1
|
Siddiqi R, Javaid S. Deep Learning for Pneumonia Detection in Chest X-ray Images: A Comprehensive Survey. J Imaging 2024; 10:176. [PMID: 39194965 DOI: 10.3390/jimaging10080176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
This paper addresses the significant problem of identifying the relevant background and contextual literature related to deep learning (DL) as an evolving technology in order to provide a comprehensive analysis of the application of DL to the specific problem of pneumonia detection via chest X-ray (CXR) imaging, which is the most common and cost-effective imaging technique available worldwide for pneumonia diagnosis. This paper in particular addresses the key period associated with COVID-19, 2020-2023, to explain, analyze, and systematically evaluate the limitations of approaches and determine their relative levels of effectiveness. The context in which DL is applied as both an aid to and an automated substitute for existing expert radiography professionals, who often have limited availability, is elaborated in detail. The rationale for the undertaken research is provided, along with a justification of the resources adopted and their relevance. This explanatory text and the subsequent analyses are intended to provide sufficient detail of the problem being addressed, existing solutions, and the limitations of these, ranging in detail from the specific to the more general. Indeed, our analysis and evaluation agree with the generally held view that the use of transformers, specifically, vision transformers (ViTs), is the most promising technique for obtaining further effective results in the area of pneumonia detection using CXR images. However, ViTs require extensive further research to address several limitations, specifically the following: biased CXR datasets, data and code availability, the ease with which a model can be explained, systematic methods of accurate model comparison, the notion of class imbalance in CXR datasets, and the possibility of adversarial attacks, the latter of which remains an area of fundamental research.
Collapse
Affiliation(s)
- Raheel Siddiqi
- Computer Science Department, Karachi Campus, Bahria University, Karachi 73500, Pakistan
| | - Sameena Javaid
- Computer Science Department, Karachi Campus, Bahria University, Karachi 73500, Pakistan
| |
Collapse
|
2
|
Fernandes JND, Cardoso VEM, Comesaña-Campos A, Pinheira A. Comprehensive Review: Machine and Deep Learning in Brain Stroke Diagnosis. SENSORS (BASEL, SWITZERLAND) 2024; 24:4355. [PMID: 39001134 PMCID: PMC11244385 DOI: 10.3390/s24134355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Brain stroke, or a cerebrovascular accident, is a devastating medical condition that disrupts the blood supply to the brain, depriving it of oxygen and nutrients. Each year, according to the World Health Organization, 15 million people worldwide experience a stroke. This results in approximately 5 million deaths and another 5 million individuals suffering permanent disabilities. The complex interplay of various risk factors highlights the urgent need for sophisticated analytical methods to more accurately predict stroke risks and manage their outcomes. Machine learning and deep learning technologies offer promising solutions by analyzing extensive datasets including patient demographics, health records, and lifestyle choices to uncover patterns and predictors not easily discernible by humans. These technologies enable advanced data processing, analysis, and fusion techniques for a comprehensive health assessment. We conducted a comprehensive review of 25 review papers published between 2020 and 2024 on machine learning and deep learning applications in brain stroke diagnosis, focusing on classification, segmentation, and object detection. Furthermore, all these reviews explore the performance evaluation and validation of advanced sensor systems in these areas, enhancing predictive health monitoring and personalized care recommendations. Moreover, we also provide a collection of the most relevant datasets used in brain stroke analysis. The selection of the papers was conducted according to PRISMA guidelines. Furthermore, this review critically examines each domain, identifies current challenges, and proposes future research directions, emphasizing the potential of AI methods in transforming health monitoring and patient care.
Collapse
Affiliation(s)
- João N. D. Fernandes
- INESC TEC, 4200-465 Porto, Portugal
- Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Department of Computer Engineering, Superior Institute of Engineering of Porto, 4249-015 Porto, Portugal;
| | - Vitor E. M. Cardoso
- Collaborative Laboratory for the Future Built Environment (BUILT CoLAB), Rua Do Campo Alegre, 760, 4150-003 Porto, Portugal;
- Department of Computer Engineering, Superior Institute of Engineering of Porto, 4249-015 Porto, Portugal;
| | - Alberto Comesaña-Campos
- Department of Design in Engineering, University of Vigo, 36312 Vigo, Spain;
- Design, Expert Systems and Artificial Intelligent Solutions Group (DESAINS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Alberto Pinheira
- Department of Computer Engineering, Superior Institute of Engineering of Porto, 4249-015 Porto, Portugal;
- Department of Design in Engineering, University of Vigo, 36312 Vigo, Spain;
- Design, Expert Systems and Artificial Intelligent Solutions Group (DESAINS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
- Center for Health Technologies and Information Systems Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
3
|
Chatterjee S, Saad F, Sarasaen C, Ghosh S, Krug V, Khatun R, Mishra R, Desai N, Radeva P, Rose G, Stober S, Speck O, Nürnberger A. Exploration of Interpretability Techniques for Deep COVID-19 Classification Using Chest X-ray Images. J Imaging 2024; 10:45. [PMID: 38392093 PMCID: PMC10889835 DOI: 10.3390/jimaging10020045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread, and has challenged different sectors. One of the most effective ways to limit its spread is the early and accurate diagnosing of infected patients. Medical imaging, such as X-ray and computed tomography (CT), combined with the potential of artificial intelligence (AI), plays an essential role in supporting medical personnel in the diagnosis process. Thus, in this article, five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and DenseNet161) and their ensemble, using majority voting, have been used to classify COVID-19, pneumoniæ and healthy subjects using chest X-ray images. Multilabel classification was performed to predict multiple pathologies for each patient, if present. Firstly, the interpretability of each of the networks was thoroughly studied using local interpretability methods-occlusion, saliency, input X gradient, guided backpropagation, integrated gradients, and DeepLIFT-and using a global technique-neuron activation profiles. The mean micro F1 score of the models for COVID-19 classifications ranged from 0.66 to 0.875, and was 0.89 for the ensemble of the network models. The qualitative results showed that the ResNets were the most interpretable models. This research demonstrates the importance of using interpretability methods to compare different models before making a decision regarding the best performing model.
Collapse
Affiliation(s)
- Soumick Chatterjee
- Data and Knowledge Engineering Group, Otto von Guericke University, 39106 Magdeburg, Germany
- Faculty of Computer Science, Otto von Guericke University, 39106 Magdeburg, Germany
- Genomics Research Centre, Human Technopole, 20157 Milan, Italy
| | - Fatima Saad
- Institute for Medical Engineering, Otto von Guericke University, 39106 Magdeburg, Germany
- Research Campus STIMULATE, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Chompunuch Sarasaen
- Institute for Medical Engineering, Otto von Guericke University, 39106 Magdeburg, Germany
- Research Campus STIMULATE, Otto von Guericke University, 39106 Magdeburg, Germany
- Biomedical Magnetic Resonance, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Suhita Ghosh
- Faculty of Computer Science, Otto von Guericke University, 39106 Magdeburg, Germany
- Artificial Intelligence Lab, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Valerie Krug
- Faculty of Computer Science, Otto von Guericke University, 39106 Magdeburg, Germany
- Artificial Intelligence Lab, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Rupali Khatun
- Department of Mathematics and Computer Science, University of Barcelona, 08028 Barcelona, Spain
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | | | | | - Petia Radeva
- Department of Mathematics and Computer Science, University of Barcelona, 08028 Barcelona, Spain
- Computer Vision Centre, 08193 Cerdanyola, Spain
| | - Georg Rose
- Institute for Medical Engineering, Otto von Guericke University, 39106 Magdeburg, Germany
- Research Campus STIMULATE, Otto von Guericke University, 39106 Magdeburg, Germany
- Centre for Behavioural Brain Sciences, 39106 Magdeburg, Germany
| | - Sebastian Stober
- Faculty of Computer Science, Otto von Guericke University, 39106 Magdeburg, Germany
- Artificial Intelligence Lab, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Oliver Speck
- Research Campus STIMULATE, Otto von Guericke University, 39106 Magdeburg, Germany
- Biomedical Magnetic Resonance, Otto von Guericke University, 39106 Magdeburg, Germany
- Centre for Behavioural Brain Sciences, 39106 Magdeburg, Germany
- German Centre for Neurodegenerative Diseases, 39106 Magdeburg, Germany
| | - Andreas Nürnberger
- Data and Knowledge Engineering Group, Otto von Guericke University, 39106 Magdeburg, Germany
- Faculty of Computer Science, Otto von Guericke University, 39106 Magdeburg, Germany
- Centre for Behavioural Brain Sciences, 39106 Magdeburg, Germany
| |
Collapse
|
4
|
Ahuja S, Panigrahi BK, Dey N, Taneja A, Gandhi TK. McS-Net: Multi-class Siamese network for severity of COVID-19 infection classification from lung CT scan slices. Appl Soft Comput 2022; 131:109683. [PMID: 36277300 PMCID: PMC9573862 DOI: 10.1016/j.asoc.2022.109683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/25/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022]
Abstract
Worldwide COVID-19 is a highly infectious and rapidly spreading disease in almost all age groups. The Computed Tomography (CT) scans of lungs are found to be accurate for the timely diagnosis of COVID-19 infection. In the proposed work, a deep learning-based P-shot N-ways Siamese network along with prototypical nearest neighbor classifiers is implemented for the classification of COVID-19 infection from lung CT scan slices. For this, a Siamese network with an identical sub-network (weight sharing) is used for image classification with a limited dataset for each class. The feature vectors are obtained from the pre-trained sub-networks having weight sharing. The performance of the proposed methodology is evaluated on the benchmark MosMed dataset having categories zero (healthy control) and numerous COVID-19 infections. The proposed methodology is evaluated on (a) chest CT scans provided by medical hospitals in Moscow, Russia for 1110 patients, and (b) case study of low-dose CT scans of 42 patients provided by Avtaran healthcare in India. The deep learning-based Siamese network (15-shot 5-ways) obtained an accuracy of 98.07%, the sensitivity of 95.66%, specificity of 98.83%, and F1-score of 95.10%. The proposed work outperforms the COVID-19 infection severity classification with limited scans availability for numerous infection categories.
Collapse
Affiliation(s)
- Sakshi Ahuja
- Electrical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Bijaya Ketan Panigrahi
- Electrical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Nilanjan Dey
- Department of Computer Science and Engineering, Techno International New Town, Kolkata, 700156, India
| | - Arpit Taneja
- Department of Radiology, Avtaran Healthcare LLP, Kurukshetra, 136118, India
| | - Tapan Kumar Gandhi
- Electrical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
5
|
Xie Y, Zaccagna F, Rundo L, Testa C, Agati R, Lodi R, Manners DN, Tonon C. Convolutional Neural Network Techniques for Brain Tumor Classification (from 2015 to 2022): Review, Challenges, and Future Perspectives. Diagnostics (Basel) 2022; 12:diagnostics12081850. [PMID: 36010200 PMCID: PMC9406354 DOI: 10.3390/diagnostics12081850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 12/21/2022] Open
Abstract
Convolutional neural networks (CNNs) constitute a widely used deep learning approach that has frequently been applied to the problem of brain tumor diagnosis. Such techniques still face some critical challenges in moving towards clinic application. The main objective of this work is to present a comprehensive review of studies using CNN architectures to classify brain tumors using MR images with the aim of identifying useful strategies for and possible impediments in the development of this technology. Relevant articles were identified using a predefined, systematic procedure. For each article, data were extracted regarding training data, target problems, the network architecture, validation methods, and the reported quantitative performance criteria. The clinical relevance of the studies was then evaluated to identify limitations by considering the merits of convolutional neural networks and the remaining challenges that need to be solved to promote the clinical application and development of CNN algorithms. Finally, possible directions for future research are discussed for researchers in the biomedical and machine learning communities. A total of 83 studies were identified and reviewed. They differed in terms of the precise classification problem targeted and the strategies used to construct and train the chosen CNN. Consequently, the reported performance varied widely, with accuracies of 91.63–100% in differentiating meningiomas, gliomas, and pituitary tumors (26 articles) and of 60.0–99.46% in distinguishing low-grade from high-grade gliomas (13 articles). The review provides a survey of the state of the art in CNN-based deep learning methods for brain tumor classification. Many networks demonstrated good performance, and it is not evident that any specific methodological choice greatly outperforms the alternatives, especially given the inconsistencies in the reporting of validation methods, performance metrics, and training data encountered. Few studies have focused on clinical usability.
Collapse
Affiliation(s)
- Yuting Xie
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (Y.X.); (F.Z.); (R.L.); (C.T.)
| | - Fulvio Zaccagna
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (Y.X.); (F.Z.); (R.L.); (C.T.)
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy;
| | - Leonardo Rundo
- Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, 84084 Fisciano, Italy;
| | - Claudia Testa
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy;
- Department of Physics and Astronomy, University of Bologna, 40127 Bologna, Italy
| | - Raffaele Agati
- Programma Neuroradiologia con Tecniche ad elevata complessità, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy;
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (Y.X.); (F.Z.); (R.L.); (C.T.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy
| | - David Neil Manners
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (Y.X.); (F.Z.); (R.L.); (C.T.)
- Correspondence:
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (Y.X.); (F.Z.); (R.L.); (C.T.)
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy;
| |
Collapse
|
6
|
Szepesi P, Szilágyi L. Detection of pneumonia using convolutional neural networks and deep learning. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Singh G. Think positive: An interpretable neural network for image recognition. Neural Netw 2022; 151:178-189. [PMID: 35439663 PMCID: PMC8978459 DOI: 10.1016/j.neunet.2022.03.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022]
Abstract
The COVID-19 pandemic is an ongoing pandemic and is placing additional burden on healthcare systems around the world. Timely and effectively detecting the virus can help to reduce the spread of the disease. Although, RT-PCR is still a gold standard for COVID-19 testing, deep learning models to identify the virus from medical images can also be helpful in certain circumstances. In particular, in situations when patients undergo routine X-rays and/or CT-scans tests but within a few days of such tests they develop respiratory complications. Deep learning models can also be used for pre-screening prior to RT-PCR testing. However, the transparency/interpretability of the reasoning process of predictions made by such deep learning models is essential. In this paper, we propose an interpretable deep learning model that uses positive reasoning process to make predictions. We trained and tested our model over the dataset of chest CT-scan images of COVID-19 patients, normal people and pneumonia patients. Our model gives the accuracy, precision, recall and F-score equal to 99.48%, 0.99, 0.99 and 0.99, respectively.
Collapse
Affiliation(s)
- Gurmail Singh
- Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada.
| |
Collapse
|
8
|
Stefenon SF, Singh G, Yow KC, Cimatti A. Semi-ProtoPNet Deep Neural Network for the Classification of Defective Power Grid Distribution Structures. SENSORS 2022; 22:s22134859. [PMID: 35808353 PMCID: PMC9269338 DOI: 10.3390/s22134859] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 12/01/2022]
Abstract
Power distribution grids are typically installed outdoors and are exposed to environmental conditions. When contamination accumulates in the structures of the network, there may be shutdowns caused by electrical arcs. To improve the reliability of the network, visual inspections of the electrical power system can be carried out; these inspections can be automated using computer vision techniques based on deep neural networks. Based on this need, this paper proposes the Semi-ProtoPNet deep learning model to classify defective structures in the power distribution networks. The Semi-ProtoPNet deep neural network does not perform convex optimization of its last dense layer to maintain the impact of the negative reasoning process on image classification. The negative reasoning process rejects the incorrect classes of an input image; for this reason, it is possible to carry out an analysis with a low number of images that have different backgrounds, which is one of the challenges of this type of analysis. Semi-ProtoPNet achieves an accuracy of 97.22%, being superior to VGG-13, VGG-16, VGG-19, ResNet-34, ResNet-50, ResNet-152, DenseNet-121, DenseNet-161, DenseNet-201, and also models of the same class such as ProtoPNet, NP-ProtoPNet, Gen-ProtoPNet, and Ps-ProtoPNet.
Collapse
Affiliation(s)
- Stefano Frizzo Stefenon
- Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy;
- Department of Mathematics, Informatics and Physical Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
- Correspondence:
| | - Gurmail Singh
- Faculty of Engineering and Applied Science, University of Regina, Wascana Parkway 3737, Regina, SK S4S 0A2, Canada; (G.S.); (K.-C.Y.)
| | - Kin-Choong Yow
- Faculty of Engineering and Applied Science, University of Regina, Wascana Parkway 3737, Regina, SK S4S 0A2, Canada; (G.S.); (K.-C.Y.)
| | | |
Collapse
|
9
|
Salahuddin Z, Woodruff HC, Chatterjee A, Lambin P. Transparency of deep neural networks for medical image analysis: A review of interpretability methods. Comput Biol Med 2022; 140:105111. [PMID: 34891095 DOI: 10.1016/j.compbiomed.2021.105111] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 02/03/2023]
Abstract
Artificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for diagnosis and treatment decisions. Deep neural networks have shown the same or better performance than clinicians in many tasks owing to the rapid increase in the available data and computational power. In order to conform to the principles of trustworthy AI, it is essential that the AI system be transparent, robust, fair, and ensure accountability. Current deep neural solutions are referred to as black-boxes due to a lack of understanding of the specifics concerning the decision-making process. Therefore, there is a need to ensure the interpretability of deep neural networks before they can be incorporated into the routine clinical workflow. In this narrative review, we utilized systematic keyword searches and domain expertise to identify nine different types of interpretability methods that have been used for understanding deep learning models for medical image analysis applications based on the type of generated explanations and technical similarities. Furthermore, we report the progress made towards evaluating the explanations produced by various interpretability methods. Finally, we discuss limitations, provide guidelines for using interpretability methods and future directions concerning the interpretability of deep neural networks for medical imaging analysis.
Collapse
Affiliation(s)
- Zohaib Salahuddin
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.
| | - Henry C Woodruff
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Avishek Chatterjee
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
10
|
Roy I, Shai R, Ghosh A, Bej A, Pati SK. CoWarriorNet: A Novel Deep-Learning Framework for CoVID-19 Detection from Chest X-Ray Images. NEW GENERATION COMPUTING 2021; 40:961-985. [PMID: 34876770 PMCID: PMC8639408 DOI: 10.1007/s00354-021-00143-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/21/2021] [Indexed: 05/17/2023]
Abstract
Even after scavenging the existence of mankind for the past year, the wrath of CoVID-19 is yet to die down. Countries like India are still getting haunted by the devastating conundrum, with coronavirus ripping through its citizens in the concurrent second wave. The surge of cases has prompted rapid intervention, with medical authorities pushing it to the limit to curve a roadblock to its aggressive growth. But, even after effortless work, human intervention remains slow and insufficient. Furthermore, relevant testing methodologies have shown weakness while detecting threats, with the recent growth of post-Covid complexities, thereby leaving a painful mark. This as such created a major requirement for technological advancements, which can cater to the mass. The growth of computational prowess in the past decade made the field of Deep Learning a major contributor in curving out algorithms to solve this. Adding to the excellent foundation of Deep Learning, this paper, proposes a novel CoWarriorNet model for rapid detection of CoVID-19, via chest X-ray images, which adds in an extra layer of precision and confirmation in the detection of cases in both pre-Covid and post-Covid conditions. The proposed classification model curves out an excellent accuracy of 97.8%, with the major eye-candy being the sensitivity rate of 0.99 when detecting CoVID-19 cases. This model introduces a new concept of Alpha Trimmed Average Pooling, which along with the novel architecture adds a subtle touch to its high efficiency, thereby giving a much-needed solution to the medical experts. The two-mouthed architecture provides the added benefit of a confidence score, deducing human aid in case of discrepancy. Supplementary Information The online version contains supplementary material available at 10.1007/s00354-021-00143-1.
Collapse
Affiliation(s)
- Indrani Roy
- Department of Electronics and Communication Engineering, Calcutta Institute of Engineering and Management, Kolkata, 700040 WB India
| | - Rinita Shai
- Department of Mathematics, Behala College, Calcutta University, Kolkata, 700060 WB India
| | - Arijit Ghosh
- Department of Electronics and Communication Engineering, Calcutta Institute of Engineering and Management, Kolkata, 700040 WB India
| | - Anirban Bej
- Department of Electronics and Communication Engineering, Calcutta Institute of Engineering and Management, Kolkata, 700040 WB India
| | - Soumen Kumar Pati
- Department of Bioinformatics, Maulana Abul Kalam Azad University of Technology, Haringhata, 741249 WB India
| |
Collapse
|
11
|
Singh G, Yow KC. Object or Background: An Interpretable Deep Learning Model for COVID-19 Detection from CT-Scan Images. Diagnostics (Basel) 2021; 11:1732. [PMID: 34574073 PMCID: PMC8465137 DOI: 10.3390/diagnostics11091732] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
The new strains of the pandemic COVID-19 are still looming. It is important to develop multiple approaches for timely and accurate detection of COVID-19 and its variants. Deep learning techniques are well proved for their efficiency in providing solutions to many social and economic problems. However, the transparency of the reasoning process of a deep learning model related to a high stake decision is a necessity. In this work, we propose an interpretable deep learning model Ps-ProtoPNet to detect COVID-19 from the medical images. Ps-ProtoPNet classifies the images by recognizing the objects rather than their background in the images. We demonstrate our model on the dataset of the chest CT-scan images. The highest accuracy that our model achieves is 99.29%.
Collapse
Affiliation(s)
| | - Kin-Choong Yow
- Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada;
| |
Collapse
|