1
|
Bordeau BM, Polli JR, Schweser F, Grimm HP, Richter WF, Balthasar JP. Dynamic Contrast-Enhanced Magnetic Resonance Imaging for the Prediction of Monoclonal Antibody Tumor Disposition. Int J Mol Sci 2022; 23:679. [PMID: 35054865 PMCID: PMC8775965 DOI: 10.3390/ijms23020679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
The prediction of monoclonal antibody (mAb) disposition within solid tumors for individual patients is difficult due to inter-patient variability in tumor physiology. Improved a priori prediction of mAb pharmacokinetics in tumors may facilitate the development of patient-specific dosing protocols and facilitate improved selection of patients for treatment with anti-cancer mAb. Here, we report the use of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), with tumor penetration of the contrast agent gadobutrol used as a surrogate, to improve physiologically based pharmacokinetic model (PBPK) predictions of cetuximab pharmacokinetics in epidermal growth factor receptor (EGFR) positive xenografts. In the initial investigations, mice bearing Panc-1, NCI-N87, and LS174T xenografts underwent DCE-MRI imaging with the contrast agent gadobutrol, followed by intravenous dosing of an 125Iodine-labeled, non-binding mAb (8C2). Tumor concentrations of 8C2 were determined following the euthanasia of mice (3 h-6 days after 8C2 dosing). Potential predictor relationships between DCE-MRI kinetic parameters and 8C2 PBPK parameters were evaluated through covariate modeling. The addition of the DCE-MRI parameter Ktrans alone or Ktrans in combination with the DCE-MRI parameter Vp on the PBPK parameters for tumor blood flow (QTU) and tumor vasculature permeability (σTUV) led to the most significant improvement in the characterization of 8C2 pharmacokinetics in individual tumors. To test the utility of the DCE-MRI covariates on a priori prediction of the disposition of mAb with high-affinity tumor binding, a second group of tumor-bearing mice underwent DCE-MRI imaging with gadobutrol, followed by the administration of 125Iodine-labeled cetuximab (a high-affinity anti-EGFR mAb). The MRI-PBPK covariate relationships, which were established with the untargeted antibody 8C2, were implemented into the PBPK model with considerations for EGFR expression and cetuximab-EGFR interaction to predict the disposition of cetuximab in individual tumors (a priori). The incorporation of the Ktrans MRI parameter as a covariate on the PBPK parameters QTU and σTUV decreased the PBPK model prediction error for cetuximab tumor pharmacokinetics from 223.71 to 65.02%. DCE-MRI may be a useful clinical tool in improving the prediction of antibody pharmacokinetics in solid tumors. Further studies are warranted to evaluate the utility of the DCE-MRI approach to additional mAbs and additional drug modalities.
Collapse
Affiliation(s)
- Brandon M. Bordeau
- Department of Pharmaceutical Sciences, University at Buffalo, 450 Pharmacy Building, Buffalo, NY 14214, USA; (B.M.B.); (J.R.P.)
| | - Joseph Ryan Polli
- Department of Pharmaceutical Sciences, University at Buffalo, 450 Pharmacy Building, Buffalo, NY 14214, USA; (B.M.B.); (J.R.P.)
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Clinical and Translational Science Institute, Center for Biomedical Imaging, University at Buffalo, Buffalo, NY 14203, USA
| | - Hans Peter Grimm
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (H.P.G.); (W.F.R.)
| | - Wolfgang F. Richter
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (H.P.G.); (W.F.R.)
| | - Joseph P. Balthasar
- Department of Pharmaceutical Sciences, University at Buffalo, 450 Pharmacy Building, Buffalo, NY 14214, USA; (B.M.B.); (J.R.P.)
| |
Collapse
|
2
|
Lee SL, Bassetti M, Meijer GJ, Mook S. Review of MR-Guided Radiotherapy for Esophageal Cancer. Front Oncol 2021; 11:628009. [PMID: 33828980 PMCID: PMC8019940 DOI: 10.3389/fonc.2021.628009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
In this review, we outline the potential benefits and the future role of MRI and MR-guided radiotherapy (MRgRT) in the management of esophageal cancer. Although not currently used in most clinical practice settings, MRI is a useful non-invasive imaging modality that provides excellent soft tissue contrast and the ability to visualize cancer physiology. Chemoradiation therapy with or without surgery is essential for the management of locally advanced esophageal cancer. MRI can help stage esophageal cancer, delineate the gross tumor volume (GTV), and assess the response to chemoradiotherapy. Integrated MRgRT systems can help overcome the challenge of esophageal motion due to respiratory motion by using real-time imaging and tumor tracking with respiratory gating. With daily on-table MRI, shifts in tumor position and tumor regression can be taken into account for online-adaptation. The combination of accurate GTV visualization, respiratory gating, and online adaptive planning, allows for tighter treatment volumes and improved sparing of the surrounding normal organs. This could lead to a reduction in radiotherapy induced cardiac toxicity, pneumonitis and post-operative complications. Tumor physiology as seen on diffusion weighted imaging or dynamic contrast enhancement can help individualize treatments based on the response to chemoradiotherapy. Patients with a complete response on MRI can be considered for organ preservation while patients with no response can be offered an earlier resection. In patients with a partial response to chemoradiotherapy, areas of residual cancer can be targeted for dose escalation. The tighter and more accurate targeting enabled with MRgRT may enable hypofractionated treatment schedules.
Collapse
Affiliation(s)
- Sangjune Laurence Lee
- Department of Oncology, Division of Radiation Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - Michael Bassetti
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, WI, United States
| | - Gert J. Meijer
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Stella Mook
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
3
|
Guo N, Zeng W, Deng H, Hu H, Cheng Z, Yang Z, Jiang S, Duan X, Shen J. Quantitative dynamic contrast-enhanced MR imaging can be used to predict the pathologic stages of oral tongue squamous cell carcinoma. BMC Med Imaging 2020; 20:117. [PMID: 33066760 PMCID: PMC7566024 DOI: 10.1186/s12880-020-00516-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background To investigate whether quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) pharmacokinetic parameters can be used to predict the pathologic stages of oral tongue squamous cell carcinoma (OTSCC). Methods For this prospective study, DCE-MRI was performed in participants with OTSCC from May 2016 to June 2017. The pharmacokinetic parameters, including Ktrans, Kep, Ve, and Vp, were derived from DCE-MRI by utilizing a two-compartment extended Tofts model and a three-dimensional volume of interest. The postoperative pathologic stage was determined in each patient based on the 8th AJCC cancer staging manual. The quantitative DCE-MRI parameters were compared between stage I–II and stage III–IV lesions. Logistic regression analysis was used to determine independent predictors of tumor stages, followed by receiver operating characteristic (ROC) analysis to evaluate the predictive performance. Results The mean Ktrans, Kep and Vp values were significantly lower in stage III–IV lesions compared with stage I–II lesions (p = 0.013, 0.005 and 0.011, respectively). Kep was an independent predictor for the advanced stages as determined by univariate and multivariate logistic analysis. ROC analysis showed that Kep had the highest predictive capability, with a sensitivity of 64.3%, a specificity of 82.6%, a positive predictive value of 81.8%, a negative predictive value of 65.5%, and an accuracy of 72.5%. Conclusion The quantitative DCE-MRI parameter Kep can be used as a biomarker for predicting pathologic stages of OTSCC.
Collapse
Affiliation(s)
- Na Guo
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China.,Department of Nuclear Medicine, Peking University Third Hospital, No. 49 Huayuan Road North, Beijing, 100191, China
| | - Weike Zeng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Hong Deng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Huijun Hu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Ziliang Cheng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zehong Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shuqi Jiang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Xiaohui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China. .,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China. .,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
4
|
Xu X, Xu J, Knutsson L, Liu J, Liu H, Li Y, Lal B, Laterra J, Artemov D, Liu G, van Zijl PCM, Chan KWY. The effect of the mTOR inhibitor rapamycin on glucoCEST signal in a preclinical model of glioblastoma. Magn Reson Med 2019; 81:3798-3807. [PMID: 30793789 DOI: 10.1002/mrm.27683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/02/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE The mammalian target of rapamycin is an enzyme that regulates cell metabolism and proliferation. It is up-regulated in aggressive tumors, such as glioblastoma, leading to increased glucose uptake and consumption. It has been suggested that glucose CEST signals reflect the delivery and tumor uptake of glucose. The inhibitor rapamycin (sirolimus) has been applied as a glucose deprivation treatment; thus, glucose CEST MRI could potentially be useful for monitoring the tumor responses to inhibitor treatment. METHODS A human U87-EGFRvIII xenograft model in mice was studied. The mice were treated with a mammalian target of Rapamycin inhibitor, rapamycin. The effect of the treatment was evaluated in vivo with dynamic glucose CEST MRI. RESULTS Rapamycin treatment led to significant increases (P < 0.001) in dynamic glucose-enhanced signal in both the tumor and contralateral brain as compared to the no-treatment group, namely a maximum enhancement of 3.7% ± 2.3% (tumor, treatment) versus 1.9% ± 0.4% (tumor, no-treatment), 1.7% ± 1.1% (contralateral, treatment), and 1.0% ± 0.4% (contralateral, no treatment). Dynamic glucose-enhanced contrast remained consistently higher in treatment versus no-treatment groups for the duration of the experiment (17 min). This was confirmed with area-under-curve analysis. CONCLUSION Increased glucose CEST signal was found after mammalian target of Rapamycin inhibition treatment, indicating potential for dynamic glucose-enhanced MRI to study tumor response to glucose deprivation treatment.
Collapse
Affiliation(s)
- Xiang Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, Maryland.,FM Kirby Research Center, Kennedy Krieger Institute, Johns Hopkins Medicine, Baltimore, Maryland
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, Maryland.,FM Kirby Research Center, Kennedy Krieger Institute, Johns Hopkins Medicine, Baltimore, Maryland
| | - Linda Knutsson
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, Maryland.,Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Jing Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, Maryland.,Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Huanling Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, Maryland.,Department of Ultrasound, Guangzhou Panyu Central Hospital, Panyu, People's Republic of China
| | - Yuguo Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, Maryland.,FM Kirby Research Center, Kennedy Krieger Institute, Johns Hopkins Medicine, Baltimore, Maryland
| | - Bachchu Lal
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland
| | - John Laterra
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland.,Department of Oncology and Neuroscience, Johns Hopkins Medicine, Baltimore, Maryland
| | - Dmitri Artemov
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, Maryland.,JHU In Vivo Cellular Molecular Imaging Center, Johns Hopkins University Medicine, Baltimore, Maryland
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, Maryland.,FM Kirby Research Center, Kennedy Krieger Institute, Johns Hopkins Medicine, Baltimore, Maryland
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, Maryland.,FM Kirby Research Center, Kennedy Krieger Institute, Johns Hopkins Medicine, Baltimore, Maryland
| | - Kannie W Y Chan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, Maryland.,Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| |
Collapse
|
5
|
Xiao TG, Weis JA, Gayzik FS, Thomas A, Chiba A, Gurcan MN, Topaloglu U, Samykutty A, McNally LR. Applying dynamic contrast enhanced MSOT imaging to intratumoral pharmacokinetic modeling. PHOTOACOUSTICS 2018; 11:28-35. [PMID: 30105204 PMCID: PMC6086408 DOI: 10.1016/j.pacs.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 05/22/2023]
Abstract
Examining the dynamics of an agent in the tumor microenvironment can offer critical insights to the influx rate and accumulation of the agent. Intratumoral kinetic characterization in the in vivo setting can further elicudate distribution patterns and tumor microenvironment. Dynamic contrast-enhanced Multispectral Optoacoustic Tomographic imaging (DCE-MSOT) acquires serial MSOT images with the administration of an exogenous contrast agent over time. We tracked the dynamics of a tumor-targeted contrast agent, HypoxiSense 680 (HS680), in breast xenograft mouse models using MSOT. Arterial input function (AIF) approach with MSOT imaging allowed for tracking HS680 dynamics within the mouse. The optoacoustic signal for HS680 was quantified using the ROI function in the ViewMSOT software. A two-compartment pharmacokinetics (PK) model constructed in MATLAB to fit rate parameters. The contrast influx (kin) and outflux (kout) rate constants predicted are kin = 1.96 × 10-2 s-1 and kout = 9.5 × 10-3 s-1 (R = 0.9945).
Collapse
Affiliation(s)
- Ted G. Xiao
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| | - Jared A. Weis
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| | - F. Scott Gayzik
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| | - Alexandra Thomas
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27013, United States
| | - Akiko Chiba
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27013, United States
| | - Metin N. Gurcan
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27013, United States
| | - Umit Topaloglu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27013, United States
| | - Abhilash Samykutty
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27013, United States
| | - Lacey R. McNally
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27013, United States
- Corresponding author at: Department of Cancer Biology, Department of Bioengineering, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157, United States.
| |
Collapse
|
6
|
Wang S, Lu Z, Fan X, Medved M, Jiang X, Sammet S, Yousuf A, Pineda F, Oto A, Karczmar GS. Comparison of arterial input functions measured from ultra-fast dynamic contrast enhanced MRI and dynamic contrast enhanced computed tomography in prostate cancer patients. Phys Med Biol 2018; 63:03NT01. [PMID: 29300175 PMCID: PMC6040820 DOI: 10.1088/1361-6560/aaa51b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to evaluate the accuracy of arterial input functions (AIFs) measured from dynamic contrast enhanced (DCE) MRI following a low dose of contrast media injection. The AIFs measured from DCE computed tomography (CT) were used as 'gold standard'. A total of twenty patients received CT and MRI scans on the same day. Patients received 120 ml Iohexol in DCE-CT and a low dose of (0.015 mM kg-1) of gadobenate dimeglumine in DCE-MRI. The AIFs were measured in the iliac artery and normalized to the CT and MRI contrast agent doses. To correct for different temporal resolution and sampling periods of CT and MRI, an empirical mathematical model (EMM) was used to fit the AIFs first. Then numerical AIFs (AIFCT and AIFMRI) were calculated based on fitting parameters. The AIFMRI was convolved with a 'contrast agent injection' function ([Formula: see text]) to correct for the difference between MRI and CT contrast agent injection times (~1.5 s versus 30 s). The results show that the EMMs accurately fitted AIFs measured from CT and MRI. There was no significant difference (p > 0.05) between the maximum peak amplitude of AIFs from CT (22.1 ± 4.1 mM/dose) and MRI after convolution (22.3 ± 5.2 mM/dose). The shapes of the AIFCT and [Formula: see text] were very similar. Our results demonstrated that AIFs can be accurately measured by MRI following low dose contrast agent injection.
Collapse
|
7
|
Zhu J, Zhang F, Luan Y, Cao P, Liu F, He W, Wang D. Can Dynamic Contrast-Enhanced MRI (DCE-MRI) and Diffusion-Weighted MRI (DW-MRI) Evaluate Inflammation Disease: A Preliminary Study of Crohn's Disease. Medicine (Baltimore) 2016; 95:e3239. [PMID: 27057860 PMCID: PMC4998776 DOI: 10.1097/md.0000000000003239] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The aim of the study was to investigate diagnosis efficacy of dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI) in Crohn's disease (CD). To find out the correlations between functional MRI parameters including K, Kep, Ve, Vp, and apparent diffusion coefficient (ADC) with a serologic biomarker. The relationships between pharmacokinetic parameters and ADC were also studied.Thirty-two patients with CD (22 men, 10 women; mean age: 30.5 years) and 18 healthy volunteers without any inflammatory disease (10 men, 8 women; mean age, 34.11 years) were enrolled into this approved prospective study. Pearson analysis was used to evaluate the correlation between K, Kep, Ve, Vp, and C-reactive protein (CRP), ADC, and CRP respectively. The diagnostic efficacy of the functional MRI parameters in terms of sensitivity and specificity were analyzed by receiver operating characteristic (ROC) curve analyses. Optimal cut-off values of each functional MRI parameters for differentiation of inflammatory from normal bowel were determined according to the Youden criterion.Mean value of K in the CD group was significantly higher than that of normal control group. Similar results were observed for Kep and Ve. On the contrary, the ADC value was lower in the CD group than that in the control group. K and Ve were shown to be correlated with CRP (r = 0.725, P < 0.001; r = 0.533, P = 0.002), meanwhile ADC showed negative correlation with CRP (r = -0.630, P < 0.001). There were negative correlations between the pharmacokinetic parameters and ADC, such as K to ADC (r = -0.856, P < 0.001), and Ve to ADC (r = -0.451, P = 0.01). The area under the curve (AUC) was 0.994 for K (P < 0.001), 0.905 for ADC (P < 0.001), 0.806 for Ve (P < 0.001), and 0.764 for Kep (P = 0.002). The cut-off point of the K was found to be 0.931 min. This value provided the best trade-off between sensitivity (93.8%) and specificity (100%). The best cut-off point of ADC was 1.11 × 10 mm/s. At this level, sensitivity was 100% and specificity was 68.8%.DCE-MRI and DW-MRI were helpful in the diagnosis of CD. Quantitative MRI parameters could be used to assess the severity of inflammation. The relationships between pharmacokinetic parameters (K and Ve) and ADC reflected microstructure and microcirculation of CD to some extent.
Collapse
Affiliation(s)
- Jianguo Zhu
- From the Department of Radiology (JZhu, DWang), The First Affiliated Hospital of Nanjing Medical University; Department of Gastroenterology (FZhang), The Second Affiliated Hospital of Nanjing Medical University; Department of Ultrasound (YLuan), Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing; GE HealthCare (China) (PCao), Shanghai; and Department of Radiology (JZhu, FLiu, WHe), The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|