1
|
Campa F, Bongiovanni T, Rossi A, Cerullo G, Casolo A, Martera G, Trecroci A, Moro T, Paoli A. Athletic bioimpedance-based equations underestimate fat free mass components in male elite soccer players: development and validation of new soccer-specific predictive models. J Transl Med 2023; 21:912. [PMID: 38102652 PMCID: PMC10722788 DOI: 10.1186/s12967-023-04795-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Bioelectrical impedance analysis (BIA) is a rapid and user-friendly technique for assessing body composition in sports. Currently, no sport-specific predictive equations are available, and the utilization of generalized formulas can introduce systematic bias. The objectives of this study were as follows: (i) to develop and validate new predictive models for estimating fat-free mass (FFM) components in male elite soccer players; (ii) to evaluate the accuracy of existing predictive equations. METHODS A total of 102 male elite soccer players (mean age 24.7 ± 5.7 years), participating in the Italian first league, underwent assessments during the first half of the in-season period and were randomly divided into development and validation groups. Bioelectrical resistance (R) and reactance (Xc), representing the bioimpedance components, were measured using a foot-to-hand BIA device at a single frequency of 50 kHz. Dual-energy X-ray absorptiometry was employed to acquire reference data for FFM, lean soft tissue (LST), and appendicular lean soft tissue (ALST). The validation of the newly developed predictive equations was conducted through regression analysis, Bland-Altman tests, and the area under the curves (AUC) of regression receiver operating characteristic (RROC) curves. RESULTS Developed models were: FFM = - 7.729 + (body mass × 0.686) + (stature2/R × 0.227) + (Xc × 0.086) + (age × 0.058), R2 = 0.97, Standard error of estimation (SEE) = 1.0 kg; LST = - 8.929 + (body mass × 0.635) + (stature2/R × 0.244) + (Xc × 0.093) + (age × 0.048), R2 = 0.96, SEE = 0.9 kg; ALST = - 24.068 + (body mass × 0.347) + (stature2/R × 0.308) + (Xc × 0.152), R2 = 0.88, SEE = 1.4 kg. Train-test validation, performed on the validation group, revealed that generalized formulas for athletes underestimated all the predicted FFM components (p < 0.01), while the new predictive models showed no mean bias (p > 0.05), with R2 values ranging from 0.83 to 0.91, and no trend (p > 0.05). The AUC scores of the RROC curves indicated an accuracy of 0.92, 0.92, and 0.74 for FFM, LST, and ALST, respectively. CONCLUSIONS The utilization of generalized predictive equations leads to an underestimation of FFM and ALST in elite soccer players. The newly developed soccer-specific formulas enable valid estimations of body composition while preserving the portability of a field-based method.
Collapse
Affiliation(s)
- Francesco Campa
- Department of Biomedical Sciences, University of Padua, 35131, Padua, Italy
| | - Tindaro Bongiovanni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Performance, Palermo Football Club, Palermo, Italy
| | - Alessio Rossi
- Computer Science, University of Pisa, Pisa, Italy and National Research Council (CNR), Institute of Information Science and Technologies (ISTI), Pisa, Italy
| | - Giuseppe Cerullo
- Department of Biomedical Sciences, University of Padua, 35131, Padua, Italy
| | - Andrea Casolo
- Department of Biomedical Sciences, University of Padua, 35131, Padua, Italy.
| | - Giulia Martera
- Department of Performance Nutrition, Spezia Calcio, La Spezia, Italy
| | - Athos Trecroci
- Department of Biomedical Science for Health, University of Milan, Milan, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padua, 35131, Padua, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padua, 35131, Padua, Italy
| |
Collapse
|
2
|
Zhao Y, Gong JX, Ji YT, Zhao XY, He L, Cai SZ, Yan XM. Cross-sectional study of characteristics of body composition of 24,845 children and adolescents aged 3-17 years in Suzhou. BMC Pediatr 2023; 23:358. [PMID: 37442965 PMCID: PMC10339479 DOI: 10.1186/s12887-023-04134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND We aimed to analyze the characteristics of the body composition of children and adolescents aged 3-17 in Suzhou, China. METHODS A cross-sectional study between January 2020 and June 2022 using bioelectrical impedance was conducted to determine the fat mass (FM), fat-free mass (FFM), skeletal muscle mass, and protein and mineral contents of 24,845 children aged 3-17 who attended the Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, China. Measurement data was presented in tables as mean ± SD, and groups were compared using the independent samples t-test. RESULTS FM and fat-free mass increased with age in both boys and girls. The fat-free mass of girls aged 14-15 decreased after reaching a peak, and that of boys in the same age group was higher than that of the girls (p < 0.05). There were no significant differences in FM between boys and girls younger than 9- and 10-years old. The percentage body fat (PBF) and FM index of girls increased rapidly between 11 and 15 years of age (p < 0.05), and those of boys aged 11-14 were significantly lower (p < 0.05), suggesting that the increase in body mass index (BMI) was mainly contributed by muscle mass (MM) in boys. CONCLUSIONS The body composition of children and adolescents varies according to their age and sex. A misdiagnosis of obesity made on the basis of BMI alone can be avoided if BMI is used in combination with FM index, percentage body fat, and other indexes.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Pediatrics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215003, China
| | - Jin-Xin Gong
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu, China
| | - Yi-Ting Ji
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu, China
| | - Xiao-Yun Zhao
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu, China
| | - Lu He
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu, China
| | - Shi-Zhong Cai
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu, China.
| | - Xiang-Ming Yan
- Department of Urology, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu, China.
| |
Collapse
|
3
|
Abasi S, Aggas JR, Garayar-Leyva GG, Walther BK, Guiseppi-Elie A. Bioelectrical Impedance Spectroscopy for Monitoring Mammalian Cells and Tissues under Different Frequency Domains: A Review. ACS MEASUREMENT SCIENCE AU 2022; 2:495-516. [PMID: 36785772 PMCID: PMC9886004 DOI: 10.1021/acsmeasuresciau.2c00033] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 05/13/2023]
Abstract
Bioelectrical impedance analysis and bioelectrical impedance spectroscopy (BIA/BIS) of tissues reveal important information on molecular composition and physical structure that is useful in diagnostics and prognostics. The heterogeneity in structural elements of cells, tissues, organs, and the whole human body, the variability in molecular composition arising from the dynamics of biochemical reactions, and the contributions of inherently electroresponsive components, such as ions, proteins, and polarized membranes, have rendered bioimpedance challenging to interpret but also a powerful evaluation and monitoring technique in biomedicine. BIA/BIS has thus become the basis for a wide range of diagnostic and monitoring systems such as plethysmography and tomography. The use of BIA/BIS arises from (i) being a noninvasive and safe measurement modality, (ii) its ease of miniaturization, and (iii) multiple technological formats for its biomedical implementation. Considering the dependency of the absolute and relative values of impedance on frequency, and the uniqueness of the origins of the α-, β-, δ-, and γ-dispersions, this targeted review discusses biological events and underlying principles that are employed to analyze the impedance data based on the frequency range. The emergence of BIA/BIS in wearable devices and its relevance to the Internet of Medical Things (IoMT) are introduced and discussed.
Collapse
Affiliation(s)
- Sara Abasi
- Center
for Bioelectronics, Biosensors and Biochips (C3B®), Department
of Biomedical Engineering, Texas A&M
University, 400 Bizzell Street, College Station, Texas 77843, United States
- Cell
Culture Media Services, Cytiva, 100 Results Way, Marlborough, Massachusetts 01752, United States
| | - John R. Aggas
- Center
for Bioelectronics, Biosensors and Biochips (C3B®), Department
of Biomedical Engineering, Texas A&M
University, 400 Bizzell Street, College Station, Texas 77843, United States
- Test
Development, Roche Diagnostics, 9115 Hague Road, Indianapolis, Indiana 46256, United
States
| | - Guillermo G. Garayar-Leyva
- Center
for Bioelectronics, Biosensors and Biochips (C3B®), Department
of Biomedical Engineering, Texas A&M
University, 400 Bizzell Street, College Station, Texas 77843, United States
- Department
of Electrical and Computer Engineering, Texas A&M University, 400 Bizzell Street, College Station, Texas 77843, United States
| | - Brandon K. Walther
- Center
for Bioelectronics, Biosensors and Biochips (C3B®), Department
of Biomedical Engineering, Texas A&M
University, 400 Bizzell Street, College Station, Texas 77843, United States
- Department
of Cardiovascular Sciences, Houston Methodist
Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Anthony Guiseppi-Elie
- Center
for Bioelectronics, Biosensors and Biochips (C3B®), Department
of Biomedical Engineering, Texas A&M
University, 400 Bizzell Street, College Station, Texas 77843, United States
- Department
of Electrical and Computer Engineering, Texas A&M University, 400 Bizzell Street, College Station, Texas 77843, United States
- Department
of Cardiovascular Sciences, Houston Methodist
Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
- ABTECH Scientific,
Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, Virginia 23219, United
States
- . Tel.: +1(804)347.9363.
Fax: +1(804)347.9363
| |
Collapse
|
4
|
Peixoto M, Moreno MV, Khider N. Conception of a Phantom in Agar-Agar Gel with the Same Bio-Impedance Properties as Human Quadriceps. SENSORS (BASEL, SWITZERLAND) 2021; 21:5195. [PMID: 34372435 PMCID: PMC8347085 DOI: 10.3390/s21155195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/02/2022]
Abstract
The physiology of the patient can be reflected by various data. Serious games, using an intelligent combination, could be based on this data to adjust to the specificities of the patient. Rehabilitation would therefore be personalized to the patient. This smart suit would use dry electrodes in order to be easily usable. Before performing dry electrode validation tests on a population, it is necessary to perform preliminary tests on a phantom. Agar-Agar (AA) gel, combined with NaCl and graphite which directly impact the resistivity and reactance values of the phantom, are generally used. Depending on the part of the body simulated by the phantom, it is necessary to adapt the concentrations of NaCl and graphite in order to obtain values of physiological reactance and resistance. The anisotropy of a muscle must also be considered. Different concentrations of NaCl and graphite have been tested in order to present charts linking the concentrations to the resistance and reactance values of the AA phantom. Electrical properties similar to those of human quadriceps are achieved at a concentration of 7 g/L of NaCl and 60 g/L of graphite. These values can be used as a conversion table to develop an AA phantom with electrical properties similar to different muscles. Furthermore, an AA phantom has an anisotropy of 0° and 90°. This anisotropy corresponds to a human quadriceps, where 0° is the direction of the muscle fiber. This will allow us to study and characterize the behavior of the electrodes on an anisotropic model. Thus it can be used as a first test phase for dry electrodes in order to propose the most suitable conditions for a connected garment application.
Collapse
Affiliation(s)
- Margaux Peixoto
- Research Center, RunSys, 53 Avenue Carnot, 69250 Neuville-sur-Saône, France;
- C-19, 19 Cours Blaise Pascal, 91000 Évry-Courcouronnes, France;
| | | | - Nassim Khider
- C-19, 19 Cours Blaise Pascal, 91000 Évry-Courcouronnes, France;
- ENSIIE, 1 Rue de la Résistance, 91000 Évry-Courcouronnes, France
| |
Collapse
|
5
|
Mabrouk S, Whittingslow D, Inan OT. Robust Method for Mid-Activity Tracking and Evaluation of Ankle Health Post-Injury. IEEE Trans Biomed Eng 2021; 68:1341-1350. [PMID: 32997618 DOI: 10.1109/tbme.2020.3027477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To present a robust methodology for evaluating ankle health during ambulation using a wearable device. Methods: We developed a novel data capture system that leverages changes within the ankle during ambulation for real-time tracking of bioimpedance. The novel analysis compares the range of reactance at 5 kHz to the range of reactance at 100 kHz; which removes the technique's previous reliance on a known baseline. To aid in interpretation of the measurements, we developed a quantitative simulation model based on a literature review of the effects on joint bioimpedance of variations in edematous fluid volume, muscle fiber tears, and blood flow changes. Results: The results of the simulation predicted a significant difference in the ratio of the range of the reactance from 5 kHz to 100 kHz between the healthy and injured ankles. These results were validated in 15 subjects - with 11 healthy ankles and 7 injured ankles measured. The injured subjects had lateral ankle sprains 2-4 weeks prior to the measurement. The analysis technique differentiated between the healthy and the injured population (p<<0.01), and a correlation (R = 0.8) with a static protocol previously validated for its sensitivity to edema. Conclusion: The technology presented can detect variations in ankle edema and structural integrity of ankles, and thus could provide valuable feedback to clinicians and patients during the rehabilitation of an ankle injury. Significance: This technology could lead to better-informed decision making regarding a patient's readiness to return to activity and / or tailoring rehabilitation activities to an individual's changing needs.
Collapse
|
6
|
Honorato RDC, Ferraz ASM, Kassiano W, Carvalho DP, Ceccatto VM. Test-retest reliability of electrical impedance myography in hamstrings of healthy young men. J Electromyogr Kinesiol 2021; 56:102511. [PMID: 33454538 DOI: 10.1016/j.jelekin.2020.102511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/22/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022] Open
Abstract
Several techniques are available to assess muscle tissue status, including electrical impedance myography (EIM). Despite being used in the assessment of neuromuscular status in injury and response to exercise, reliability data for hamstrings muscles are limited. Therefore, this study aimed to determine the test-retest reliability of EIM components on hamstrings. Twenty-one healthy males (25.3 ± 3.4 years; 173 ± 6.7 cm; and 79.7 ± 15.9 kg) volunteered for this study. Subjects completed two visits, separated by seven days to collect EIM components (resistance, reactance, impedance, and phase angle) in the longitudinal and transversal axis of hamstrings in both thighs, using a bioimpedance device and Ag/AgCL adhesive contact electrodes. The electrode arrangement was in the muscular belly, half the distance between origin and insertion of the hamstrings. Reliability was determined by the intraclass correlation coefficient (ICC), minimal detectable change (MDC), and Bland-Altman plots. We observed high to excellent reliability (ICC > 0.85) between all EIM components, except for reactance with MDC ranged from 2.0 to 10.8 and the mean bias in Bland-Altman plots ranged from -0.02 to 2.48 (95% limits of agreement from -9.98 to 11.20). From our findings, the hamstrings assessment using EIM technique is reliable to assess muscle tissue; therefore, it enables the evaluation of changes/adaptations in clinical and applied contexts.
Collapse
Affiliation(s)
- Renêe de Caldas Honorato
- Sports Department, Pará State University, Belém, Brazil; Northeast Biotechnology Network, Postgraduate Program in Biotechnology, Ceará State University, Fortaleza, Brazil.
| | - Alex Soares Marreiros Ferraz
- Biotechnology and Exercise Biology Research Laboratory, Institute of Physical Education and Sports, Federal University of Ceará, Fortaleza, Brazil
| | - Witalo Kassiano
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil.
| | - Denise Pires Carvalho
- Endocrine Physiology Doris Rosenthal Research Laboratory, Institute of Biophysical Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vânia Marilande Ceccatto
- Northeast Biotechnology Network, Postgraduate Program in Biotechnology, Ceará State University, Fortaleza, Brazil; Biochemistry and Gene Expression Research Laboratory, Superior Institute of Biomedical Science, Ceará State University, Fortaleza, Brazil
| |
Collapse
|
7
|
Pingel J, Harrison A, Von Walden F, Hjalmarsson E, Bartels EM. Multi-frequency bioimpedance: a non-invasive tool for muscle-health assessment of adults with cerebral palsy. J Muscle Res Cell Motil 2020; 41:211-219. [PMID: 32221759 DOI: 10.1007/s10974-020-09579-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/14/2020] [Indexed: 12/13/2022]
Abstract
Muscle contracture development is a major complication for individuals with cerebral palsy (CP) and has lifelong implications. In order to recognize contracture development early and to follow up on preventive interventions aimed at muscle health development, non-invasive, and easy to use methods are needed. The aim of the present study was to assess whether multi-frequency Bioimpedance (mfBIA) can be used to detect differences between skeletal muscle of individuals with CP and healthy controls. The mfBIA technique was applied to the medial gastrocnemius muscle of n = 24 adults with CP and n = 20 healthy controls of both genders. The phase angle (PA) and the centre frequency (fc) were significantly lower in individuals with CP when compared to controls; PA: - 25% for women and - 31.8% for men (P < 0.0001); fc: - 5.6% for women and - 5.2% for men (P < 0.009). The reactance (Xc) and the extracellular resistance (Re) of skeletal muscle from individuals with CP were significantly higher when compared to controls; Xc: + 9.9% for women and + 28.9% for men (P < 0.0001); Re: + 39.7% for women and + 91.2% for men (P < 0.0001). The present study shows that several mfBIA parameters differ significantly between individuals with CP and healthy controls. Furthermore, these changes correlated significantly with the severity of CP, as assessed using the GMFCS scale. The present data indicate that mfBIA shows promise in terms of being a useful diagnostic tool, capable of characterizing muscle health and its development in individuals with cerebral palsy.
Collapse
Affiliation(s)
- Jessica Pingel
- Department of Neuroscience, Faculty of Health & Medical Sciences, University of Copenhagen, Blegdamsvej 3.33.3.50, 2200, Copenhagen N, Denmark.
| | - Adrian Harrison
- PAS, Physiology, Faculty of Health & Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ferdinand Von Walden
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Emma Hjalmarsson
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Functional Area Occupational Therapy & Physiotherapy, Karolinska University Hospital, Stockholm, Sweden
| | - Else Marie Bartels
- Department of Neurology & The Parker Institute, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
8
|
Structural and functional body components in athletic health and performance phenotypes. Eur J Clin Nutr 2018; 73:215-224. [PMID: 30287933 DOI: 10.1038/s41430-018-0321-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 11/08/2022]
|