1
|
Jalali M, Behnam H, Davoodi F, Shojaeifard M. Temporal super-resolution of 2D/3D echocardiography using cubic B-spline interpolation. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
2
|
|
3
|
Clement GT, Nomura H, Kamakura T. The feasibility of pulse compression by nonlinear effective bandwidth extension. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:1810-1819. [PMID: 21973334 DOI: 10.1121/1.3625236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chirp-encoded excitation has been utilized for increased signal-to-noise ratio (SNR) in both linear and harmonic imaging. In either case, it is necessary to isolate the relevant frequency band to avoid artifacts. In contrast, the present study isolates and then combines the fundamental and the higher harmonics, treating them as a single, extended bandwidth. Pulse-inverted sum and difference signals are first used to isolate even and odd harmonics. Matched filters specific to the source geometry and the transmit signal are then separately applied to each harmonic band. Verification experiments are performed using up to the third harmonic resulting from an underwater chirp excitation. Analysis of signal peaks after scattering from a series of steel and nylon wires indicates increased compression using the extended bandwidth, as compared to well-established methods for fundamental and second harmonic chirp compression. Using third harmonic bands, a mean pulse width of 56% relative to fundamental compression and 48% relative to second harmonic compression was observed. Further optimization of the compression by altering the transmission indicated 17% additional reduction in the pulse width and a 47% increase in peak-to-sidelobe ratio. Overall, results establish the feasibility of extended bandwidth signal compression for simultaneously increasing SNR and signal resolution.
Collapse
Affiliation(s)
- Gregory T Clement
- Department of Radiology, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
4
|
Gifani P, Behnam H, Sani ZA. A New Method for Pseudo-increasing Frame Rates of Echocardiography Images Using Manifold Learning. JOURNAL OF MEDICAL SIGNALS & SENSORS 2011; 1:107-12. [PMID: 22606665 PMCID: PMC3342627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increasing frame rate is a challenging issue for better interpretation of medical images and diagnosis based on tracking the small transient motions of myocardium and valves in real time visualization. In this paper, manifold learning algorithm is applied to extract the nonlinear embedded information about echocardiography images from the consecutive images in two dimensional manifold spaces. In this method, we presume that the dimensionality of echocardiography images obtained from a patient is artificially high and the images can be described as functions of only a few underlying parameters such as periodic motion due to heartbeat. By this approach, each image is projected as a point on the reconstructed manifold; hence, the relationship between images in the new domain can be obtained according to periodicity of the heart cycle. To have a better tracking of the echocardiography, images during the fast motions of heart we have rearranged the similar frames of consecutive heart cycles in a sequence. This provides a full view slow motion of heart movement through increasing the frame rate to three times the traditional ultrasound systems.
Collapse
Affiliation(s)
- Parisa Gifani
- Department of Biomedical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Hamid Behnam
- Department of Biomedical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Zahra Alizadeh Sani
- Cardiac Imaging, Rajaei Cardiovascular Medical and Research Center, Tehran, Iran
| |
Collapse
|
5
|
Wan Y, Ebbini ES. A post-beamforming 2-D pseudoinverse filter for coarsely sampled ultrasound arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2009; 56:1888-1902. [PMID: 19811992 PMCID: PMC3150138 DOI: 10.1109/tuffc.2009.1265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Beamforming artifacts due to coarse discretization of imaging apertures represent a significant barrier against the use of array probes in high-frequency applications. Nyquist sampling of array apertures dictates center-to-center spacing of lambda/2 for elimination of grating lobes in the array pattern. However, this requirement is hard to achieve using current transducer technologies, even at the lower end of high-frequency ultrasonic imaging (in the range 25-35 MHz). In this paper, we present a new design approach for 2-D regularized pseudoinverse (PIO) filters suitable for restoring imaging contrast in systems employing coarsely sampled arrays. The approach is based on a discretized 2-D imaging model for linear arrays assuming scattering from a Cartesian grid in the imaging field of view (FOV). We show that the discretized imaging operator can be represented with a block Toeplitz matrix with the blocks themselves being Toeplitz. With sufficiently large grid size in the axial and lateral directions, it is possible to replace this Toeplitz-block block Toeplitz (TBBT) operator with its circulant-block block circulant (CBBC) equivalent. This leads to a computationally efficient implementation of the regularized pseudoinverse filtering approach using the 2-D fast Fourier transform (FFT). The derivation of the filtering equation is shown in detail and the regularization procedure is fully described. Using FIELD, we present simulation data to show the 2-D point-spread functions (PSFs) for imaging systems employing linear arrays with fine and coarse sampling of the imaging aperture. PSFs are also computed for a coarsely sampled array with different levels of regularization to demonstrate the tradeoff between contrast and spatial resolution. These results demonstrate the well-behaved nature of the PSF with the variation in a single regularization parameter. Specifically, the 6 dB axial and lateral dimensions of the PSF increase gradually with increasing value of the regularization parameter. On the other hand, the peak grating lobe level decreases gradually with increasing value of the regularization parameter. The results are supported by image reconstructions from a simulated cyst phantom obtained using finely and coarsely sampled apertures with and without the application of the regularized 2-D PIO.
Collapse
|
6
|
Ballard JR, Casper AJ, Wan Y, Ebbini ES. Adaptive transthoracic refocusing of dual-mode ultrasound arrays. IEEE Trans Biomed Eng 2009; 57:93-102. [PMID: 19651547 DOI: 10.1109/tbme.2009.2028150] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We present experimental validation results of an adaptive, image-based refocusing algorithm of dual-mode ultrasound arrays (DMUAs) in the presence of strongly scattering objects. This study is motivated by the need to develop noninvasive techniques for therapeutic targeting of tumors seated in organs where the therapeutic beam is partially obstructed by the ribcage, e.g., liver and kidney. We have developed an algorithm that takes advantage of the imaging capabilities of DMUAs to identify the ribs and the intercostals within the path of the therapeutic beam to produce a specified power deposition at the target while minimizing the exposure at the rib locations. This image-based refocusing algorithm takes advantage of the inherent registration between the imaging and therapeutic coordinate systems of DMUAs in the estimation of array directivity vectors at the target and rib locations. These directivity vectors are then used in solving a constrained optimization problem allowing for adaptive refocusing, directing the acoustical energy through the intercostals, and avoiding the rib locations. The experimental validation study utilized a 1-MHz, 64-element DMUA in focusing through a block of tissue-mimicking phantom [0.5 dB/(cm .MHz)] with embedded Plexiglas ribs. Single transmit focus (STF) images obtained with the DMUA were used for image-guided selection of the critical and target points to be used for adaptive refocusing. Experimental results show that the echogenicity of the ribs in STF images provide feedback on the reduction of power deposition at rib locations. This was confirmed by direct comparison of measured temperature rise and integrated backscatter at the rib locations. Direct temperature measurements also confirm the improved power deposition at the target and the reduction in power deposition at the rib locations. Finally, we have compared the quality of the image-based adaptive refocusing algorithm with a phase-conjugation solution obtained by direct measurement of the complex pressures at the target location. It is shown that our adaptive refocusing algorithm achieves similar improvements in power deposition at the target while achieving larger reduction of power deposition at the rib locations.
Collapse
Affiliation(s)
- John R Ballard
- Department of Electrical and Computer Engineering,University of Minnesota, Twin Cities, MN 55455, USA.
| | | | | | | |
Collapse
|
7
|
Wan Y, Ebbini ES. A 2D post-beamforming filter for contrast restoration in medical ultrasound: in vivo results. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2009:1945-1948. [PMID: 19964018 DOI: 10.1109/iembs.2009.5333460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We have recently developed a robust 2D post-beamforming filter for contrast restoration in ultrasound imaging systems using coarsely-sampled array apertures, e.g. high frequency ultrasound (HFUS). The filter can be derived from a discretized 2D impulse response model in the region of interest (ROI). The key to the robustness of the regularized 2D pseudoinverse filter is transforming the operator to k-space, where the regularized inversion is implemented using 2D DFT instead of computationally intractable matrix operations. Using computer simulations, the 2D PIO was shown to produce complete restoration of contrast loss due to grating lobes resulting from coarse, 2lambda sampling of HFUS arrays in the 25-35 MHz range. In this paper, we present the first in vivo demonstration of the 2D PIO in imaging the carotid artery using a commercially available probe. The results show that the 2D PIO increases the tissue/blood contrast by 4 dB (when imaging a cross section of the vessel). These results are in agreement with experimental results obtained using the same probe in imaging quality assurance phantoms. The 2D PIO's ability to remove the clutter from grating lobe is expected to improve the performance of speckle tracking algorithms for the estimation of tissue and blood displacements in vivo.
Collapse
Affiliation(s)
- Yayun Wan
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, USA.
| | | |
Collapse
|
8
|
Wang S, Lee WN, Provost J, Luo J, Konofagou EE. A composite high-frame-rate system for clinical cardiovascular imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2008; 55:2221-2233. [PMID: 18986870 DOI: 10.1109/tuffc.921] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
High frame-rate ultrasound RF data acquisition has been proved to be critical for novel cardiovascular imaging techniques, such as high-precision myocardial elastography, pulse wave imaging (PWI), and electromechanical wave imaging (EWI). To overcome the frame-rate limitations on standard clinical ultrasound systems, we developed an automated method for multi-sector ultrasound imaging through retrospective electrocardiogram (ECG) gating on a clinically used open architecture system. The method achieved both high spatial (64 beam density) and high temporal resolution (frame rate of 481 Hz) at an imaging depth up to 11 cm and a 100% field of view in a single breath-hold duration. Full-view imaging of the left ventricle and the abdominal aorta of healthy human subjects was performed using the proposed technique in vivo. ECG and ultrasound RF signals were simultaneously acquired on a personal computer (PC). Composite, full-view frames both in RF- and B-mode were reconstructed through retrospective combination of seven small (20%) juxtaposed sectors using an ECG-gating technique. The axial displacement of the left ventricle, in both long-axis and short-axis views, and that of the abdominal aorta, in a long-axis view, were estimated using a RF-based speckle tracking technique. The electromechanical wave and the pulse wave propagation were imaged in a ciné-loop using the proposed imaging technique. Abnormal patterns of such wave propagation can serve as indicators of early cardiovascular disease. This clinical system could thus expand the range of applications in cardiovascular elasticity imaging for quantitative, noninvasive diagnosis of myocardial ischemia or infarction, arrhythmia, abdominal aortic aneurysms, and early-stage atherosclerosis.
Collapse
Affiliation(s)
- Shougang Wang
- Department of Biomedical Engineering, Columbia University, NY, USA.
| | | | | | | | | |
Collapse
|
9
|
Wan Y, Ebbini ES. Imaging with concave large-aperture therapeutic ultrasound arrays using conventional synthetic-aperture beamforming. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2008; 55:1705-18. [PMID: 18986915 PMCID: PMC2692604 DOI: 10.1109/tuffc.2008.856] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Several dual-mode ultrasound array (DMUA) systems are being investigated for potential use in image- guided surgery. In therapeutic mode, DMUAs generate pulsed or continuous-wave (CW) high-intensity focused ultrasound (HIFU) beams capable of generating localized therapeutic effects within the focal volume. In imaging mode, pulse-echo data can be collected from the DMUA elements to obtain B-mode images or other forms of feedback on the state of the target tissue before, during, and after the application of the therapeutic HIFU beam. Therapeutic and technological constraints give rise to special characteristics of therapeutic arrays. Specifically, DMUAs have concave apertures with low f-number values and are typically coarsely sampled using directive elements. These characteristics necessitate pre- and post-beamforming signal processing of echo data to improve the spatial and contrast resolution and maximize the image uniformity within the imaging field of view (IxFOV). We have recently developed and experimentally validated beamforming algorithms for concave large-aperture DMUAs with directive elements. Experimental validation was performed using a 1 MHz, 64-element, concave spherical aperture with 100 mm radius of curvature. The aperture was sampled in the lateral direction using elongated elements 1-lambda x 33.3-lambda with 1.333-lambda center-to-center spacing (lambda is the wavelength). This resulted in f-number values of 0.8 and 2 in the azimuth and elevation directions, respectively. In this paper, we present a new DMUA design approach based on different sampling of the shared concave aperture to improve image quality while maintaining therapeutic performance. A pulse-wave (PW) simulation model using a modified version of the Field II program is used in this study. The model is used in generating pulse-echo data for synthetic-aperture (SA) beamforming for forming images of a variety of targets, e.g., wire arrays and speckle-generating cyst phantoms. To provide validation for the simulation model and illustrate the improvements in image quality, we show SA images of similar targets using pulse-echo data acquired experimentally using our existing 64-element prototype. The PW simulation model is used to investigate the effect of transducer bandwidth as well as finer sampling of the concave DMUA aperture on the image quality. The results show that modest increases in the sampling density and transducer bandwidth result in significant improvement in spatial and contrast resolutions in addition to extending the DMUA IxFOV.
Collapse
Affiliation(s)
- Yayun Wan
- Dept. of Electr. & Comput. Eng., Minnesota Univ., Minneapolis, MN, USA.
| | | |
Collapse
|
10
|
Ebbini ES, Yao H, Shrestha A. Dual-mode ultrasound phased arrays for image-guided surgery. ULTRASONIC IMAGING 2006; 28:65-82. [PMID: 17094688 DOI: 10.1177/016173460602800201] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A 64-element, 1 MHz prototype dual-mode array (DMUA) with therapeutic and imaging capabilities is described. Simulation and experimental results for the characterization of the therapeutic operating field (ThxOF) and imaging field-of-view (IxFOV) for a DMUA are given. In addition, some of the special considerations for imaging with DMUAs are given and illustrated experimentally using wire-target arrays and commercial, quality-assurance phantoms. These results demonstrate what is potentially the most powerful advantage of the use of DMUAs in image-guided surgery; namely, inherent registration between the imaging and therapeutic coordinate systems. We also present imaging results before and after discrete and volumetric HIFU-induced lesions in freshly-excised tissues. DMUA images consistently show changes in echogenicity after lesion formation with shape and extent reflecting the actual shape of the lesion. While changes in echogenicity cannot be used as an indicator of irreversible HIFU-induced tissue damage, they provide important feedback on the location and extent of the expected lesion. Thus, together with the self-registration property of DMUAs, lesion images can be expected to provide immediate and spatially-accurate feedback on the tissue response to the therapeutic HIFU beams. Based on the results provided here, the imaging capabilities of DMUAs can add unique features to other forms of image guidance, e.g. MRI, CT and diagnostic ultrasound.
Collapse
Affiliation(s)
- Emad S Ebbini
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
11
|
Liu J, Insana MF. Coded pulse excitation for ultrasonic strain imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2005; 52:231-40. [PMID: 15801311 PMCID: PMC2771932 DOI: 10.1109/tuffc.2005.1406549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Decorrelation strain noise can be significantly reduced in low echo-signal-to-noise (eSNR) conditions using coded excitation. Large time-bandwidth-product (>30) pulses are transmitted into tissue mimicking phantoms with 2.5-mm diameter inclusions that mimic the elastic properties of breast lesions. We observed a 5-10 dB improvement in eSNR that led to a doubling of the depth of focus for strain images with no reduction of spatial resolution. In high eSNR conditions, coded excitation permits the use of higher carrier frequencies and shorter correlation windows to improve the attainable spatial resolution for strain relative to that obtained with conventional short pulses. This paper summarizes comparative studies of strain imaging in noise-limited conditions obtained by short pulses and four common aperiodic codes (chirp, Barker, suboptimal, and Golay) as a function of attenuation, eSNR and applied strain. Imaging performance is quantified using SNR for displacement (SNRd), local modulation transfer function (LMTF), and contrast-to-noise ratio for strain (CNRepsilon). We found that chirp and Golay codes are the most robust for imaging soft tissue deformation using matched filter decoding. Their superior performance is obtained by balancing the need for low-range lobes, large eSNR improvement, and short-code duration.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA.
| | | |
Collapse
|
12
|
Lingvall F. A method of improving overall resolution in ultrasonic array imaging using spatio-temporal deconvolution. ULTRASONICS 2004; 42:961-968. [PMID: 15047414 DOI: 10.1016/j.ultras.2003.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this paper a beamforming method for ultrasonic array imaging is presented that performs both spatial and temporal deconvolution based on a minimum mean square error (MMSE) criteria. The presented MMSE receive mode beamformer performs a regularized inversion of the propagation operator for the ultrasonic array system at hand. The MMSE beamformer accounts for the transmit and receive processes, defined in terms of finite array element sizes, transmit focusing laws and electrical transducer characteristics. The MMSE beamformer is compared to the traditional delay-and-sum (DAS) beamformer with respect to both resolution and signal-to-noise ratio. The two algorithms are compared using both simulated and measured data. The simulated data was obtained using ultrasonic field simulations and the measured data was acquired using a linear phased array imaging wire targets in water. The results show that the MMSE beamformer has superior temporal and lateral resolution compared to DAS. It is also shown that the MMSE beamformer can be expressed as a filter bank, which enables parallel processing at high frame rates.
Collapse
Affiliation(s)
- Fredrik Lingvall
- Department of Engineering Sciences, Signals and Systems Group, Uppsala University, Box 528, 751 20 Uppsala, Sweden.
| |
Collapse
|
13
|
Curcie DJ, Flint JA, Craelius W. Biomimetic finger control by filtering of distributed forelimb pressures. IEEE Trans Neural Syst Rehabil Eng 2001; 9:69-75. [PMID: 11482365 DOI: 10.1109/7333.918278] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A linear filter was developed for decoding finger commands from volitional pressures distributed within the residual forelimb. Filter parameters were based on dynamic pressures recorded from the residual limb within its socket, during specific finger commands. A matrix of signal features was derived from eight-dimensional (8-D) pressure vectors, and its pseudoinverse comprised the filter parameters. Results with amputees showed that the filter could discriminate specific finger flexion commands, suggesting that pressure vector decoding (PVD) can provide them with biomimetic finger control.
Collapse
Affiliation(s)
- D J Curcie
- Orthotic and Prosthetic Laboratory, Department of Biomedical Engineering, Rutgers University, Piscatway, NJ 08854, USA
| | | | | |
Collapse
|