abnormal excitation of the heart. Experimental findings suggest that the Purkinje network plays an important role in ventricular tachycardia and fibrillation, which is the major cause of sudden cardiac death. Nowadays an important area in the study of cardiac arrhythmias is anatomically accurate modelling. The majority of current anatomical models have not included a description of the Purkinje network. As a consequence, these models cannot be used to study the important role of the Purkinje system in arrhythmia initiation and maintenance. In this article we provide an overview of previous work on modelling of the Purkinje system and report on the development of a His-Purkinje system for our human ventricular model. We use the model to simulate the normal activation pattern as well as abnormal activation patterns resulting from bundle branch block and bundle branch reentry.
Collapse
Affiliation(s)
- K H W J Ten Tusscher
- Department of Theoretical Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
22
|
He B, Liu C, Zhang Y. Three-Dimensional Cardiac Electrical Imaging From Intracavity Recordings. IEEE Trans Biomed Eng 2007; 54:1454-60. [PMID: 17694866 DOI: 10.1109/tbme.2007.891932] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A novel approach is proposed to image 3-D cardiac electrical activity from intracavity electrical recordings with the aid of a catheter. The feasibility and performance were evaluated by computer simulation studies, where a 3-D cellular-automaton heart model and a finite-element thorax volume conductor model were utilized. The finite-element method (FEM) was used to simulate the intracavity recordings induced by a single-site and dual-site pacing protocol. The 3-D ventricular activation sequences as well as the locations of the initial activation sites were inversely estimated by minimizing the dissimilarity between the intracavity potential "measurements" and the model-generated intracavity potentials. Under single-site pacing, the relative error (RE) between the true and estimated activation sequences was 0.03 +/- 0.01 and the localization error (LE) (of the initiation site) was 1.88 +/- 0.92 mm, as averaged over 12 pacing trials when considering 25 microV additive measurement noise using 64 catheter electrodes. Under dual-site pacing, the RE was 0.04 +/- 0.01 over 12 pacing trials and the LE over 24 initial pacing sites was 2.28 +/- 1.15 mm, when considering 25 microV additive measurement noise using 64 catheter electrodes. The proposed 3-D cardiac electrical imaging approach using intracavity electrical recordings was also tested under various simulated conditions and robust inverse solutions obtained. The present promising simulation results suggest the feasibility of obtaining 3-D information of cardiac electrical activity from intracavity recordings. The application of this inverse method has the potential of enhancing electrocardiographic mapping by catheters in electrophysiology laboratories, aiding cardiac resynchronization therapy, and other clinical applications.
Collapse
Affiliation(s)
- Bin He
- University of Minnesota, Department of Biomedical Engineering, 7-105 NHH, 312 Church Street SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
23
|
Clayton RH, Panfilov AV. A guide to modelling cardiac electrical activity in anatomically detailed ventricles. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 96:19-43. [PMID: 17825362 DOI: 10.1016/j.pbiomolbio.2007.07.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
One of the most recent trends in cardiac electrophysiology is the development of integrative anatomically accurate models of the heart, which include description of cardiac activity from sub-cellular and cellular level to the level of the whole organ. In order to construct this type of model, a researcher needs to collect a wide range of information from books and journal articles on various aspects of biology, physiology, electrophysiology, numerical mathematics and computer programming. The aim of this methodological article is to survey recent developments in integrative modelling of electrical activity in the ventricles of the heart, and to provide a practical guide to the resources and tools that are available for work in this exciting and challenging area.
Collapse
Affiliation(s)
- R H Clayton
- Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello Street, Sheffield, S1 4DP, UK.
| | | |
Collapse
|
24
|
Wang L, Zhang H, Shi P, Liu H. Imaging of 3D cardiac electrical activity: a model-based recovery framework. ACTA ACUST UNITED AC 2007; 9:792-9. [PMID: 17354963 DOI: 10.1007/11866565_97] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We present a model-based framework for imaging 3D cardiac transmembrane potential (TMP) distributions from body surface potential (BSP) measurements. Based on physiologically motivated modeling of the spatiotemporal evolution of TMPs and their projection to body surface, the cardiac electrophysiology is modeled as a stochastic system with TMPs as the latent dynamics and BSPs as external measurements. Given the patient-specific data from BSP measurements and tomographic medical images, the inverse problem of electrocardiography (IECG) is solved via state estimation of the underlying system, using the unscented Kalman filtering (UKF) for data assimilation. By incorporating comprehensive a priori physiological information, the framework enables direct recovery of intracardiac electrophysiological events free from commonly used physical equivalent cardiac sources, and delivers accurate, robust, and fast converging results under different noise levels and types. Experiments concerning individual variances and pathologies are also conducted to verify its feasibility in patient-specific applications.
Collapse
Affiliation(s)
- Linwei Wang
- Department of Electrical and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong.
| | | | | | | |
Collapse
|
25
|
Peng H, Yu A, Chen Q, Feng H. Studies on New Schemes for ECG Forward Problem Simulations. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2005:7190-3. [PMID: 17281936 DOI: 10.1109/iembs.2005.1616167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Quantificationally, from cardiac bioelectric process, working out body surface potential distributing, often called ECG Forward Problem, is an important aspect of electrocardiogram simulation. Here we explore some new schemes to carry it out, give a new method for modeling torso and ventricles, and propose an actual action potential model and myocardial excitation vector propagation algorithm. Results show that the new simulation model reaches the present level of electrocardiogram model; that it serves as a way to carry out electrocardiogram simulation.
Collapse
Affiliation(s)
- Hu Peng
- Department of Electronic Science and Technology, USTC, Hefei, China.
| | | | | | | |
Collapse
|
26
|
Liu C, He B. Effects of cardiac anisotropy on three-dimensional inverse activation time imaging: a cellular-automaton-based model study. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2005:1065-6. [PMID: 17282371 DOI: 10.1109/iembs.2005.1616602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The aim of the present study was to examine the effect of cardiac anisotropy on the ECG activation time imaging solutions using a cellular-automaton-heart-model-based approach. The anisotropic heart model was used in forward pacing simulation while anisotropic and isotropic heart models were used in inverse procedures, respectively. Twenty-four sites throughout the ventricles were paced and the corresponding cardiac activation sequences were inversely estimated. The inverse solutions of activation time using anisotropic or isotropic heart model were compared. The computer simulation results suggest that the cardiac anisotropy does not seem to have significant influence on the inverse estimation of activation time using the present 3D heart-model- based inverse imaging approach during single paced activation.
Collapse
Affiliation(s)
- Chenguang Liu
- Fellow IEEE, University of Minnesota, Department of Biomedical Engineering
| | | |
Collapse
|
27
|
Liu C, Zhang X, Liu Z, Pogwizd SM, He B. Three-dimensional myocardial activation imaging in a rabbit model. IEEE Trans Biomed Eng 2006; 53:1813-20. [PMID: 16941837 DOI: 10.1109/tbme.2006.873701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study evaluated a recently developed three-dimensional (3-D) electrocardiographic imaging (3DECI) approach in a closed-chest rabbit model. First, the performance and sensitivity of parameters of 3DECI were evaluated using a geometrically realistic rabbit heart-torso model. Second, a 3-D intracardiac mapping procedure was evaluated based on the heart-torso rabbit model. Third, comparisons were made among the forward-simulated ventricular activation sequence, the activation sequence derived by the intracardiac mapping, and the 3DECI inverse solution. Finally, the present procedures were tested in vivo in a rabbit, in which the relative error between the measured and imaged activation sequence was 0.20 and the localization error was 5.1 mm. The present simulation and experimental results suggest the merits of the 3DECI imaging approach, and the validity of intracardiac mapping as a tool to evaluate the 3DECI.
Collapse
|
28
|
Modre R, Seger M, Fischer G, Hintermüller C, Hayn D, Pfeifer B, Hanser F, Schreier G, Tilg B. Cardiac anisotropy: is it negligible regarding noninvasive activation time imaging? IEEE Trans Biomed Eng 2006; 53:569-80. [PMID: 16602563 DOI: 10.1109/tbme.2006.870253] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this study was to quantify the effect of cardiac anisotropy in the activation-based inverse problem of electrocardiography. Differences of the patterns of simulated body surface potential maps for isotropic and anisotropic conditions were investigated with regard to activation time (AT) imaging of ventricular depolarization. AT maps were estimated by solving the nonlinear inverse ill-posed problem employing spatio-temporal regularization. Four different reference AT maps (sinus rhythm, right-ventricular and septal pacing, accessory pathway) were calculated with a bidomain theory based anisotropic finite-element heart model in combination with a cellular automaton. In this heart model a realistic fiber architecture and conduction system was implemented. Although the anisotropy has some effects on forward solutions, effects on inverse solutions are small indicating that cardiac anisotropy might be negligible for some clinical applications (e.g., imaging of focal events) of our AT imaging approach. The main characteristic events of the AT maps were estimated despite neglected electrical anisotropy in the inverse formulation. The worst correlation coefficient of the estimated AT maps was 0.810 in case of sinus rhythm. However, all characteristic events of the activation pattern were found. The results of this study confirm our clinical validation studies of noninvasive AT imaging in which cardiac anisotropy was neglected.
Collapse
Affiliation(s)
- Robert Modre
- University for Health Sciences, Medical Informatics and Technology (UMIT), Hall in Tirol 6060, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Liu C, Li G, He B. Localization of the site of origin of reentrant arrhythmia from body surface potential maps: a model study. Phys Med Biol 2005; 50:1421-32. [PMID: 15798333 DOI: 10.1088/0031-9155/50/7/006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have developed a model-based imaging approach to estimate the site of origin of reentrant arrhythmia from body surface potential maps (BSPMs), with the aid of a cardiac arrhythmia model. The reentry was successfully simulated and maintained in the cardiac model, and the simulated ECG waveforms over the body surface corresponding to a maintained reentry have evident characteristics of ventricular tachycardia. The performance of the inverse imaging approach was evaluated by computer simulations. The present simulation results show that an averaged localization error of about 1.5 mm, when 5% Gaussian white noise was added to the BSPMs, was detected. The effects of the heart-torso geometry uncertainty on the localization were also initially assessed and the simulation results suggest that no significant influence was observed when 10% torso geometry uncertainty or 10 mm heart position shifting was considered. The present simulation study suggests the feasibility of localizing the site of origin of reentrant arrhythmia from non-invasive BSPMs, with the aid of a cardiac arrhythmia model.
Collapse
Affiliation(s)
- Chenguang Liu
- Department of Biomedical Engineering, University of Minnesota, 7-105 BSBE, 312 Church St., Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
30
|
Li G, He B. Non-invasive estimation of myocardial infarction by means of a heart-model-based imaging approach: A simulation study. Med Biol Eng Comput 2004; 42:128-36. [PMID: 14977234 DOI: 10.1007/bf02351022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the study, a new myocardial infarction (MI) estimation method was developed for estimating MI in the three-dimensional myocardium by means of a heart-model-based inverse approach. The site and size of MI are estimated from body surface electrocardiograms by minimising multiple objective functions of the measured body surface potential maps (BSPMs) and the heart-model-generated BSPMs. Computer simulations were conducted to evaluate the performance of the developed method, using a single-site MI and dual-site MI protocols. The simulation results show that, for the single-site MI, the averaged spatial distance (SD) between the weighting centres of the 'true' and estimated MIs, and the averaged relative error (RE) between the numbers of the 'true' and estimated infarcted units are 3.0 +/- 0.6/3.6 +/- 0.6 mm and 0.11 +/- 0.02/0.14 +/- 0.02, respectively, when 5 microV/10 microV Gaussian white noise was added to the body surface potentials. For the dual-site MI, the averaged SD between the weighting centres of the 'true' and estimated MIs, and the averaged RE between the numbers of the 'true' and estimated infarcted units are 3.8 +/- 0.7/3.9 +/- 0.7mm and 0.12 +/- 0.02/0.14 +/- 0.03, respectively, when 5 microV/10 microV Gaussian white noise was added to the body surface potentials. The simulation results suggest the feasibility of applying the heart-model-based imaging approach to the estimation of myocardial infarction from body surface potentials.
Collapse
Affiliation(s)
- G Li
- Department of Bioengineering, The University of Illinois at Chicago, USA
| | | |
Collapse
|
31
|
|
32
|
|
33
|
He B, Li G, Zhang X. Noninvasive imaging of cardiac transmembrane potentials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model. IEEE Trans Biomed Eng 2003; 50:1190-202. [PMID: 14560773 DOI: 10.1109/tbme.2003.817637] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have developed a new approach for imaging cardiac transmembrane potentials (TMPs) within the three-dimensional (3-D) myocardium by means of an anisotropic heart model. The cardiac TMP distribution is estimated from body surface electrocardiograms by minimizing objective functions of the "measured" body surface potential maps (BSPMs) and the heart-model-generated BSPMs. Computer simulation studies have been conducted to evaluate the present 3-D TMP imaging approach using pacing protocols. Simulations of single-site pacing at 24 sites throughout the ventricles, as well as dual-site pacing at 12 pairs of sites in the vicinity of atrio-ventricular ring were performed. The present simulation results show that the correlation coefficient (CC) and relative error (RE) between the "true" and inversely estimated TMP distributions were 0.9915 +/- 0.0041 and 0.1266 +/- 0.0326, for single-site pacing, and 0.9889 +/- 0.0034 and 0.1473 +/- 0.0237 for dual-site pacing, respectively, when 10 microV Gaussian white noise (GWN) was added to the BSPMs. The effects of heart and torso geometry uncertainty were also evaluated by shifting the heart position by 10 mm and altering the torso size by 10%. The CC between the "true" and inversely estimated TMP distributions was above 0.97 when these geometry uncertainties were considered. The present simulation results demonstrate the feasibility of noninvasive estimation of TMP distribution throughout the ventricles from body surface electrocardiographic measurements, and suggest that the present method may become a useful alternative in noninvasive imaging of distributed cardiac electrophysiological processes within the 3-D myocardium.
Collapse
Affiliation(s)
- Bin He
- University of Illinois at Chicago, SEO 218, M/C-063, 851 S. Morgan Street, Chicago, IL 60607, USA.
| | | | | |
Collapse
|
34
|
Li G, Zhang X, Lian J, He B. Noninvasive localization of the site of origin of paced cardiac activation in human by means of a 3-D heart model. IEEE Trans Biomed Eng 2003; 50:1117-20. [PMID: 12943279 DOI: 10.1109/tbme.2003.816068] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A recently developed heart-model-based localization approach is experimentally evaluated in noninvasively localizing the site of origin of cardiac activation in a patient with a pacemaker. The heart-torso model of the patient was constructed from the contrast ultrafast computed tomography images. The site of initial paced activation in the patient was quantitatively localized and compared with the tip position of the pacemaker lead. The localization error of the inverse estimation was found to be 5.2 mm with respect to the true lead tip position. The promising result of this pilot experimental study suggests the feasibility of localizing the site of origin of cardiac activation in an experimental setting. The heart-model-based localization approach may become an alternative tool in localizing the site of origin of cardiac activation.
Collapse
Affiliation(s)
- Guanglin Li
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
35
|
Buist ML, Pullan AJ. The effect of torso impedance on epicardial and body surface potentials: a modeling study. IEEE Trans Biomed Eng 2003; 50:816-24. [PMID: 12848349 DOI: 10.1109/tbme.2003.813536] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experimental results have been published that report marked changes in measured epicardial potentials when the conductivity of the material surrounding the heart is altered. These reports raise a question as to the validity of the traditional two step, equivalent cardiac source approach to modeling the forward problem of electrocardiology as the equivalent source calculation occurs in what is effectively an isolated cardiac region. In the physical situation the heart is surrounded by a torso that contains many different tissue types with different conductivities and is certainly not isolated. Here, a fully coupled model of the problem is employed where the electrical pathways are continuous from a cellular level through to the body surface. This model is used to investigate the effects that torso inhomogeneities have on epicardial and body surface potentials, including comparisons with a traditional two step approach. In particular, it is shown that adding lungs changes the epicardial potentials by 17%, which is consistent with the reported experimental results. In none of the tested situations did the equivalent source approach completely reproduce the fully coupled results, supporting the notion that a fully coupled approach is required to properly solve the forward problem of electrocardiology.
Collapse
Affiliation(s)
- Martin L Buist
- Bioengineering Institute, the University of Auckland, 6th Floor, 70 Symonds St., Auckland 92019, New Zealand.
| | | |
Collapse
|
36
|
Li G, Lian J, Salla P, Cheng J, Ramachandra I, Shah P, Avitall B, He B. Body surface Laplacian electrocardiogram of ventricular depolarization in normal human subjects. J Cardiovasc Electrophysiol 2003; 14:16-27. [PMID: 12625605 DOI: 10.1046/j.1540-8167.2003.02199.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION The body surface Laplacian electrocardiogram (ECG) mapping provides a noninvasive means for spatiotemporal mapping of cardiac electrical events. The aim of the present study was to explore the relationship between the Laplacian ECG and the underlying cardiac activities during ventricular depolarization in healthy human subjects. METHODS AND RESULTS A 95-channel body surface potential ECG was recorded over the anterolateral chest from 11 healthy male subjects. The surface Laplacian (SL) ECG was estimated from the recorded potentials during QRS complex by means of a novel spline SL estimator, as well as by the conventional 5-point SL estimator for comparison purpose. A simulation study was also conducted using a realistic geometry heart-torso model in an attempt to qualitatively interpret the experimental results. For all subjects, more spatial details were observed in the SL ECG maps compared with the potential ECG maps, with spline SL more robust against noise than the 5-point SL. In total, three positive activities (denoted as P1, P2, P3) and four negative activities (denoted as N1, N2, N3, N4) in the spline SL ECG maps were observed during ventricular depolarization. Initial localized P1 and N1 activities were observed in 11 and 8 subjects, respectively. Then, the initial P1 was divided into three positive activities (P1, P2, P3) in 9 subjects. After the appearance of multiple positive activities, three negative activities (N2, N3, N4) appeared in 11, 8, and 9 subjects, respectively. Similar findings were obtained in the computer simulation study. CONCLUSION The present study demonstrates that the SL ECG provides more spatial details than the potential ECG, and multiple simultaneously active ventricular activities could be revealed in the SL ECG maps. The results suggest that the SL ECG may provide an alternative for noninvasive mapping of cardiac electrical activity.
Collapse
Affiliation(s)
- Guanglin Li
- Department of Bioengineering, The University of Illinois at Chicago, Illinois 60607, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
He B, Li G, Zhang X. Noninvasive three-dimensional activation time imaging of ventricular excitation by means of a heart-excitation model. Phys Med Biol 2002; 47:4063-78. [PMID: 12476982 DOI: 10.1088/0031-9155/47/22/310] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We propose a new method for imaging activation time within three-dimensional (3D) myocardium by means of a heart-excitation model. The activation time is estimated from body surface electrocardiograms by minimizing multiple objective functions of the measured body surface potential maps (BSPMs) and the heart-model-generated BSPMs. Computer simulation studies have been conducted to evaluate the proposed 3D myocardial activation time imaging approach. Single-site pacing at 24 sites throughout the ventricles, as well as dual-site pacing at 12 pairs of sites in the vicinity of atrioventricular ring, was performed. The present simulation results show that the average correlation coefficient (CC) and relative error (RE) for single-site pacing were 0.9992+/-0.0008/0.9989+/-0.0008 and 0.05+/-0.02/0.07+/-0.03, respectively, when 5 microV/10 microV Gaussian white noise (GWN) was added to the body surface potentials. The average CC and RE for dual-site pacing were 0.9975+/-0.0037 and 0.08+/-0.04, respectively, when 10 microV GWN was added to the body surface potentials. The present simulation results suggest the feasibility of noninvasive estimation of activation time throughout the ventricles from body surface potential measurement, and suggest that the proposed method may become an important alternative in imaging cardiac electrical activity noninvasively.
Collapse
Affiliation(s)
- Bin He
- The University of Illinois at Chicago, Department of Bioengineering, 60607, USA.
| | | | | |
Collapse
|
38
|
Ramon C, Schimpf P, Wang Y, Haueisen J, Ishimaru A. The effect of volume currents due to myocardial anisotropy on body surface potentials. Phys Med Biol 2002; 47:1167-84. [PMID: 11996062 DOI: 10.1088/0031-9155/47/7/312] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Changes in anterior and posterior body surface potential maps (BSPMs) due to myocardial anisotropy were examined using a highly heterogeneous finite element model of an adult male subject constructed from segmented magnetic resonance images. A total of 23 different tissue types were identified in the whole torso. The myocardial fibre orientations in the human heart wall were mapped from the fibre orientations of a canine heart which are available in the literature using deformable mapping techniques. The current and potential distributions in the whole torso were computed using dipolar sources in the septum, apical area, left ventricular wall or right ventricular wall. For each dipole x, y, z orientations were studied. An adaptive finite element solver was used to compute currents and potential distributions in the whole torso with an element size of 0.78 x 0.78 x 3 mm in the myocardium and larger elements in other parts of the torso. For each dipole position two cases were studied. In one case the myocardium was isotropic and in the other it was anisotropic. It was found that BSPMs showed a very notable difference between the isotropic and the anisotropic myocardium for all dipole positions with the largest difference for the apical dipoles. The correlation coefficients for the BSPMs between the isotropic and anisotropic cases ranged from 0.83 for an apical dipole to 0.99 for an RV wall dipole. These results suggest that myocardial fibre anisotropy plays an important role in determining the body surface potentials.
Collapse
Affiliation(s)
- Ceon Ramon
- Department of Electrical Engineering, University of Washington, Seattle, USA.
| | | | | | | | | |
Collapse
|
39
|
Watanabe T, Yamaki M, Yamauchi S, Minamihaba O, Miyashita T, Kubota I, Tomoike H. Regional prolongation of ARI and altered restitution properties cause ventricular arrhythmia in heart failure. Am J Physiol Heart Circ Physiol 2002; 282:H212-8. [PMID: 11748065 DOI: 10.1152/ajpheart.2002.282.1.h212] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism of arrhythmogenicity in heart failure remains poorly understood. We examined the relationship between electrical abnormalities and ventricular arrhythmia by using experimental heart failure models. Sixty unipolar electrograms were recorded from the entire cardiac surface in control dogs (n = 13) and pacing-induced heart failure dogs (n = 16). In failing hearts, activation time (AT) was delayed at the apex, and AT dispersion increased in failing hearts. Activation-recovery intervals (ARI) were prolonged mainly at the apex and ARI dispersion was significantly augmented. The slope of the ARI restitution curve, interaction of diastolic interval, and ARI in failing hearts was significantly steeper than in control hearts. Ventricular fibrillation (VF) was easily induced by programmed stimulation in failing hearts, whereas no arrhythmia occurred in control hearts. Computer simulation studies could reproduce the experimental results. Altering the ARI restitution to the steep slope causes VF in a model heart. It is suggested that electrical remodeling, especially steepness of electrical restitution, may play a role in arrhythmogenicity in failing hearts.
Collapse
Affiliation(s)
- Tetsu Watanabe
- First Department of Internal Medicine, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Although considerable progress has been made in understanding the process of wavefront propagation and arrhythmogenesis in human atria, technical concerns and issues of patient safety have limited experimental investigations. The present work describes a finite volume-based computer model of human atrial activation and current flow to complement these studies. Unlike previous representations, the model is three-dimensional, incorporating both the left and right atria and the major muscle bundles of the atria, including the crista terminalis, pectinate muscles, limbus of the fossa ovalis, and Bachmann's bundle. The bundles are represented as anisotropic structures with fiber directions aligned with the bundle axes. Conductivities are assigned to the model to give realistic local conduction velocities within the bundles and bulk tissue. Results from simulations demonstrate the role of the bundles in a normal sinus rhythm and also reveal the patterns of activation in the septum, where experimental mapping has been extremely challenging. To validate the model, the simulated normal activation sequence and conduction velocities at various locations are compared with experimental observations and data. The model is also used to investigate paced activation, and a mechanism of the relative lengthening of left versus right stimulation is presented. Owing to both the realistic geometry and the bundle structures, the model can be used for further analysis of the normal activation sequence and to examine abnormal conduction, including flutter. The full text of this article is available at http://www.circresaha.org.
Collapse
Affiliation(s)
- D Harrild
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0281, USA
| | | |
Collapse
|
41
|
Ramon C, Wang Y, Haueisen J, Schimpf P, Jaruvatanadilok S, Ishimaru A. Effect of myocardial anisotropy on the torso current flow patterns, potentials and magnetic fields. Phys Med Biol 2000; 45:1141-50. [PMID: 10843096 DOI: 10.1088/0031-9155/45/5/305] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of myocardial anisotropy on the torso current flow patterns, voltage and the magnetic field were examined using an anatomically realistic torso model of an adult male subject. A finite element model of the torso was built with 19 major tissue types identified. The myocardial fibre orientation in the heart wall was included with a voxel resolution of 0.078 x 0.078 x 0.3 cm. The fibre orientations from the canine heart which are available in the literature were mapped to our adult male subject's human heart using deformable mapping techniques. The current and potential distribution in the whole torso were computed using an idealized dipolar source of +/-1.0 V in the middle of the septum of the heart wall as a boundary condition. An adaptive finite element solver was used. Two cases were studied. In one case the myocardium was isotropic and in the other it was anisotropic. It was found that the current density distribution shows a very noticeable difference between the isotropic and anisotropic myocardium. The resultant magnetic field in front of the torso was computed using the Biot-Savart law. It was found that the magnetic field profile was slightly affected by the myocardial anisotropy. The potential on the torso surface also shows noticeable changes due to the myocardial anisotropy.
Collapse
Affiliation(s)
- C Ramon
- Department of Electrical Engineering, University of Washington, Seattle 98195, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Okazaki O, Lux RL. Paradoxical QRST integral changes with ventricular repolarization dispersion. J Electrocardiol 2000; 32 Suppl:60-9. [PMID: 10688304 DOI: 10.1016/s0022-0736(99)90045-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Body surface QRST integral (QRSTI) maps have been shown theoretically to reflect disparity of intrinsic repolarization properties and have been experimentally linked to increased arrhythmia susceptibility. Paradoxically, a lower magnitude of QRSTI in patients with heart disease and at risk for arrhythmias has been reported. We hypothesized that this paradoxical reduction in QRST magnitude is a consequence of increased heterogeneity of repolarization gradients in normal hearts. We generated QRSTI using a previously published heart model to compare QRSTI for aligned and random repolarization gradients. The heart model consisted of 50,000 cubic units in an anatomically correct arrangement that included parameters to simulate anisotropic conduction and inhomogeneous distribution of refractoriness. Body surface potential maps (BSPMs) were generated on a torso surface assuming a homogeneous torso and using the boundary element method for normal alignment of repolarization gradients and spatially reassigned repolarization values that randomized repolarization directions. QT duration was measured by the subtraction of Q onset time from T offset time on the BSPM. T offset was defined as the last potential to be detected at intervals of 3 ms that was above the threshold of 0.1 mV during recovery. The time of T offset showed a consistent tendency to shift to the left posterior and to split. When slow conduction velocities were assigned, BSPMs showed delayed propagation and multiple extrema. QRSTI showed systematic magnitude decrease with increasing randomness of repolarization gradient direction. Ventricular fibrillation (VF) could be induced by successive extrastimuli under the conditions of over 70% deviation and slow conduction of 0.5 m/s for the longitudinal direction. In conclusion, a possible explanation for the paradoxical reduction in QRSTI in the presence of constant repolarization disparity is the change in alignment of repolarization gradients.
Collapse
Affiliation(s)
- O Okazaki
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City 84112-5000, USA
| | | |
Collapse
|
43
|
Wei D, Miyamoto N, Mashima S. A computer model of myocardial disarray in simulating ECG features of hypertrophic cardiomyopathy. JAPANESE HEART JOURNAL 1999; 40:819-26. [PMID: 10737565 DOI: 10.1536/jhj.40.819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) was simulated with a computer heart model having a realistic shape and rotating fiber orientation in order to elucidate possible mechanisms for abnormal ECG findings. The disarray of myocardial muscle in HCM was simulated by assigning random fiber direction and isotropic electrophysiologic properties to abnormal hypertrophic regions, in contrast to the anisotropic modeling for normal myocardium. With these models, main ECG features including abnormal Q wave and QS pattern were reproduced and were comparable with clinical findings. This study suggests that the change in anisotropy in the hypertrophic myocardium is likely to be the main factor responsible to the ECG features of HCM.
Collapse
Affiliation(s)
- D Wei
- Department of Computer Software, the University of Aizu, Aizu-Wakamatsu City, Fukushima, Japan
| | | | | |
Collapse
|
44
|
Wei D, Mashima S. Prediction of accessory pathway locations in Wolff-Parkinson-White syndrome with body surface potential Laplacian maps . A simulation study. JAPANESE HEART JOURNAL 1999; 40:451-9. [PMID: 10611910 DOI: 10.1536/jhj.40.451] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An electrocardiographic computer simulation was conducted to study the feasibility of predicting accessory pathway locations in Wolff-Parkinson-White (WPW) syndrome with body surface potential Laplacian maps. Three-dimensional, realistically-shaped heart and torso models were used. Ten accessory pathways (APs) around the atrioventricular ring corresponding to Gallagher et al. were set in the heart model, and body surface Lapacian and potential maps of WPW syndrome with single or multiple APs were simulated and compared to each other. In simulations with a single AP in the anterior walls, the maximum-minimum pairs in Laplacian maps appeared to be similar to those in potential maps with respect to their locations and orientations, but the maximum-minimum pairs in Laplacian maps were sharper and more localized than in potential maps. In simulations with a posterior AP or multiple APs, the maximum-minimum pairs in the Laplacian maps showed features correlative to the AP locations, but no such features were found in potential maps. These results suggest the possibility of using Laplacian maps, as a non-invasive method for predicting accessory pathways locations in WPW syndrome.
Collapse
Affiliation(s)
- D Wei
- Department of Computer Software, University of Aizu, Fukushima, Japan
| | | |
Collapse
|
45
|
Yamaki M, Kubota I, Tomoike H. Simulation of late potentials and arrhythmias by use of a three-dimensional heart model: Causality of peri-infarctional slow conduction in ventricular fibrillation. J Electrocardiol 1999. [DOI: 10.1016/s0022-0736(99)90090-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Abstract
Determinants of the electrocardiographic voltage are reviewed with formulation of certain parameters. The dipole moment of a single fiber and consequently, a possible maximal moment of the double layer of the activation wave front are estimated as 0.21 mA.cm per unit area (cm2). The longitudinal activation of parallel fibers produces much stronger double layer than the transverse activation across fibers. Without any loss of the electrical force of fibers, a normal ventricle of 200 g in weight would create a possible maximal QRS area of 350 microV.sec in a surface lead. The normal endo- to epicardial ventricular activation is predominantly transverse with respect to fiber orientation and rather inefficient in electrogenesis. It is implied that abnormalities in ventricular conduction may possibly improve the effectiveness of myocardial generator.
Collapse
Affiliation(s)
- S Mashima
- Showa University Fujigaoka Hospital, Yokohama, Japan
| |
Collapse
|
47
|
Ramon C, Czapski P, Haueisen J, Huntsman LL, Nowak H, Bardy GH, Leder U, Kim Y, Nelson JA. MCG simulations with a realistic heart-torso model. IEEE Trans Biomed Eng 1998; 45:1323-31. [PMID: 9805831 DOI: 10.1109/10.725329] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Magnetocardiograms (MCG's) simulated with a high-resolution heart-torso model of an adult subject were compared with measured MCG's acquired from the same individual. An exact match of the measured and simulated MCG's was not found due to the uncertainties in tissue conductivities and cardiac source positions. However, general features of the measured MCG's were reasonably represented by the simulated data for most, but not all of the channels. This suggests that the model accounts for the most important mechanisms underlying the genesis of MCG's and may be useful for cardiac magnetic field modeling under normal and diseased states. MCG's were simulated with a realistic finite-element heart-torso model constructed from segmented magnetic resonance images with 19 different tissue types identified. A finite-element model was developed from the segmented images. The model consists of 2.51 million brick-shaped elements and 2.58 million nodes, and has a voxel resolution of 1.56 x 1.56 x 3 mm. Current distributions inside the torso and the magnetic fields and MCG's at the gradiometer coil locations were computed. MCG's were measured with a Philips twin Dewar first-order gradiometer SQUID-system consisting of 31 channels in one tank and 19 channels in the other.
Collapse
Affiliation(s)
- C Ramon
- Department of Bioengineering, University of Washington, Seattle 98195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hart RA, Gandhi OP. Comparison of cardiac-induced endogenous fields and power frequency induced exogenous fields in an anatomical model of the human body. Phys Med Biol 1998; 43:3083-99. [PMID: 9814536 DOI: 10.1088/0031-9155/43/10/027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Time-domain potentials measured at 64 points on the surface of a large canine heart, considered comparable with those of a human heart, were used to calculate the electric fields and current densities within various organs of the human body. A heterogeneous volume conductor model of an adult male with a resolution of approximately 6 mm3 and 30 segmented tissue types was used along with the admittance method and successive over-relaxation to calculate the voltage distribution throughout the torso and head as a function of time. From this time-domain voltage description, values of [E(t)] and [J(t)] were obtained, allowing for maximum values to be found within the given tissues of interest. Frequency analysis was then used to solve for [E(f)] and [J(f)] in the various organs, so that average, minimum and maximum values within specific bandwidths (0-40, 40-70 and 70-100 Hz) could be analysed. A comparison was made between the computed results and measured data from both EKG waveforms and isopotential surface maps for validation, with good agreement in both amplitude and shape between the computed and measured results. These computed endogenous fields were then compared with exogenous fields induced in the body from a 60 Hz high-voltage power line and a 60 Hz uniform magnetic field of 1 mT directed from the front to the back of the body. The high-voltage power line EMFs and 1 mT magnetic field were used as 'bench' marks for comparison with several safety guidelines for power frequency (50/60 Hz) EMF exposures. The endogenous electric fields and current densities in most of the tissues (except for organs in close proximity to the heart, for example lungs, liver, etc) in the frequency band 40-70 Hz were found to be considerably smaller, between 5% and 10%, than those induced in the human body by the electric and magnetic fields generated by the 60 Hz sources described above.
Collapse
Affiliation(s)
- R A Hart
- University of Utah, Department of Electrical Engineering, Salt Lake City 84112-9202, USA
| | | |
Collapse
|
49
|
Okazaki O, Yamauchi Y, Kashida M, Izumo K, Akatsuka N, Ohnishi S, Shoda M, Nirei T, Kasanuki H, Ebato M, Mashima S, Harumi K, Wei D. Possible mechanism of ECG features in patients with idiopathic ventricular fibrillation studied by heart model and computer simulation. J Electrocardiol 1998; 30 Suppl:98-104. [PMID: 9535486 DOI: 10.1016/s0022-0736(98)80051-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possible contribution of localized conduction delay and abnormal action potentials to ventricular fibrillation (VF) was studied by applying an anisotropic cardiac computer model to clinical cases of the Brugada-type electrocardiogram (ECG), which shows right bundle branch block (RBBB), a normal QT interval, ST-segment elevation, and late r' in leads V1 and V2. The anisotropic heart model was composed of 50,000 discrete units with a spatial resolution of 1.5 mm and was mounted in a human torso model. The longitudinal/transverse conduction velocity ratio was 3:1. For the normal ECG, a conduction velocity of 0.75 m/s was required. In the abnormal area of the right anterior epicardial wall, the conduction velocity was set at 0.2 m/s, with decreasing action potential amplitude and 10% prolonged action potential duration. The ECG features of ST-segment elevation and Brugada-type right bundle branch block pattern were simulated. The action potential duration was able to change dynamically with coupling interval of stimulation, with a ratio of 9% for normal ventricular muscle and 50% for Purkinje fibers. Five successive stimuli were applied to the left lateral epicardium 300 ms after the first sinus excitation, and sustained VF was induced with the transmural conduction delay at the right anterior ventricle as a block increasing the vulnerability. At the initiation of VF, reentry circuits were shown around the border zone of the right epicardium and were very heterogeneous around the conduction delayed area and septal area. In an area with the characteristics of nontransmural conduction delay, sustained VF was prevented, and the pattern of transient right bundle branch block appeared on the simulated ECG and body surface potential maps. The late r' wave was calculated in the precordial leads and right anterior site on the body surface potential maps. These results suggest that increased multipolarity in the border zone between the Purkinje fibers and delayed conduction area in the right ventricle might play an important role as a functional block for the persistence of VF.
Collapse
Affiliation(s)
- O Okazaki
- Division of Cardiology, International Medical Center of Japan, Tokyo
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wei D. Whole-heart modeling: progress, principles and applications. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1997; 67:17-66. [PMID: 9401417 DOI: 10.1016/s0079-6107(97)00012-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- D Wei
- Medical Instrument Division, Nihon Kohden Corp., Tokyo, Japan
| |
Collapse
|