1
|
Xie Z, Fan M, Ji N, Ji Z, Xu L, Ma J. Ultrasound wavelet spectra enable direct tissue recognition and full-color visualization. ULTRASONICS 2024; 142:107395. [PMID: 38972175 DOI: 10.1016/j.ultras.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/10/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Traditional brightness-mode ultrasound imaging is primarily constrained by the low specificity among tissues and the inconsistency among sonographers. The major cause is the imaging method that represents the amplitude of echoes as brightness and ignores other detailed information, leaving sonographers to interpret based on organ contours that depend highly on specific imaging planes. Other ultrasound imaging modalities, color Doppler imaging or shear wave elastography, overlay motion or stiffness information to brightness-mode images. However, tissue-specific scattering properties and spectral patterns remain unknown in ultrasound imaging. Here we demonstrate that the distribution (size and average distance) of scattering particles leads to characteristic wavelet spectral patterns, which enables tissue recognition and high-contrast ultrasound imaging. Ultrasonic wavelet spectra from similar particle distributions tend to cluster in the eigenspace according to principal component analysis, whereas those with different distributions tend to be distinguishable from one another. For each distribution, a few wavelet spectra are unique and act as a fingerprint to recognize the corresponding tissue. Illumination of specific tissues and organs with designated colors according to the recognition results yields high-contrast ultrasound imaging. The fully-colorized tissue-specific ultrasound imaging potentially simplifies the interpretation and promotes consistency among sonographers, or even enables the applicability for non-professionals.
Collapse
Affiliation(s)
- Zhun Xie
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Mengzhi Fan
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Nan Ji
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhili Ji
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Lijun Xu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Jianguo Ma
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
2
|
Yeats E, Hall TL. Aberration correction in abdominal histotripsy. Int J Hyperthermia 2023; 40:2266594. [PMID: 37813397 PMCID: PMC10637766 DOI: 10.1080/02656736.2023.2266594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
In transabdominal histotripsy, ultrasound pulses are focused on the body to noninvasively destroy soft tissues via cavitation. However, the ability to focus is limited by phase aberration, or decorrelation of the ultrasound pulses due to spatial variation in the speed of sound throughout heterogeneous tissue. Phase aberration shifts, broadens, and weakens the focus, thereby reducing the safety and efficacy of histotripsy therapy. This paper reviews and discusses aberration effects in histotripsy and in related therapeutic ultrasound techniques (e.g., high intensity focused ultrasound), with an emphasis on aberration by soft tissues. Methods for aberration correction are reviewed and can be classified into two groups: model-based methods, which use segmented images of the tissue as input to an acoustic propagation model to predict and compensate phase differences, and signal-based methods, which use a receive-capable therapy array to detect phase differences by sensing acoustic signals backpropagating from the focus. The relative advantages and disadvantages of both groups of methods are discussed. Importantly, model-based methods can correct focal shift, while signal-based methods can restore substantial focal pressure, suggesting that both methods should be combined in a 2-step approach. Aberration correction will be critical to improving histotripsy treatments and expanding the histotripsy treatment envelope to enable non-invasive, non-thermal histotripsy therapy for more patients.
Collapse
Affiliation(s)
- Ellen Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
3
|
Ali R, Brevett T, Zhuang L, Bendjador H, Podkowa AS, Hsieh SS, Simson W, Sanabria SJ, Herickhoff CD, Dahl JJ. Aberration correction in diagnostic ultrasound: A review of the prior field and current directions. Z Med Phys 2023; 33:267-291. [PMID: 36849295 PMCID: PMC10517407 DOI: 10.1016/j.zemedi.2023.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/17/2022] [Accepted: 01/09/2023] [Indexed: 02/27/2023]
Abstract
Medical ultrasound images are reconstructed with simplifying assumptions on wave propagation, with one of the most prominent assumptions being that the imaging medium is composed of a constant sound speed. When the assumption of a constant sound speed are violated, which is true in most in vivoor clinical imaging scenarios, distortion of the transmitted and received ultrasound wavefronts appear and degrade the image quality. This distortion is known as aberration, and the techniques used to correct for the distortion are known as aberration correction techniques. Several models have been proposed to understand and correct for aberration. In this review paper, aberration and aberration correction are explored from the early models and correction techniques, including the near-field phase screen model and its associated correction techniques such as nearest-neighbor cross-correlation, to more recent models and correction techniques that incorporate spatially varying aberration and diffractive effects, such as models and techniques that rely on the estimation of the sound speed distribution in the imaging medium. In addition to historical models, future directions of ultrasound aberration correction are proposed.
Collapse
Affiliation(s)
- Rehman Ali
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Thurston Brevett
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Louise Zhuang
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Hanna Bendjador
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony S Podkowa
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Scott S Hsieh
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Walter Simson
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sergio J Sanabria
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA; University of Deusto/ Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Carl D Herickhoff
- Department of Biomedical Engineering, University of Memphis, TN, USA
| | - Jeremy J Dahl
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Ahmed R, Flint KM, Morgan MR, Trahey GE, Walker WF. Adaptive Models for Multi-Covariate Imaging of Sub-Resolution Targets (MIST). IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2303-2317. [PMID: 35613063 PMCID: PMC9527788 DOI: 10.1109/tuffc.2022.3178035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multi-covariate imaging of sub-resolution targets (MIST) is a statistical, model-based image formation technique that smooths speckles and reduces clutter. MIST decomposes the measured covariance of the element signals into modeled contributions from mainlobe, sidelobes, and noise. MIST covariance models are derived from the well-known autocorrelation relationship between transmit apodization and backscatter covariance. During in vivo imaging, the effective transmit aperture often deviates from the applied apodization due to nonlinear propagation and wavefront aberration. Previously, the backscatter correlation length provided a first-order measure of these patient-specific effects. In this work, we generalize and extend this approach by developing data-adaptive covariance estimation, parameterization, and model-formation techniques. We performed MIST imaging using these adaptive models and evaluated the performance gains using 152 tissue-harmonic scans of fetal targets acquired from 15 healthy pregnant subjects. Compared to standard MIST imaging, the contrast-to-noise ratio (CNR) is improved by a median of 8.3%, and the speckle signal-to-noise ratio (SNR) is improved by a median of 9.7%. The median CNR and SNR gains over B-mode are improved from 29.4% to 40.4% and 24.7% to 38.3%, respectively. We present a versatile empirical function that can parameterize an arbitrary speckle covariance and estimate the effective coherent aperture size and higher order coherence loss. We studied the performance of the proposed methods as a function of input parameters. The implications of system-independent MIST implementation are discussed.
Collapse
|
5
|
Peek AT, Thomas GPL, Leotta DF, Yuldashev PV, Khokhlova VA, Khokhlova TD. Robust and durable aberrative and absorptive phantom for therapeutic ultrasound applications. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:3007. [PMID: 35649925 PMCID: PMC9071501 DOI: 10.1121/10.0010369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phase aberration induced by soft tissue inhomogeneities often complicates high-intensity focused ultrasound (HIFU) therapies by distorting the field and, previously, we designed and fabricated a bilayer gel phantom to reproducibly mimic that effect. A surface pattern containing size scales relevant to inhomogeneities of a porcine body wall was introduced between gel materials with fat- and muscle-like acoustic properties-ballistic and polyvinyl alcohol gels. Here, the phantom design was refined to achieve relevant values of ultrasound absorption and scattering and make it more robust, facilitating frequent handling and use in various experimental arrangements. The fidelity of the interfacial surface of the fabricated phantom to the design was confirmed by three-dimensional ultrasound imaging. The HIFU field distortions-displacement of the focus, enlargement of the focal region, and reduction of focal pressure-produced by the phantom were characterized using hydrophone measurements with a 1.5 MHz 256-element HIFU array and found to be similar to those induced by an ex vivo porcine body wall. A phase correction approach was used to mitigate the aberration effect on nonlinear focal waveforms and enable boiling histotripsy treatments through the phantom or body wall. The refined phantom represents a practical tool to explore HIFU therapy systems capabilities.
Collapse
Affiliation(s)
- Alex T Peek
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA
| | - Gilles P L Thomas
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA
| | - Daniel F Leotta
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA
| | | | - Vera A Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA
| | - Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, Washington 98125, USA
| |
Collapse
|
6
|
Zhang B, Pinton GF, Nightingale KR. On the Relationship between Spatial Coherence and In Situ Pressure for Abdominal Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2310-2320. [PMID: 33985826 PMCID: PMC8494065 DOI: 10.1016/j.ultrasmedbio.2021.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 05/25/2023]
Abstract
Tissue harmonic signal quality has been shown to improve with elevated acoustic pressure. The peak rarefaction pressure (PRP) for a given transmit, however, is limited by the Food and Drug Administration guidelines for mechanical index. We have previously demonstrated that the mechanical index overestimates in situ PRP for tightly focused beams in vivo, due primarily to phase aberration. In this study, we evaluate two spatial coherence-based image quality metrics-short-lag spatial coherence and harmonic short-lag spatial coherence-as proxy estimates for phase aberration and assess their correlation with in situ PRP in simulations and experiments when imaging through abdominal body walls. We demonstrate strong correlation between both spatial coherence-based metrics and in situ PRP (R2 = 0.77 for harmonic short-lag spatial coherence, R2 = 0.67 for short-lag spatial coherence), an observation that could be leveraged in the future for patient-specific selection of acoustic output.
Collapse
Affiliation(s)
- Bofeng Zhang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
| | - Gianmarco F Pinton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
7
|
Zhang B, Pinton GF, Deng Y, Nightingale KR. Quantifying the Effect of Abdominal Body Wall on In Situ Peak Rarefaction Pressure During Diagnostic Ultrasound Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1548-1558. [PMID: 33722439 PMCID: PMC8494063 DOI: 10.1016/j.ultrasmedbio.2021.01.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 05/31/2023]
Abstract
In this study, 3-D non-linear ultrasound simulations and experimental measurements were used to estimate the range of in situ pressures that can occur during transcutaneous abdominal imaging and to identify the sources of error when estimating in situ peak rarefaction pressures (PRPs) using linear derating, as specified by the mechanical index (MI) guideline. Using simulations, it was found that, for a large transmit aperture (F/1.5), MI consistently over-estimated in situ PRP by 20%-48% primarily owing to phase aberration. For a medium transmit aperture (F/3), the MI accurately estimated the in situ PRP to within 8%. For a small transmit aperture (F/5), MI consistently underestimated the in situ PRP by 32%-50%, with peak locations occurring 1-2 cm before the focal depth, often within the body wall itself. The large variability across body wall samples and focal configurations demonstrates the limitations of the simplified linear derating scheme. The results suggest that patient-specific in situ PRP estimation would allow for increases in transmit pressures, particularly for tightly focused beams, to improve diagnostic image quality while ensuring patient safety.
Collapse
Affiliation(s)
- Bofeng Zhang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
| | - Gianmarco F Pinton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - Yufeng Deng
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | | |
Collapse
|
8
|
Flint K, Bottenus N, Bradway D, McNally P, Ellestad S, Trahey G. An Automated ALARA Method for Ultrasound: An Obstetric Ultrasound Feasibility Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 40:10.1002/jum.15570. [PMID: 33289152 PMCID: PMC10117178 DOI: 10.1002/jum.15570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 05/20/2023]
Abstract
OBJECTIVES Ultrasound users are advised to observe the ALARA (as low as reasonably achievable) principle, but studies have shown that most do not monitor acoustic output metrics. We developed an adaptive ultrasound method that could suggest acoustic output levels based on real-time image quality feedback using lag-one coherence (LOC). METHODS Lag-one coherence as a function of the mechanical index (MI) was assessed in 35 healthy volunteers in their second trimester of pregnancy. While imaging the placenta or the fetal abdomen, the system swept through 16 MI values ranging from 0.15 to 1.20. The LOC-versus-MI data were fit with a sigmoid curve, and the ALARA MI was selected as the point at which the fit reached 98% of its maximum. RESULTS In this study, the ALARA MI values were between 0.35 and 1.03, depending on the acoustic window. Compared to a default MI of 0.8, the pilot acquisitions suggested a lower ALARA MI 80% of the time. The contrast, contrast-to-noise ratio, generalized contrast-to-noise ratio, and LOC all followed sigmoidal trends with an increasing MI. The R2 of the fit was statistically significantly greater for LOC than the other metrics (P < .017). CONCLUSIONS These results suggest that maximum image quality can be achieved with acoustic output levels lower than the US Food and Drug Administration limits in many cases, and an automated tool could be used in real time to find the ALARA MI for specific imaging conditions. Our results support the feasibility of an automated, LOC-based implementation of the ALARA principle for obstetric ultrasound.
Collapse
Affiliation(s)
- Katelyn Flint
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Nick Bottenus
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Mechanical Engineering, Mechanical Engineering, University of Colorado, Boulder, Boulder, Colorado, USA
| | - David Bradway
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Patricia McNally
- Department of Women's and Children's Services, Duke University Hospital, Durham, North Carolina, USA
| | - Sarah Ellestad
- Division of Maternal-Fetal Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Gregg Trahey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
9
|
Peek AT, Hunter C, Kreider W, Khokhlova TD, Rosnitskiy PB, Yuldashev PV, Sapozhnikov OA, Khokhlova VA. Bilayer aberration-inducing gel phantom for high intensity focused ultrasound applications. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:3569. [PMID: 33379925 PMCID: PMC8097711 DOI: 10.1121/10.0002877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 05/19/2023]
Abstract
Aberrations induced by soft tissue inhomogeneities often complicate high-intensity focused ultrasound (HIFU) therapies. In this work, a bilayer phantom made from polyvinyl alcohol hydrogel and ballistic gel was built to mimic alternating layers of water-based and lipid tissues characteristic of an abdominal body wall and to reproducibly distort HIFU fields. The density, sound speed, and attenuation coefficient of each material were measured using a homogeneous gel layer. A surface with random topographical features was designed as an interface between gel layers using a 2D Fourier spectrum approach and replicating different spatial scales of tissue inhomogeneities. Distortion of the field of a 256-element 1.5 MHz HIFU array by the phantom was characterized through hydrophone measurements for linear and nonlinear beam focusing and compared to the corresponding distortion induced by an ex vivo porcine body wall of the same thickness. Both spatial shift and widening of the focal lobe were observed, as well as dramatic reduction in focal pressures caused by aberrations. The results suggest that the phantom produced levels of aberration that are similar to a real body wall and can serve as a research tool for studying HIFU effects as well as for developing algorithms for aberration correction.
Collapse
Affiliation(s)
- Alex T Peek
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA
| | - Christopher Hunter
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA
| | - Wayne Kreider
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA
| | - Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98195, USA
| | - Pavel B Rosnitskiy
- Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Petr V Yuldashev
- Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Oleg A Sapozhnikov
- Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Vera A Khokhlova
- Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| |
Collapse
|
10
|
Dei K, Schlunk S, Byram B. Computationally Efficient Implementation of Aperture Domain Model Image Reconstruction. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1546-1559. [PMID: 31251180 PMCID: PMC6800222 DOI: 10.1109/tuffc.2019.2924824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Aperture domain model image reconstruction (ADMIRE) is a useful tool to mitigate ultrasound imaging artifacts caused by acoustic clutter. However, its lengthy run-time impairs its usefulness. To overcome this drawback, we evaluated the reduced model methods with otherwise similar performance to ADMIRE. We also assessed other approaches to speed up ADMIRE, including the use of different levels of short-time Fourier transform (STFT) window overlap and examining the degrees of freedom of the model fit. In this study, we conducted an analysis of the reduced models, including those using Gram-Schmidt orthonormalization (GSO), singular value decomposition (SVD), and independent component analysis (ICA). We evaluated these reduced models using the data from simulations, experimental phantoms, and in vivo liver scans. We then tested ADMIRE's performance using full, GSO, SVD, and ICA-fourth-order blind identification (ICA-FOBI) models. The results from simulations, experimental phantoms, and in vivo data indicate that a model reduced using the ICA-FOBI method is the most promising for accelerating ADMIRE implementation. In the in vivo liver data, the improvements in contrast relative to delay-and-sum (DAS) using a full model, GSO, SVD, and ICA-FOBI models are 6.29 ± 0.25 dB, 11.88 ± 0.90 dB, 9.01 ± 0.67 dB, and 6.36 ± 0.27 dB, respectively; whereas, the contrast-to-noise ratio (CNR) improvement values in the same order are 0.04 ± 0.06 dB, -1.70 ± 0.17 dB, -1.51 ± 0.19 dB, and 0.12 ± 0.07 dB, respectively. The implementation of ADMIRE using the reduced model methods can decrease ADMIRE's computational complexity over three orders of magnitude. The use of a 50% STFT window overlap reduces ADMIRE's serial run time by more than one order of magnitude without any remarkable loss of image quality, when compared to the use of a 90% window overlap used previously. Based on these findings, a combination of the ICA-FOBI model and the use of a 50% STFT window overlap makes the ADMIRE algorithm more computationally efficient.
Collapse
|
11
|
Sassaroli E, Crake C, Scorza A, Kim DS, Park MA. Image quality evaluation of ultrasound imaging systems: advanced B-modes. J Appl Clin Med Phys 2019; 20:115-124. [PMID: 30861278 PMCID: PMC6414140 DOI: 10.1002/acm2.12544] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/02/2019] [Accepted: 01/16/2019] [Indexed: 11/10/2022] Open
Abstract
The Quality assurance of ultrasound clinical imaging systems is essential for maintaining their performance to the highest level and for complying with the requirements by various regulatory and accrediting agencies. Although there is no standardization yet, most of the quality assessment procedures available in literature are proposed for B-mode and Doppler imaging. However, ultrasound imaging systems offer a variety of advanced imaging modes, besides B-mode and Doppler, which are primarily aimed at improving image quality. This study presents computer-based methods for evaluating image quality for the advanced imaging modes of ultrasound imaging systems: harmonic imaging, spatial compounding imaging, adaptive speckle reduction, and tissue aberration correction. The functions and parameters proposed for evaluating image quality are: grayscale mapping function, image contrast, contrast-to-noise ratio (CNR), and high-contrast spatial resolution. We present our computer-based methods for evaluating image quality of these modes with a number of probe and scanner combinations, which were employed to image targets in ultrasound phantoms. The functions and parameters here proposed in image quality performance evaluation are: grayscale mapping function, image contrast, CNR, and high-contrast spatial resolution. We show that these quantities could be useful in developing standardized methods for evaluating the advanced ultrasound imaging modes, especially when the advanced mode resulted in subtle visual differences.
Collapse
Affiliation(s)
- Elisabetta Sassaroli
- Department of Radiology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Calum Crake
- OxSonics Ltd, The Magdalen Centre, Oxford, UK
| | - Andrea Scorza
- Department of Engineering, Roma Tre University, Rome, Italy
| | - Don-Soo Kim
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
| | - Mi-Ae Park
- Department of Radiology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Varnosfaderani MHH, Asl BM. Minimum variance based fusion of fundamental and second harmonic ultrasound imaging: Simulation and experimental study. ULTRASONICS 2019; 96:203-213. [PMID: 30876656 DOI: 10.1016/j.ultras.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/12/2018] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Harmonic imaging is widely used in clinical ultrasound due to its higher resolution in comparison with fundamental mode. However, the low amplitude of harmonic components in this imaging method is a crucial problem, resulting in a high sensitivity to noise, while the fundamental imaging is more robust against noise. To exploit the benefits of both the fundamental and harmonic imaging, we propose a minimum variance (MV)-based adaptive combination of fundamental and harmonic images. The performance of the proposed mixing-together MV (MTMV) beamformer is evaluated on simulated and experimental RF data. The results of the simulated point targets show that in the regions near of point targets, where the desire signals exist, the proposed MTMV beamformer mostly follows the MV-beamformed harmonic image to retain a better resolution. In the regions far from the point targets, where there is just noise, it follows the MV-beamformed fundamental image to benefit from more robustness. Also, the results of the simulated and experimental cyst phantoms indicate that MTMV reduces the background noise level and improves the contrast without compromising the high resolution of the MV-beamformed harmonic image. In the simulated cyst phantom, in comparison to DAS (fundamental), DAS (harmonic), MV (fundamental), MV (harmonic), and wavelet fusion, the image contrast ratio (CR) is increased, in average, about 5.2 dB, 3.5 dB, 1.5 dB, 3.6 dB, and 2.8 dB, respectively. The contrast-to-noise ratio (CNR) is significantly improved; about 59%, 53%, 41%, 37%, and 24%, respectively. In the experimental cyst phantom, these relative improvements are about 6.6 dB, 3.5 dB, 4.2 dB, 2.1 dB, and 3.8 dB for CR, and about 64%, 52%, 25%, 33%, and 33%, for CNR, respectively.
Collapse
|
13
|
Lee J, Shin EJ, Lee C, Chang JH. Development of Dual-Frequency Oblong-Shaped-Focused Transducers for Intravascular Ultrasound Tissue Harmonic Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1571-1582. [PMID: 29994203 DOI: 10.1109/tuffc.2018.2844869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tissue harmonic imaging (THI), an essential mode of commercial ultrasound imaging scanners, can provide images with high spatial and contrast resolutions. For THI, the frequency spectrum of a transducer is generally divided for the transmission of fundamental signal and the reception of its second harmonic. Therefore, it is difficult to use the THI mode for intravascular ultrasound (IVUS) imaging because typical IVUS transducers have a narrow -6-dB fractional bandwidth of about 50%. Due to its small aperture (about 0.5 mm) and the strength of IVUS being too weak, it is difficult to construct a high-quality tissue harmonic image. In this paper, we report a recently developed dual-frequency oblong-shaped-focused IVUS transducer for high-quality intravascular THI; the transducer consists of three elements arranged side by side in the horizontal (i.e., elevation) direction. The two outer elements with a center frequency of 35 MHz are responsible for ultrasound transmission and the center element has a center frequency of 70 MHz for the reception of the second-harmonic signals. All three elements have a spherical shape with a radius of 3 mm to efficiently generate harmonics in the region of interest. This configuration of the developed IVUS transducer was determined to facilitate high-quality THI, which was based on the results of Field II simulation and finite-element analysis. The images of wires and a tissue-mimicking phantom indicated that the tissue harmonic images produced by the developed transducer have not only a high spatial resolution but also a deep imaging depth, compared to the 35- and 70-MHz fundamental images.
Collapse
|
14
|
Ted Christopher P, Parker KJ. The nonlinear ultrasound needle pulse. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:861. [PMID: 30180703 DOI: 10.1121/1.5050519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Recent work has established an analytical formulation of broadband fields which extend in the axial direction and converge to a narrow concentrated line. Those unique (needle) fields have their origins in an angular spectrum configuration in which the forward propagating wavenumber of the field ( kz ) is constant across any z plane for all of the propagated frequencies. A 3 MHz-based, finite amplitude distorted simulation of such a field is considered here in a water path scenario relevant to medical imaging. That nonlinear simulation had its focal features compared to those of a comparable Gaussian beam. The results suggest that the unique convergence of the needle pulse to a narrow but extended axial line in linear propagation is also inherited by higher harmonics in nonlinear propagation. Furthermore, the linear needle field's relatively short duration focal pulses, and the asymptotic declines of its radial profiles, also hold for the associated higher harmonics. Comparisons with the Gaussian field highlight some unique and potentially productive features of needle fields.
Collapse
Affiliation(s)
| | - Kevin J Parker
- Departments of Electrical & Computer and of Biomedical Engineering, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
15
|
Shin J, Chen Y, Malhi H, Chen F, Yen J. Performance Evaluation of Adaptive Imaging Based on Multiphase Apodization with Cross-correlation: A Pilot Study in Abdominal Ultrasound. ULTRASONIC IMAGING 2018; 40:195-214. [PMID: 29739309 DOI: 10.1177/0161734618773073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Degradation of image contrast caused by phase aberration, off-axis clutter, and reverberation clutter remains one of the most important problems in abdominal ultrasound imaging. Multiphase apodization with cross-correlation (MPAX) is a novel beamforming technique that enhances ultrasound image contrast by adaptively suppressing unwanted acoustic clutter. MPAX employs multiple pairs of complementary sinusoidal phase apodizations to intentionally introduce grating lobes that can be used to derive a weighting matrix, which mostly preserves the on-axis signals from tissue but reduces acoustic clutter contributions when multiplied with the beamformed radio-frequency (RF) signals. In this paper, in vivo performance of the MPAX technique was evaluated in abdominal ultrasound using data sets obtained from 10 human subjects referred for abdominal ultrasound at the USC Keck School of Medicine. Improvement in image contrast was quantified, first, by the contrast-to-noise ratio (CNR) and, second, by the rating of two experienced radiologists. The MPAX technique was evaluated for longitudinal and transverse views of the abdominal aorta, the inferior vena cava, the gallbladder, and the portal vein. Our in vivo results and analyses demonstrate the feasibility of the MPAX technique in enhancing image contrast in abdominal ultrasound and show potential for creating high contrast ultrasound images with improved target detectability and diagnostic confidence.
Collapse
Affiliation(s)
- Junseob Shin
- 1 Philips Research North America, Cambridge, MA, USA
| | - Yu Chen
- 2 University of Southern California, Los Angeles, CA, USA
| | - Harshawn Malhi
- 2 University of Southern California, Los Angeles, CA, USA
| | - Frank Chen
- 2 University of Southern California, Los Angeles, CA, USA
| | - Jesse Yen
- 2 University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Matrone G, Ramalli A, Tortoli P, Magenes G. Experimental evaluation of ultrasound higher-order harmonic imaging with Filtered-Delay Multiply And Sum (F-DMAS) non-linear beamforming. ULTRASONICS 2018; 86:59-68. [PMID: 29398065 DOI: 10.1016/j.ultras.2018.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/12/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Tissue Harmonic Imaging (THI) mode is currently one of the preferred choices by the clinicians for its ability to provide enhanced ultrasound images, thanks to the use of the second harmonic component of backscattered echoes. This paper aims at investigating whether the combination of THI with Filtered-Delay Multiply And Sum (F-DMAS) beamforming can provide further improvements in image quality. F-DMAS is a new non-linear beamformer, which, similarly to THI, is based on the use of the second harmonics of beamformed signals and is known to increase image contrast resolution and noise rejection. Thus, we have first compared the images obtained by using F-DMAS and the standard Delay And Sum (DAS) beamformers when only the second harmonics of the received signals was selected. Moreover, possible improvements brought about by other harmonic components generated by the combined use of the fundamental plus second harmonics and F-DMAS beamforming have been explored. Experimental results demonstrate that, as compared to standard harmonic imaging with DAS, THI and F-DMAS can be joined to improve the -20 dB lateral resolution up to 1 mm, the contrast ratio up to 12 dB on a cyst-phantom and up to 9 dB on in vivo images.
Collapse
Affiliation(s)
- Giulia Matrone
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Pavia, Italy; Centre for Health Technologies, Università degli Studi di Pavia, Pavia, Italy.
| | - Alessandro Ramalli
- Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Firenze, Florence, Italy; Laboratory of Cardiovascular Imaging and Dynamics, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Piero Tortoli
- Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Firenze, Florence, Italy
| | - Giovanni Magenes
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Pavia, Italy; Centre for Health Technologies, Università degli Studi di Pavia, Pavia, Italy
| |
Collapse
|
17
|
Varnosfaderani MHH, Mohammadzadeh Asl B, Faridsoltani S. An Adaptive Synthetic Aperture Method Applied to Ultrasound Tissue Harmonic Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:557-569. [PMID: 29610086 DOI: 10.1109/tuffc.2018.2799870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In recent years, the minimum variance (MV) beamformer has been highly regarded since it provides high resolution and contrast in B-mode ultrasound imaging compared with nonadaptive delay-and-sum (DAS) beamformer. However, the performance of MV beamformer is degraded in the presence of the noise due to inaccurate estimation of the covariance matrix resulting in low-quality images. The conventional tissue harmonic imaging (THI) offers multiple advantages over conventional pulse-echo ultrasound imaging, including enhanced contrast resolution and improved axial and lateral resolutions, but low signal-to-noise ratio (SNR) is a major problem facing this imaging method, which uses a fixed transmit focus and dynamic receive focusing (DRF). In this paper, a synthetic aperture method based on the virtual source, namely, bidirectional pixel-based focusing (BiPBF), has been combined with the MV beamformer and then applied to second-harmonic ultrasound imaging. The main objective is suppressing the noise level to enhance the performance of the MV beamformer in the harmonic imaging, especially in lower and deeper depths where the SNR is low. In addition, combining the BiPBF and MV weighting results in simultaneous improvement in imaging resolution and contrast, in comparison with the conventional methods: DRF (DAS), BiPBF (DAS), and DRF (MV). The performance of the proposed method is evaluated on simulated and experimental RF data. The THI is achieved using the pulse-inversion technique. The results of the simulated wire phantom demonstrate that the proposed beamformer can achieve the best lateral resolution, along different depths, compared with DRF (DAS), BiPBF (DAS), and DRF (MV) methods. The results of the simulated and experimental cyst phantoms show that the new beamformer improves the contrast ratio (CR) and contrast-to-noise ratio (CNR) of the resulting images. In results of simulated cyst phantom, in average, the new beamformer improves the CR and CNR of the cyst about (7.4 dB, 49%), (3.2 dB, 16%), and (5 dB, 26%) compared with DRF (DAS), BiPBF (DAS), and DRF (MV), respectively. In results of experimental cyst phantom, these relative improvements are about (4.2 dB, 22%), (1.7 dB, 7%), and (2.6 dB, 15%). In addition, BiPBF (MV) method offers improved edge definition of cysts in comparison with the other methods.
Collapse
|
18
|
Deng Y, Palmeri ML, Rouze NC, Haystead CM, Nightingale KR. Evaluating the Benefit of Elevated Acoustic Output in Harmonic Motion Estimation in Ultrasonic Shear Wave Elasticity Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:303-310. [PMID: 29169880 PMCID: PMC5743577 DOI: 10.1016/j.ultrasmedbio.2017.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 05/03/2023]
Abstract
Harmonic imaging techniques have been applied in ultrasonic elasticity imaging to obtain higher-quality tissue motion tracking data. However, harmonic tracking can be signal-to-noise ratio and penetration depth limited during clinical imaging, resulting in decreased yield of successful shear wave speed measurements. A logical approach is to increase the source pressure, but the in situ pressures used in diagnostic ultrasound have been subject to a de facto upper limit based on the Food and Drug Administration guideline for the mechanical index (MI <1.9). A recent American Institute of Ultrasound in Medicine report concluded that an in situ MI up to 4.0 could be warranted without concern for increased risk of cavitation in non-fetal tissues without gas bodies if there were a concurrent clinical benefit. This work evaluates the impact of using an elevated MI in harmonic motion tracking for hepatic shear wave elasticity imaging. The studies indicate that high-MI harmonic tracking increased shear wave speed estimation yield by 27% at a focal depth of 5 cm, with larger yield increase in more difficult-to-image patients. High-MI tracking improved harmonic tracking data quality by increasing the signal-to-noise ratio and decreasing jitter in the tissue motion data. We conclude that there is clinical benefit to use of elevated acoustic output in shear wave tracking, particularly in difficult-to-image patients.
Collapse
Affiliation(s)
- Yufeng Deng
- Department of Biomedical Engineering, Duke University, Durham, North Carolina.
| | - Mark L Palmeri
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Ned C Rouze
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Clare M Haystead
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
19
|
Assessment of Molecular Acoustic Angiography for Combined Microvascular and Molecular Imaging in Preclinical Tumor Models. Mol Imaging Biol 2017; 19:194-202. [PMID: 27519522 DOI: 10.1007/s11307-016-0991-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE The purposes of the present study is to evaluate a new ultrasound molecular imaging approach in its ability to image a preclinical tumor model and to investigate the capacity to visualize and quantify co-registered microvascular and molecular imaging volumes. PROCEDURES Molecular imaging using the new technique was compared with a conventional ultrasound molecular imaging technique (multi-pulse imaging) by varying the injected microbubble dose and scanning each animal using both techniques. Each of the 14 animals was randomly assigned one of three doses; bolus dose was varied, and the animals were imaged for three consecutive days so that each animal received every dose. A microvascular scan was also acquired for each animal by administering an infusion of nontargeted microbubbles. These scans were paired with co-registered molecular images (VEGFR2-targeted microbubbles), the vessels were segmented, and the spatial relationships between vessels and VEGFR2 targeting locations were analyzed. In five animals, an additional scan was performed in which the animal received a bolus of microbubbles targeted to E- and P-selectins. Vessel tortuosity as a function of distance from VEGF and selectin targeting was analyzed in these animals. RESULTS Although resulting differences in image intensity due to varying microbubble dose were not significant between the two lowest doses, superharmonic imaging had significantly higher contrast-to-tissue ratio (CTR) than multi-pulse imaging (mean across all doses 13.98 dB for molecular acoustic angiography vs. 0.53 dB for multi-pulse imaging; p = 4.9 × 10-10). Analysis of registered microvascular and molecular imaging volumes indicated that vessel tortuosity decreases with increasing distance from both VEGFR2- and selectin-targeting sites. CONCLUSIONS Molecular acoustic angiography (superharmonic molecular imaging) exhibited a significant increase in CTR at all doses tested due to superior rejection of tissue artifact signals. Due to the high resolution of acoustic angiography molecular imaging, it is possible to analyze spatial relationships in aligned microvascular and molecular superharmonic imaging volumes. Future studies are required to separate the effects of biomarker expression and blood flow kinetics in comparing local tortuosity differences between different endothelial markers such as VEGFR2, E-selectin, and P-selectin.
Collapse
|
20
|
Deng Y, Palmeri ML, Rouze NC, Trahey GE, Haystead CM, Nightingale KR. Quantifying Image Quality Improvement Using Elevated Acoustic Output in B-Mode Harmonic Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2416-2425. [PMID: 28755792 PMCID: PMC5580090 DOI: 10.1016/j.ultrasmedbio.2017.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/01/2017] [Accepted: 06/20/2017] [Indexed: 05/03/2023]
Abstract
Tissue harmonic imaging has been widely used in abdominal imaging because of its significant reduction in acoustic noise compared with fundamental imaging. However, tissue harmonic imaging can be limited by both signal-to-noise ratio and penetration depth during clinical imaging, resulting in decreased diagnostic utility. A logical approach would be to increase the source pressure, but the in situ pressures used in diagnostic ultrasound are subject to a de facto upper limit based on the U.S. Food and Drug Administration guideline for the mechanical index (<1.9). A recent American Institute of Ultrasound in Medicine report concluded that an effective mechanical index ≤4.0 could be warranted without concern for increased risk of cavitation in non-fetal tissues without gas bodies, but would only be justified if there were a concurrent improvement in image quality and diagnostic utility. This work evaluates image quality differences between normal and elevated acoustic output hepatic harmonic imaging using a transmit frequency of 1.8 MHz. The results indicate that harmonic imaging using elevated acoustic output leads to modest improvements (3%-7%) in contrast-to-noise ratio of hypo-echoic hepatic vessels and increases in imaging penetration depth on the order of 4 mm per mechanical index increase of 0.1 for a given focal depth. Difficult-to-image patients who suffer from poor ultrasound image quality exhibited larger improvements than easy-to-image study participants.
Collapse
Affiliation(s)
- Yufeng Deng
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
| | - Mark L Palmeri
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Ned C Rouze
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Gregg E Trahey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Clare M Haystead
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
21
|
Shin J, Huang L. Spatial Prediction Filtering of Acoustic Clutter and Random Noise in Medical Ultrasound Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:396-406. [PMID: 27654323 DOI: 10.1109/tmi.2016.2610758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
One of the major challenges in array-based medical ultrasound imaging is the image quality degradation caused by sidelobes and off-axis clutter, which is an inherent limitation of the conventional delay-and-sum (DAS) beamforming operating on a finite aperture. Ultrasound image quality is further degraded in imaging applications involving strong tissue attenuation and/or low transmit power. In order to effectively suppress acoustic clutter from off-axis targets and random noise in a robust manner, we introduce in this paper a new adaptive filtering technique called frequency-space (F-X) prediction filtering or FXPF, which was first developed in seismic imaging for random noise attenuation. Seismologists developed FXPF based on the fact that linear and quasilinear events or wavefronts in the time-space (T-X) domain are manifested as a superposition of harmonics in the frequency-space (F-X) domain, which can be predicted using an auto-regressive (AR) model. We describe the FXPF technique as a spectral estimation or a direction-of-arrival problem, and explain why adaptation of this technique into medical ultrasound imaging is beneficial. We apply our new technique to simulated and tissue-mimicking phantom data. Our results demonstrate that FXPF achieves CNR improvements of 26% in simulated noise-free anechoic cyst, 109% in simulated anechoic cyst contaminated with random noise of 15 dB SNR, and 93% for experimental anechoic cyst from a custom-made tissue-mimicking phantom. Our findings suggest that FXPF is an effective technique to enhance ultrasound image contrast and has potential to improve the visualization of clinically important anatomical structures and diagnosis of diseased conditions.
Collapse
|
22
|
Affiliation(s)
- Barry Ward
- Regional Medical Physics Department, Newcastle General Hospital
| | | |
Collapse
|
23
|
Ding X, Nguyen MM, James IB, Marra KG, Rubin JP, Leers SA, Kim K. Improved Estimation of Ultrasound Thermal Strain Using Pulse Inversion Harmonic Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1182-1192. [PMID: 26948260 PMCID: PMC4811719 DOI: 10.1016/j.ultrasmedbio.2016.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/01/2016] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Thermal (temporal) strain imaging (TSI) is being developed to detect the lipid-rich core of atherosclerotic plaques and presence of fatty liver disease. However, the effects of ultrasonic clutter on TSI have not been considered. In this study, we evaluated whether pulse inversion harmonic imaging (PIHI) could be used to improve estimates of thermal (temporal) strain. Using mixed castor oil-gelatin phantoms of different concentrations and artificially introduced clutter, we found that PIHI improved the signal-to-noise ratio of TSI by an average of 213% or 52.1% relative to 3.3- and 6.6-MHz imaging, respectively. In a phantom constructed using human liposuction fat in the presence of clutter, the contrast-to-noise ratio was degraded by 35.1% for PIHI compared with 62.4% and 43.7% for 3.3- and 6.6-MHz imaging, respectively. These findings were further validated using an ex vivo carotid endarterectomy sample. PIHI can be used to improve estimates of thermal (temporal) strain in the presence of clutter.
Collapse
Affiliation(s)
- Xuan Ding
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, USA; Department of Medicine and Heart and Vascular Institute, Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Man M Nguyen
- Department of Medicine and Heart and Vascular Institute, Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Isaac B James
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kacey G Marra
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - J Peter Rubin
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Steven A Leers
- Department of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Kang Kim
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Department of Medicine and Heart and Vascular Institute, Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
24
|
Correia M, Provost J, Chatelin S, Villemain O, Tanter M, Pernot M. Ultrafast Harmonic Coherent Compound (UHCC) Imaging for High Frame Rate Echocardiography and Shear-Wave Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:420-31. [PMID: 26890730 PMCID: PMC4878711 DOI: 10.1109/tuffc.2016.2530408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Transthoracic shear-wave elastography (SWE) of the myocardium remains very challenging due to the poor quality of transthoracic ultrafast imaging and the presence of clutter noise, jitter, phase aberration, and ultrasound reverberation. Several approaches, such as diverging-wave coherent compounding or focused harmonic imaging, have been proposed to improve the imaging quality. In this study, we introduce ultrafast harmonic coherent compounding (UHCC), in which pulse-inverted diverging waves are emitted and coherently compounded, and show that such an approach can be used to enhance both SWE and high frame rate (FR) B-mode Imaging. UHCC SWE was first tested in phantoms containing an aberrating layer and was compared against pulse-inversion harmonic imaging and against ultrafast coherent compounding (UCC) imaging at the fundamental frequency. In vivo feasibility of the technique was then evaluated in six healthy volunteers by measuring myocardial stiffness during diastole in transthoracic imaging. We also demonstrated that improvements in imaging quality could be achieved using UHCC B-mode imaging in healthy volunteers. The quality of transthoracic images of the heart was found to be improved with the number of pulse-inverted diverging waves with a reduction of the imaging mean clutter level up to 13.8 dB when compared against UCC at the fundamental frequency. These results demonstrated that UHCC B-mode imaging is promising for imaging deep tissues exposed to aberration sources with a high FR.
Collapse
|
25
|
Klibanov AL, Hossack JA. Ultrasound in Radiology: From Anatomic, Functional, Molecular Imaging to Drug Delivery and Image-Guided Therapy. Invest Radiol 2015; 50:657-70. [PMID: 26200224 PMCID: PMC4580624 DOI: 10.1097/rli.0000000000000188] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During the past decade, ultrasound has expanded medical imaging well beyond the "traditional" radiology setting: a combination of portability, low cost, and ease of use makes ultrasound imaging an indispensable tool for radiologists as well as for other medical professionals who need to obtain imaging diagnosis or guide a therapeutic intervention quickly and efficiently. Ultrasound combines excellent ability for deep penetration into soft tissues with very good spatial resolution, with only a few exceptions (ie, those involving overlying bone or gas). Real-time imaging (up to hundreds and thousands of frames per second) enables guidance of therapeutic procedures and biopsies; characterization of the mechanical properties of the tissues greatly aids with the accuracy of the procedures. The ability of ultrasound to deposit energy locally brings about the potential for localized intervention encompassing the following: tissue ablation, enhancing penetration through the natural barriers to drug delivery in the body and triggering drug release from carrier microparticles and nanoparticles. The use of microbubble contrast agents brings the ability to monitor and quantify tissue perfusion, and microbubble targeting with ligand-decorated microbubbles brings the ability to obtain molecular biomarker information, that is, ultrasound molecular imaging. Overall, ultrasound has become the most widely used imaging modality in modern medicine; it will continue to grow and expand.
Collapse
Affiliation(s)
- Alexander L Klibanov
- From the *Cardiovascular Division, Robert M. Berne Cardiovascular Research Center, School of Medicine, and †Department of Biomedical Engineering, University of Virginia, Charlottesville VA
| | | |
Collapse
|
26
|
Nightingale KR, Church CC, Harris G, Wear KA, Bailey MR, Carson PL, Jiang H, Sandstrom KL, Szabo TL, Ziskin MC. Conditionally Increased Acoustic Pressures in Nonfetal Diagnostic Ultrasound Examinations Without Contrast Agents: A Preliminary Assessment. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2015; 34:1-41. [PMID: 26112617 PMCID: PMC4822701 DOI: 10.7863/ultra.34.7.15.13.0001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The mechanical index (MI) has been used by the US Food and Drug Administration (FDA) since 1992 for regulatory decisions regarding the acoustic output of diagnostic ultrasound equipment. Its formula is based on predictions of acoustic cavitation under specific conditions. Since its implementation over 2 decades ago, new imaging modes have been developed that employ unique beam sequences exploiting higher-order acoustic phenomena, and, concurrently, studies of the bioeffects of ultrasound under a range of imaging scenarios have been conducted. In 2012, the American Institute of Ultrasound in Medicine Technical Standards Committee convened a working group of its Output Standards Subcommittee to examine and report on the potential risks and benefits of the use of conditionally increased acoustic pressures (CIP) under specific diagnostic imaging scenarios. The term "conditionally" is included to indicate that CIP would be considered on a per-patient basis for the duration required to obtain the necessary diagnostic information. This document is a result of that effort. In summary, a fundamental assumption in the MI calculation is the presence of a preexisting gas body. For tissues not known to contain preexisting gas bodies, based on theoretical predications and experimentally reported cavitation thresholds, we find this assumption to be invalid. We thus conclude that exceeding the recommended maximum MI level given in the FDA guidance could be warranted without concern for increased risk of cavitation in these tissues. However, there is limited literature assessing the potential clinical benefit of exceeding the MI guidelines in these tissues. The report proposes a 3-tiered approach for CIP that follows the model for employing elevated output in magnetic resonance imaging and concludes with summary recommendations to facilitate Institutional Review Board (IRB)-monitored clinical studies investigating CIP in specific tissues.
Collapse
Affiliation(s)
- Kathryn R Nightingale
- Department of Biomedical Engineering, Duke University, PO Box 90281, Durham, NC 27708 USA
| | - Charles C Church
- National Center for Physical Acoustics and Department of Physics and Astronomy, The University of Mississippi, University, MS 38677 USA
| | - Gerald Harris
- US Food and Drug Administration (Retired), Current Address: 132 S Van Buren St, Rockville, MD 20850 USA
| | - Keith A Wear
- US Food and Drug Administration, 10903 New Hampshire Ave, Building 62, Room 2104, Silver Spring, MD 20993-0002 USA
| | - Michael R Bailey
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St, Seattle WA 98105 USA
| | - Paul L Carson
- Department of Radiology, University of Michigan Health System, 3218C Med Sci I, B Wing SPC 5667, Ann Arbor, MI 48109-5667 USA
| | - Hui Jiang
- Fujifilm SonoSite, 21919 30th Dr SE, Bothell, WA 98021 USA
| | - Kurt L Sandstrom
- Samsung Medison Co, Ltd, Building, 42, Teheran-ro, 108-gil, Gangnam-gu, Seoul 135-851, Korea
| | - Thomas L Szabo
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215 USA
| | - Marvin C Ziskin
- Emeritus Professor of Radiology and Medical Physics, Temple University School of Medicine, Philadelphia, PA 19140 USA
| |
Collapse
|
27
|
Church CC, Labuda C, Nightingale K. A theoretical study of inertial cavitation from acoustic radiation force impulse imaging and implications for the mechanical index. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:472-85. [PMID: 25592457 PMCID: PMC4297318 DOI: 10.1016/j.ultrasmedbio.2014.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 05/10/2023]
Abstract
The mechanical index (MI) attempts to quantify the likelihood that exposure to diagnostic ultrasound will produce an adverse biological effect by a non-thermal mechanism. The current formulation of the MI implicitly assumes that the acoustic field is generated using the short pulse durations appropriate to B-mode imaging. However, acoustic radiation force impulse (ARFI) imaging employs high-intensity pulses up to several hundred acoustic periods long. The effect of increased pulse durations on the thresholds for inertial cavitation was studied computationally in water, urine, blood, cardiac and skeletal muscle, brain, kidney, liver and skin. The results indicate that, although the effect of pulse duration on cavitation thresholds in the three liquids can be considerable, reducing them by, for example, 6%-24% at 1 MHz, the effect on tissue is minor. More importantly, the frequency dependence of the MI appears to be unnecessarily conservative; that is, the magnitude of the exponent on frequency could be increased to 0.75. Comparison of these theoretical results with experimental measurements suggests that some tissues do not contain the pre-existing, optimally sized bubbles assumed for the MI. This means that in these tissues, the MI is not necessarily a strong predictor of the probability of an adverse biological effect.
Collapse
Affiliation(s)
- Charles C Church
- National Center for Physical Acoustics and Department of Physics and Astronomy, University of Mississippi, University, Mississippi, USA.
| | - Cecille Labuda
- National Center for Physical Acoustics and Department of Physics and Astronomy, University of Mississippi, University, Mississippi, USA
| | - Kathryn Nightingale
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
28
|
Demi L, Ramalli A, Giannini G, Mischi M. In vitro and in vivo tissue harmonic images obtained with parallel transmit beamforming by means of orthogonal frequency division multiplexing. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:230-235. [PMID: 25585405 DOI: 10.1109/tuffc.2014.006599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In classic pulse-echo ultrasound imaging, the data acquisition rate is limited by the speed of sound. To overcome this, parallel beamforming techniques in transmit (PBT) and in receive (PBR) mode have been proposed. In particular, PBT techniques, based on the transmission of focused beams, are more suitable for harmonic imaging because they are capable of generating stronger harmonics. Recently, orthogonal frequency division multiplexing (OFDM) has been investigated as a means to obtain parallel beamformed tissue harmonic images. To date, only numerical studies and experiments in water have been performed, hence neglecting the effect of frequencydependent absorption. Here we present the first in vitro and in vivo tissue harmonic images obtained with PBT by means of OFDM, and we compare the results with classic B-mode tissue harmonic imaging. The resulting contrast-to-noise ratio, here used as a performance metric, is comparable. A reduction by 2 dB is observed for the case in which three parallel lines are reconstructed. In conclusion, the applicability of this technique to ultrasonography as a means to improve the data acquisition rate is confirmed.
Collapse
|
29
|
Lindsey BD, Rojas JD, Martin KH, Shelton SE, Dayton PA. Acoustic characterization of contrast-to-tissue ratio and axial resolution for dual-frequency contrast-specific acoustic angiography imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:1668-87. [PMID: 25265176 PMCID: PMC8375273 DOI: 10.1109/tuffc.2014.006466] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Recently, dual-frequency transducers have enabled high-spatial-resolution and high-contrast imaging of vasculature with minimal tissue artifacts by transmitting at a low frequency and receiving broadband superharmonic echoes scattered by microbubble contrast agents. In this work, we examine the imaging parameters for optimizing contrast-to-tissue ratio (CTR) for dual-frequency imaging and the relationship with spatial resolution. Confocal piston transducers are used in a water bath setup to measure the SNR, CTR, and axial resolution for ultrasound imaging of nonlinear scattering of microbubble contrast agents when transmitting at a lower frequency (1.5 to 8 MHz) and receiving at a higher frequency (7.5 to 25 MHz). Parameters varied include the frequency and peak negative pressure of transmitted waves, center frequency of the receiving transducer, microbubble concentration, and microbubble size. CTR is maximized at the lowest transmission frequencies but would be acceptable for imaging in the 1.5 to 3.5 MHz range. At these frequencies, CTR is optimized when a receiving transducer with a center frequency of 10 MHz is used, with the maximum CTR of 25.5 dB occurring when transmitting at 1.5 MHz with a peak negative pressure of 1600 kPa and receiving with a center frequency of 10 MHz. Axial resolution is influenced more heavily by the receiving center frequency, with a weak decrease in measured pulse lengths associated with increasing transmit frequency. A microbubble population containing predominately 4-μm-diameter bubbles yielded the greatest CTR, followed by 1- and then 2-μm bubbles. Varying concentration showed little effect over the tested parameters. CTR dependence on transmit frequency and peak pressure were confirmed through in vivo imaging in two rodents. These findings may lead to improved imaging of vascular remodeling in superficial or luminal cancers such as those of the breast, prostate, and colon.
Collapse
|
30
|
Nguyen MM, Shin J, Yen J. Harmonic imaging with fresnel beamforming in the presence of phase aberration. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2488-2498. [PMID: 25018027 DOI: 10.1016/j.ultrasmedbio.2014.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 01/25/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
Fresnel beamforming is a beamforming method with a delay profile similar in shape to a physical Fresnel lens. The advantage of Fresnel beamforming is the reduced channel count, which consists of four to eight transmit and two analog-to-digital receive channels. Fresnel beamforming was found to perform comparably to conventional delay-and-sum beamforming. However, the performance of Fresnel beamforming is highly dependent on focal errors. These focal errors result in high side-lobe levels and further reduce the performance of Fresnel beamforming in the presence of phase aberration. With the advantages of lower side-lobe levels and suppression of aberration effects, harmonic imaging offers an effective solution to the limitations of Fresnel beamforming. We describe the implementation of tissue harmonic imaging and pulse inversion harmonic imaging in Fresnel beamforming, followed by dual apodization with cross-correlation, to improve image quality. Compared with conventional delay-and-sum beamforming, experimental results indicated contrast-to-noise ratio improvements of 10%, 49% and 264% for Fresnel beamforming using tissue harmonic imaging in the cases of no aberrator, 5-mm pork aberrator and 12-mm pork aberrator, respectively. These improvements were 22%, 57% and 352% for Fresnel beamforming using pulse inversion harmonic imaging. Moreover, dual apodization with cross-correlation was found to further improve the contrast-to-noise ratios in all cases. Harmonic imaging was also found to narrow the lateral beamwidth and shorten the axial pulse length by at least 25% and 21%, respectively, for Fresnel beamforming at different aberration levels. These results suggest the effectiveness of harmonic imaging in improving image quality for Fresnel beamforming, especially in the presence of phase aberration. Even though this combination of Fresnel beamforming and harmonic imaging does not outperform delay-and-sum beamforming combined with harmonic imaging, it provides the benefits of reduced channel count and potentially reduced cost and size of ultrasound systems.
Collapse
Affiliation(s)
- Man Minh Nguyen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.
| | - Junseob Shin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Jesse Yen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
31
|
Hemmsen MC, Rasmussen JH, Jensen JA. Tissue harmonic synthetic aperture ultrasound imaging. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:2050-2056. [PMID: 25324103 DOI: 10.1121/1.4893902] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Synthetic aperture sequential beamforming (SASB) and tissue harmonic imaging (THI) are combined to improve the image quality of medical ultrasound imaging. The technique is evaluated in a comparative study against dynamic receive focusing (DRF). The objective is to investigate if SASB combined with THI improves the image quality compared to DRF-THI. The major benefit of SASB is a reduced bandwidth between the probe and processing unit. A BK Medical 2202 Ultraview ultrasound scanner was used to acquire beamformed RF data for offline evaluation. The acquisition was made interleaved between methods, and data were recorded with and without pulse inversion for tissue harmonic imaging. Data were acquired using a Sound Technology 192 element convex array transducer from both a wire phantom and a tissue mimicking phantom to investigate spatial resolution and penetration. In vivo scans were also performed for a visual comparison. The spatial resolution for SASB-THI is on average 19% better than DRI-THI, and the investigation of penetration showed equally good signal-to-noise ratio. In vivo B-mode scans were made and compared. The comparison showed that SASB-THI reduces the artifact and noise interference and improves image contrast and spatial resolution.
Collapse
Affiliation(s)
- Martin Christian Hemmsen
- Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads, Building 349, DK-2800 Kongens Lyngby, Denmark
| | - Joachim Hee Rasmussen
- Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads, Building 349, DK-2800 Kongens Lyngby, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads, Building 349, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
32
|
Sandhu GK, Angyalfi S, Dunscombe PB, Khan RF. Is tissue harmonic ultrasound imaging (THI) of the prostatic urethra and rectum superior to brightness (B) mode imaging? An observer study. Phys Med 2014; 30:662-8. [DOI: 10.1016/j.ejmp.2014.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/27/2014] [Accepted: 04/08/2014] [Indexed: 12/01/2022] Open
|
33
|
Liu Z, Guo X, Tu J, Zhang D. Variations in temperature distribution and tissue lesion formation induced by tissue inhomogeneity for therapeutic ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1857-1868. [PMID: 24768487 DOI: 10.1016/j.ultrasmedbio.2014.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 01/29/2014] [Accepted: 02/03/2014] [Indexed: 06/03/2023]
Abstract
Tissue inhomogeneity might have an important effect on the treatment accuracy of therapeutic ultrasound. Both computer simulation and measurement were performed to study the influence of tissue inhomogeneity on the temperature distribution and tissue lesion formation induced by focused ultrasound. The inhomogeneous tissue is considered a combination of a homogeneous medium and a phase aberration screen in this article. Temperature distributions and lesion dimensions were predicted using the combination of acoustic non-linear and bio-heat transfer equations. To verify the theoretical predictions, polyethylene plates with phase distributions of different correlation lengths and standard deviations were made to mimic inhomogeneous tissues such as human abdominal tissue, and a series of experiments were performed, including acoustic and thermal measurements. The results indicate that the tissue inhomogeneity caused phase aberration of the ultrasound beam. With increasing standard deviation and correlation length of phase aberration, the scattering level of the acoustic field increased, while ultrasound-induced peak temperature and lesion size decreased. This study provides a theoretical and experimental basis for future development of accurate treatment plans for high-intensity focused ultrasound.
Collapse
Affiliation(s)
- Zhenbo Liu
- Key Laboratory of Modern Acoustics (Nanjing University), Ministry of Education, Nanjing, China; Nanjing Normal University, Nanjing, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (Nanjing University), Ministry of Education, Nanjing, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (Nanjing University), Ministry of Education, Nanjing, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (Nanjing University), Ministry of Education, Nanjing, China; State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
34
|
Keravnou CP, Averkiou MA. Harmonic generation with a dual frequency pulse. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 135:2545-2552. [PMID: 24815238 DOI: 10.1121/1.4871356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.
Collapse
Affiliation(s)
- Christina P Keravnou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 75 Kallipoleos, 1678 Nicosia, Cyprus
| | - Michalakis A Averkiou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 75 Kallipoleos, 1678 Nicosia, Cyprus
| |
Collapse
|
35
|
Dahl JJ, Sheth NM. Reverberation clutter from subcutaneous tissue layers: simulation and in vivo demonstrations. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:714-26. [PMID: 24530261 PMCID: PMC3942094 DOI: 10.1016/j.ultrasmedbio.2013.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/25/2013] [Accepted: 11/29/2013] [Indexed: 05/05/2023]
Abstract
The degradation of ultrasonic image quality is typically attributed to aberration and reverberation. Although the sources and impact of aberration are well understood, very little is known about the source and impact of image degradation caused by reverberation. Reverberation is typically associated with multiple reflections at two interfaces along the same propagation path, as with the arterial wall or a metal sphere. However, the reverberation that results in image degradation includes more complex interaction between the propagating wave and the tissue. Simulations of wave propagation in realistic and simplified models of the abdominal wall are used to illustrate the characteristics of coherent and diffuse clutter generated by reverberation. In the realistic models, diffuse reverberation clutter is divided into that originating from the tissue interfaces and that originating from sub-resolution diffuse scatterers. In the simplified models, the magnitude of the reverberation clutter is observed as angle and density of the connective tissue are altered. The results suggest that multi-path scattering from the connective tissue/fat interfaces is a dominant component of reverberation clutter. Diffuse reverberation clutter is maximal when the connective tissue is near normal to the beam direction and increases with the density of connective tissue layers at these large angles. The presence of a thick fascial or fibrous layer at the distal boundary of the abdominal wall magnifies the amount of reverberation clutter. The simulations also illustrate that compression of the abdominal layer, a technique often used to mitigate clutter in overweight and obese patients, increases the decay of reverberation clutter with depth. In addition, rotation of the transducer or steering of the beam with respect to highly reflecting boundaries can reduce coherent clutter and transform it to diffuse clutter, which can be further reduced using coherence-based beamforming techniques. In vivo images of the human bladder illustrate some of the reverberation effects observed in simulation.
Collapse
Affiliation(s)
- Jeremy J Dahl
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
| | - Niral M Sheth
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
36
|
Song P, Zhao H, Urban MW, Manduca A, Pislaru SV, Kinnick RR, Pislaru C, Greenleaf JF, Chen S. Improved Shear Wave Motion Detection Using Pulse-Inversion Harmonic Imaging With a Phased Array Transducer. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:2299-310. [PMID: 24021638 PMCID: PMC3947393 DOI: 10.1109/tmi.2013.2280903] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements of the left ventricular myocardium while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially facilitate more robust assessment of tissue elasticity by SWE.
Collapse
Affiliation(s)
- Pengfei Song
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN
| | - Heng Zhao
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN
| | - Matthew W. Urban
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN
| | - Sorin V. Pislaru
- Department of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN
| | - Randall R. Kinnick
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN
| | - Cristina Pislaru
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN
| | - James F. Greenleaf
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN
| | - Shigao Chen
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
37
|
Doherty JR, Dahl JJ, Trahey GE. Harmonic tracking of acoustic radiation force-induced displacements. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:2347-58. [PMID: 24158290 PMCID: PMC3974334 DOI: 10.1109/tuffc.2013.6644738] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ultrasound-based elasticity imaging methods rely upon accurate estimates of tissue deformation to characterize the mechanical properties of soft tissues. These methods are corrupted by clutter, which can bias and/or increase variance in displacement estimates. Harmonic imaging methods are routinely used for clutter suppression and improved image quality in conventional B-mode ultrasound, but have not been utilized in ultrasound-based elasticity imaging methods. We introduce a novel, fully-sampled pulse-inversion harmonic method for tracking tissue displacements that corrects the loss in temporal sampling frequency associated with conventional pulse-inversion techniques. The method is implemented with acoustic radiation force impulse (ARFI) imaging to monitor the displacements induced by an impulsive acoustic radiation force excitation. Custom pulse sequences were implemented on a diagnostic ultrasound scanner to collect spatially-matched fundamental and harmonic information within a single acquisition. B-mode and ARFI images created from fundamental data collected at 4 MHz and 8 MHz are compared with 8-MHz harmonic images created using a band-pass filter approach and the fully sampled pulse-inversion method. In homogeneous, tissue-mimicking phantoms, where no visible clutter was observed, there was little difference in the axial displacements, estimated jitter, and normalized cross-correlation among the fundamental and harmonic tracking methods. The similarity of the lower- and higher-frequency methods suggests that any improvement resulting from the increased frequency of the harmonic components is negligible. The harmonic tracking methods demonstrated a marked improvement in B-mode and ARFI image quality of in vivo carotid arteries. Improved feature detection and decreased variance in estimated displacements were observed in the arterial walls of harmonic ARFI images, especially in the pulse-inversion harmonic ARFI images. Within the lumen, the harmonic tracking methods improved the discrimination of the blood–vessel interface, making it easier to visualize plaque boundaries. Improvements in harmonic ARFI images in vivo were consistent with suppressed clutter supported by improved contrast and contrast-to-noise ratio (CNR) in the matched harmonic B-mode images compared with the fundamental B-mode images. These results suggest that harmonic tracking methods can improve the clinical utility and diagnostic accuracy of ultrasound-based elasticity imaging methods.
Collapse
|
38
|
Demi L, Viti J, Kusters L, Guidi F, Tortoli P, Mischi M. Implementation of parallel transmit beamforming using orthogonal frequency division multiplexing--achievable resolution and interbeam interference. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:2310-2320. [PMID: 24158287 DOI: 10.1109/tuffc.2013.6644735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The speed of sound in the human body limits the achievable data acquisition rate of pulsed ultrasound scanners. To overcome this limitation, parallel beamforming techniques are used in ultrasound 2-D and 3-D imaging systems. Different parallel beamforming approaches have been proposed. They may be grouped into two major categories: parallel beamforming in reception and parallel beamforming in transmission. The first category is not optimal for harmonic imaging; the second category may be more easily applied to harmonic imaging. However, inter-beam interference represents an issue. To overcome these shortcomings and exploit the benefit of combining harmonic imaging and high data acquisition rate, a new approach has been recently presented which relies on orthogonal frequency division multiplexing (OFDM) to perform parallel beamforming in transmission. In this paper, parallel transmit beamforming using OFDM is implemented for the first time on an ultrasound scanner. An advanced open platform for ultrasound research is used to investigate the axial resolution and interbeam interference achievable with parallel transmit beamforming using OFDM. Both fundamental and second-harmonic imaging modalities have been considered. Results show that, for fundamental imaging, axial resolution in the order of 2 mm can be achieved in combination with interbeam interference in the order of -30 dB. For second-harmonic imaging, axial resolution in the order of 1 mm can be achieved in combination with interbeam interference in the order of -35 dB.
Collapse
|
39
|
Shin J, Yen JT. Effects of dual apodization with cross-correlation on tissue harmonic and pulse inversion harmonic imaging in the presence of phase aberration. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:643-9. [PMID: 23475931 PMCID: PMC3630281 DOI: 10.1109/tuffc.2013.2607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Dual apodization with cross-correlation (DAX) is a relatively new beamforming technique which can suppress side lobes and clutter to enhance ultrasound image contrast. However, previous studies have shown that with increasing aberrator strength, contrast enhancements with DAX diminish and DAX becomes more prone to image artifacts. In this paper, we propose integrating DAX with tissue harmonic imaging (THI) or pulse inversion harmonic imaging (PIHI) to overcome their shortcomings and achieve higher image contrast. Compared with conventional imaging, our experimental results showed that DAX with THI allows for synergistic enhancements of image contrast with improvements of more than 231% for a 5-mm pork aberrator and 703% for a 12-mm pork aberrator. With PIHI, improvements of 238% and 890% were observed for the two pork tissue samples. Our results suggest that the complementary contrast enhancement mechanism employed by the proposed method may be useful in improving imaging of technically difficult patients in clinics.
Collapse
|
40
|
Jakovljevic M, Trahey GE, Nelson RC, Dahl JJ. In vivo application of short-lag spatial coherence imaging in human liver. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:534-42. [PMID: 23347642 PMCID: PMC3638043 DOI: 10.1016/j.ultrasmedbio.2012.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 09/23/2012] [Accepted: 09/25/2012] [Indexed: 05/05/2023]
Abstract
We present the results of a patient study conducted to assess the performance of two novel imaging methods, namely short-lag spatial coherence (SLSC) and harmonic spatial coherence imaging (HSCI), in an in vivo liver environment. Similar in appearance to the B-mode images, SLSC and HSCI images are based solely on the spatial coherence of fundamental and harmonic echo data, respectively, and do not depend on the echo magnitude. SLSC and HSCI suppress incoherent echo signals and thus tend to reduce clutter. The SLSC and HSCI images of 17 patients demonstrated sharper delineation of blood vessel walls, suppressed clutter inside the vessel lumen, and showed reduced speckle in surrounding tissue compared to matched B-modes. Target contrast and contrast-to-noise ratio (CNR) show statistically significant improvements between fundamental B-mode and SLSC imaging and between harmonic B-mode and HSCI imaging (in all cases p < 0.001). The magnitude of improvement in contrast and CNR increases as the overall quality of B-mode images decreases. Poor-quality fundamental B-mode images (where image quality classification is based on both contrast and CNR) exhibit the highest improvements in both contrast and CNR (288% improvement in contrast and 533% improvement in CNR).
Collapse
Affiliation(s)
- Marko Jakovljevic
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | | | | | | |
Collapse
|
41
|
|
42
|
Li Y, Robinson B. Correction of tissue-motion effects on common-midpoint signals using reciprocal signals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 132:872-882. [PMID: 22894210 DOI: 10.1121/1.4730913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The near field signal redundancy algorithm for phase-aberration correction is sensitive to tissue motion because several separated transmissions are usually needed to acquire a set of common-midpoint signals. If tissues are moving significantly due to, for example, heart beats, the effects of tissue motion on common-midpoint signals need to be corrected before the phase-aberration profile can be successfully measured. Theoretical analyses in this paper show that the arrival-time difference between a pair of common-midpoint signals due to tissue motion is usually very similar to that between the pair of reciprocal signals acquired using the same two transmissions. Based on this conclusion, an algorithm for correcting tissue-motion effects on the peak position of cross-correlation functions between common-midpoint signals is proposed and initial experimental results are also presented.
Collapse
Affiliation(s)
- Yue Li
- Information and Communication Technologies Centre, Commonwealth Scientific and Industrial Research Organisation, Marsfield, New South Wales 2122, Australia.
| | | |
Collapse
|
43
|
Dahl J, Jakovljevic M, Pinton GF, Trahey GE. Harmonic spatial coherence imaging: an ultrasonic imaging method based on backscatter coherence. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2012; 59:648-59. [PMID: 22547276 PMCID: PMC3342045 DOI: 10.1109/tuffc.2012.2243] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We introduce a harmonic version of the short-lag spatial coherence (SLSC) imaging technique, called harmonic spatial coherence imaging (HSCI). The method is based on the coherence of the second-harmonic backscatter. Because the same signals that are used to construct harmonic B-mode images are also used to construct HSCI images, the benefits obtained with harmonic imaging are also obtained with HSCI. Harmonic imaging has been the primary tool for suppressing clutter in diagnostic ultrasound imaging, however secondharmonic echoes are not necessarily immune to the effects of clutter. HSCI and SLSC imaging are less sensitive to clutter because clutter has low spatial coherence. HSCI shows favorable imaging characteristics such as improved contrast-to-noise ratio (CNR), improved speckle SNR, and better delineation of borders and other structures compared with fundamental and harmonic B-mode imaging. CNRs of up to 1.9 were obtained from in vivo imaging of human cardiac tissue with HSCI, compared with 0.6, 0.9, and 1.5 in fundamental B-mode, harmonic B-mode, and SLSC imaging, respectively. In vivo experiments in human liver tissue demonstrated SNRs of up to 3.4 for HSCI compared with 1.9 for harmonic B-mode. Nonlinear simulations of a heart chamber model were consistent with the in vivo experiments.
Collapse
Affiliation(s)
- Jeremy Dahl
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | | | | | | |
Collapse
|
44
|
Critical US visibility with tissue harmonic imaging of subcutaneous nodules(). J Ultrasound 2011; 14:152-6. [PMID: 23396896 DOI: 10.1016/j.jus.2011.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Assessment of US ability to identify subcutaneous nodular lesions using conventional B mode imaging (CBMI) and tissue second harmonic imaging (THI). MATERIALS AND METHODS Three different types of equipment were used (Philips Envisor HDC, Philips HD 11 XE and GE Logic E) with 12-13 MHz probes and THI probes with variable frequency. One experienced operator studied 31 patients (24 women, 7 men, mean age 49 ± 15) with 52 subcutaneous nodular lesions of which 43 were palpable and 9 were nonpalpable. Statistical analysis was carried out using chi-square test. RESULTS 19/52 subcutaneous nodular lesions were hyperechoic, 10/52 were isoechoic and 23/52 were hypoechoic. Of the hyperechoic nodules, 8/19 (42%) (p < 0.005) were not detected using THI, as they "disappeared" when THI was activated. Of the isoechoic nodules only 1/10 was not detected using THI, and of the hypoechoic nodules only 2/23 were not detected. Of the nodular lesions detected using CBMI and also using THI (41/52), 16/41 were shown more clearly using THI than using BMCI. No nodule was detected with the exclusive use of THI. CONCLUSIONS The statistical significance of the "disappearing" lesions (p < 0.005), mainly hyperechoic (42%), at the activation of THI must lead to a reconsideration of routine activation of THI during the entire US examination in the evaluation of subcutaneous lesions in order to avoid the risk of missing important lesions. The present results suggest that both BMCI and THI should be used in the study of subcutaneous lesions.
Collapse
|
45
|
Hoilund-Kaupang H, Masoy SE. Transmit beamforming for optimal second-harmonic generation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2011; 58:1559-1569. [PMID: 21859575 DOI: 10.1109/tuffc.2011.1983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A simulation study of transmit ultrasound beams from several transducer configurations is conducted to compare second-harmonic imaging at 3.5 MHz and 11 MHz. Second- harmonic generation and the ability to suppress near field echoes are compared. Each transducer configuration is defined by a chosen f-number and focal depth, and the transmit pressure is estimated to not exceed a mechanical index of 1.2. The medium resembles homogeneous muscle tissue with nonlinear elasticity and power-law attenuation. To improve computational efficiency, the KZK equation is utilized, and all transducers are circular-symmetric. Previous literature shows that second-harmonic generation is proportional to the square of the transmit pressure, and that transducer configurations with different transmit frequencies, but equal aperture and focal depth in terms of wavelengths, generate identical second-harmonic fields in terms of shape. Results verify this for a medium with attenuation f1. For attenuation f1.1, deviations are found, and the high frequency subsequently performs worse than the low frequency. The results suggest that high frequencies are less able to suppress near-field echoes in the presence of a heterogeneous body wall than low frequencies.
Collapse
Affiliation(s)
- Halvard Hoilund-Kaupang
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
| | | |
Collapse
|
46
|
Shen CC, Shi TY. Third harmonic transmit phasing for SNR improvement in tissue harmonic imaging with Golay-encoded excitation. ULTRASONICS 2011; 51:554-560. [PMID: 21256530 DOI: 10.1016/j.ultras.2010.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/14/2010] [Accepted: 12/14/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND Ultrasound tissue harmonic signal generally provides superior image quality as compared to the linear signal. However, since the generation of the tissue harmonic signal is based on finite amplitude distortion of the propagating waveform, the penetration and the sensitivity in tissue harmonic imaging are markedly limited because of the low signal-to-noise ratio (SNR). METHODS The method of third harmonic (3f(0)) transmit phasing can improve the tissue harmonic SNR by transmitting at both the fundamental (2.25MHz) and the 3f(0) (6.75MHz) frequencies to achieve mutual enhancement between the frequency-sum and the frequency-difference components of the second harmonic signal. To further increase the SNR without excessive transmit pressure, coded excitation can be incorporated in 3f(0) transmit phasing to boost the tissue harmonic generation. RESULTS Our analyses indicate that the phase-encoded Golay excitation is suitable in 3f(0) transmit phasing due to its superior transmit bandwidth efficiency. The resultant frequency-sum and frequency-difference components of tissue harmonic signal can be simultaneously Golay-encoded for SNR improvement. The increase of the main-lobe signal with the Golay excitation in 3f(0) transmit phasing are consistent between the tissue harmonic measurements and the simulations. B-mode images of the speckle generating phantom also demonstrate the increases of tissue harmonic SNR for about 11dB without noticeable compression artifacts. CONCLUSION For tissue harmonic imaging in combination with the 3f(0) transmit phasing method, the Golay excitation can provide further SNR improvement. Meanwhile, the axial resolution can be effectively restored by pulse compression while the lateral resolution remains unchanged.
Collapse
Affiliation(s)
- Che-Chou Shen
- Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| | | |
Collapse
|
47
|
Sandhu G, Dunscombe P, Khan R. A pre-clinical phantom comparison of tissue harmonic and brightness mode imaging for application in ultrasound guided prostate brachytherapy. Phys Med 2011; 27:153-62. [DOI: 10.1016/j.ejmp.2010.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 09/03/2010] [Accepted: 10/03/2010] [Indexed: 10/18/2022] Open
|
48
|
Pinton GF, Trahey GE, Dahl JJ. Sources of image degradation in fundamental and harmonic ultrasound imaging: a nonlinear, full-wave, simulation study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2011; 58:1272-83. [PMID: 21693410 PMCID: PMC4443447 DOI: 10.1109/tuffc.2011.1938] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A full-wave equation that describes nonlinear propagation in a heterogeneous attenuating medium is solved numerically with finite differences in the time domain. This numerical method is used to simulate propagation of a diagnostic ultrasound pulse through a measured representation of the human abdomen with heterogeneities in speed of sound, attenuation, density, and nonlinearity. Conventional delay-and-sum beamforming is used to generate point spread functions (PSFs) that display the effects of these heterogeneities. For the particular imaging configuration that is modeled, these PSFs reveal that the primary source of degradation in fundamental imaging is due to reverberation from near-field structures. Compared with fundamental imaging, reverberation clutter in harmonic imaging is 27.1 dB lower. Simulated tissue with uniform velocity but unchanged impedance characteristics indicates that for harmonic imaging, the primary source of degradation is phase aberration.
Collapse
Affiliation(s)
- Gianmarco F. Pinton
- Institut Langevin, École Supérieure de Physique et
de Chimie Industrielles de la ville de Paris (ESPCI) ParisTech, Centre
National de la Recherche Scientifique (CNRS), UMR 7587, Paris, France
| | - Gregg E. Trahey
- Duke University, Department of Biomedical Engineering, Durham,
NC
- Duke University Medical Center, Department of Radiology, Durham,
NC
| | - Jeremy J. Dahl
- Duke University, Department of Biomedical Engineering, Durham,
NC
| |
Collapse
|
49
|
Pinton GF, Trahey GE, Dahl JJ. Sources of image degradation in fundamental and harmonic ultrasound imaging using nonlinear, full-wave simulations. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2011; 58:754-65. [PMID: 21507753 PMCID: PMC3140000 DOI: 10.1109/tuffc.2011.1868] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A full-wave equation that describes nonlinear propagation in a heterogeneous attenuating medium is solved numerically with finite differences in the time domain (FDTD). This numerical method is used to simulate propagation of a diagnostic ultrasound pulse through a measured representation of the human abdomen with heterogeneities in speed of sound, attenuation, density, and nonlinearity. Conventional delay-andsum beamforming is used to generate point spread functions (PSF) that display the effects of these heterogeneities. For the particular imaging configuration that is modeled, these PSFs reveal that the primary source of degradation in fundamental imaging is reverberation from near-field structures. Reverberation clutter in the harmonic PSF is 26 dB higher than the fundamental PSF. An artificial medium with uniform velocity but unchanged impedance characteristics indicates that for the fundamental PSF, the primary source of degradation is phase aberration. An ultrasound image is created in silico using the same physical and algorithmic process used in an ultrasound scanner: a series of pulses are transmitted through heterogeneous scattering tissue and the received echoes are used in a delay-and-sum beamforming algorithm to generate images. These beamformed images are compared with images obtained from convolution of the PSF with a scatterer field to demonstrate that a very large portion of the PSF must be used to accurately represent the clutter observed in conventional imaging.
Collapse
|
50
|
Yan X, Hamilton MF. Statistical model of clutter suppression in tissue harmonic imaging. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:1193-1208. [PMID: 21428483 PMCID: PMC3077963 DOI: 10.1121/1.3504712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 09/20/2010] [Accepted: 09/28/2010] [Indexed: 05/30/2023]
Abstract
A statistical model is developed for the suppression of clutter in tissue harmonic imaging (THI). Tissue heterogeneity is modeled as a random phase screen that is characterized by its correlation length and variance. With the autocorrelation function taken to be Gaussian and for small variance, statistical solutions are derived for the mean intensities at the fundamental and second-harmonic frequencies in the field of a focused sound beam that propagates through the phase screen. The statistical solutions are verified by comparison with ensemble averaging of direct numerical simulations. The model demonstrates that THI reduces the aberration clutter appearing in the focal region regardless of the depth of the aberrating layer, with suppression of the clutter most effective when the layer is close to the source. The model is also applied to the reverberation clutter that is transmitted forward along the axis of the beam. As with aberration clutter, suppression of such reverberation clutter by THI is most pronounced when the tissue heterogeneity is located close to the source.
Collapse
Affiliation(s)
- Xiang Yan
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712-1063, USA
| | | |
Collapse
|