1
|
Kuruganti U, Pradhan A, Toner J. High-Density Electromyography Provides Improved Understanding of Muscle Function for Those With Amputation. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:690285. [PMID: 35047934 PMCID: PMC8757759 DOI: 10.3389/fmedt.2021.690285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Transtibial amputation can significantly impact an individual's quality of life including the completion of activities of daily living. Those with lower limb amputations can harness the electrical activity from their amputated limb muscles for myoelectric control of a powered prosthesis. While these devices use residual muscles from transtibial-amputated limb as an input to the controller, there is little research characterizing the changes in surface electromyography (sEMG) signal generated by the upper leg muscles. Traditional surface EMG is limited in the number of electrode sites while high-density surface EMG (HDsEMG) uses multiple electrode sites to gather more information from the muscle. This technique is promising for not only the development of myoelectric-controlled prostheses but also advancing our knowledge of muscle behavior with clinical populations, including post-amputation. The HDsEMG signal can be used to develop spatial activation maps and features of these maps can be used to gain valuable insight into muscle behavior. Spatial features of HDsEMG can provide information regarding muscle activation, muscle fiber heterogeneity, and changes in muscle distribution and can be used to estimate properties of both the amputated limb and intact limb. While there are a few studies that have examined HDsEMG in amputated lower limbs they have been limited to movements such as gait. The purpose of this study was to examine the quadriceps muscle during a slow, moderate and fast isokinetic knee extensions from a control group as well as a clinical patient with a transtibial amputation. HDsEMG was collected from the quadriceps of the dominant leg of 14 young, healthy males (mean age = 25.5 ± 7 years old). Signals were collected from both the intact and amputated limb muscle of a 23 year old clinical participant to examine differences between the affected and unaffected leg. It was found that there were differences between the intact and amputated limb limb of the clinical participant with respect to muscle activation and muscle heterogeneity. While this study was limited to one clinical participant, it is important to note the differences in muscle behavior between the intact and amputated limb limb. Understanding these differences will help to improve training protocols for those with amputation.
Collapse
Affiliation(s)
- Usha Kuruganti
- Andrew and Marjorie McCain Human Performance Laboratory, Faculty of Kinesiology, University of New Brunswick, Fredericton, NB, Canada
| | - Ashirbad Pradhan
- Waterloo Engineering Bionics Lab, University of Waterloo, Waterloo, ON, Canada
| | | |
Collapse
|
2
|
Essential tremor amplitude modulation by median nerve stimulation. Sci Rep 2021; 11:17720. [PMID: 34489503 PMCID: PMC8421420 DOI: 10.1038/s41598-021-96660-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/05/2021] [Indexed: 11/08/2022] Open
Abstract
Essential tremor is a common neurological disorder, characterised by involuntary shaking of a limb. Patients are usually treated using medications which have limited effects on tremor and may cause side-effects. Surgical therapies are effective in reducing essential tremor, however, the invasive nature of these therapies together with the high cost, greatly limit the number of patients benefiting from them. Non-invasive therapies have gained increasing traction to meet this clinical need. Here, we test a non-invasive and closed-loop electrical stimulation paradigm which tracks peripheral tremor and targets thalamic afferents to modulate the central oscillators underlying tremor. To this end, 9 patients had electrical stimulation delivered to the median nerve locked to different phases of tremor. Peripheral stimulation induced a subtle but significant modulation in five out of nine patients-this modulation consisted mainly of amplification rather than suppression of tremor amplitude. Modulatory effects of stimulation were more pronounced when patient's tremor was spontaneously weaker at stimulation onset, when significant modulation became more frequent amongst subjects. This data suggests that for selected individuals, a more sophisticated control policy entailing an online estimate of both tremor phase and amplitude, should be considered in further explorations of the treatment potential of tremor phase-locked peripheral stimulation.
Collapse
|
3
|
Wilson JM, Thompson CK, McPherson LM, Zadikoff C, Heckman C, MacKinnon CD. Motor Unit Discharge Variability Is Increased in Mild-To-Moderate Parkinson's Disease. Front Neurol 2020; 11:477. [PMID: 32547482 PMCID: PMC7272659 DOI: 10.3389/fneur.2020.00477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/01/2020] [Indexed: 11/13/2022] Open
Abstract
Individuals with Parkinson's disease (PD) demonstrate deficits in muscle activation such as decreased amplitude and inappropriate bursting. There is evidence that some of these disturbances are more pronounced in extensor vs. flexor muscles. Surface EMG has been used widely to quantify muscle activation deficits in PD, but analysis of discharge of the underlying motor units may provide greater insight and be more sensitive to changes early in the disease. Of the few studies that have examined motor unit discharge in PD, the majority were conducted in the first dorsal interosseous, and no studies have measured motor units from extensor and flexor muscles within the same cohort. The objective of this study was to characterize the firing behavior of single motor units in the elbow flexor and extensor muscles during isometric contractions in people with mild-to-moderate PD. Ten individuals with PD (off-medication) and nine healthy controls were tested. Motor unit spike times were recorded via intramuscular EMG from the biceps and triceps brachii muscles during 30-s isometric contractions at 10% maximum voluntary elbow flexion and elbow extension torque, respectively. We selected variables of mean motor unit discharge rate, discharge variability, and torque variability to evaluate motor abnormalities in the PD group. The effects of group, muscle, and group-by-muscle on each variable were determined using separate linear mixed models. Discharge rate and torque variability were not different between groups, but discharge variability was significantly higher in the PD group for both muscles combined (p < 0.0001). We also evaluated the asymmetry in these motor variables between the triceps and biceps for each individual participant with PD to evaluate whether there was an association with disease severity. The difference in torque variability between elbow flexion and extension was significantly correlated with both the Hoehn and Yahr scale (rho = 0.71) and UPDRS (rho = 0.62). Our findings demonstrate that variability in motor output, rather than decreased discharge rates, may contribute to motor dysfunction in people with mild-to-moderate PD. Our findings provide insight into altered neural control of movement in PD and demonstrate the importance of measuring from multiple muscles within the same cohort.
Collapse
Affiliation(s)
- Jessica M. Wilson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Christopher K. Thompson
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, PA, United States
| | - Laura Miller McPherson
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Cindy Zadikoff
- Department of Neurology, Northwestern University, Chicago, IL, United States
| | - C.J. Heckman
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Department of Physiology, Northwestern University, Chicago, IL, United States
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| | - Colum D. MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
4
|
Hassan A, Thompson CK, Negro F, Cummings M, Powers RK, Heckman CJ, Dewald JPA, McPherson LM. Impact of parameter selection on estimates of motoneuron excitability using paired motor unit analysis. J Neural Eng 2020; 17:016063. [PMID: 31801123 DOI: 10.1088/1741-2552/ab5eda] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Noninvasive estimation of motoneuron excitability in human motoneurons is achieved through a paired motor unit analysis (ΔF) that quantifies hysteresis in the instantaneous firing rates at motor unit recruitment and de-recruitment. The ΔF technique provides insight into the magnitude of neuromodulatory synaptic input and persistent inward currents (PICs). While the ΔF technique is commonly used for estimating motoneuron excitability during voluntary contractions, computational parameters used for the technique vary across studies. A systematic investigation into the relationship between these parameters and ΔF values is necessary. APPROACH We assessed the sensitivity of the ΔF technique with several criteria commonly used in selecting motor unit pairs for analysis and methods used for smoothing the instantaneous motor unit firing rates. Using high-density surface EMG and convolutive blind source separation, we obtained a large number of motor unit pairs (5409) from the triceps brachii of ten healthy individuals during triangular isometric contractions. MAIN RESULTS We found an exponential plateau relationship between ΔF and the recruitment time difference between the motor unit pairs and an exponential decay relationship between ΔF and the de-recruitment time difference between the motor unit pairs, with the plateaus occurring at approximately 1 s and 1.5 s, respectively. Reduction or removal of the minimum threshold for rate-rate correlation of the two units did not affect ΔF values or variance. Removing motor unit pairs in which the firing rate of the control unit was saturated had no significant effect on ΔF. Smoothing the filter selection had no substantial effect on ΔF values and ΔF variance; however, filter selection affected the minimum recruitment and de-recruitment time differences. SIGNIFICANCE Our results offer recommendations for standardized parameters for the ΔF approach and facilitate the interpretation of findings from studies that implement the ΔF analysis but use different computational parameters.
Collapse
Affiliation(s)
- Altamash Hassan
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States of America. Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
5
|
McPherson LM, Dewald JPA. Differences between flexion and extension synergy-driven coupling at the elbow, wrist, and fingers of individuals with chronic hemiparetic stroke. Clin Neurophysiol 2019; 130:454-468. [PMID: 30771722 DOI: 10.1016/j.clinph.2019.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The flexion and extension synergies were quantified at the paretic elbow, forearm, wrist, and finger joints within the same group of participants for the first time. Differences in synergy expression at each of the four joints were examined, as were the ways these differences varied across the joints. METHODS Twelve post-stroke individuals with chronic moderate-to-severe hemiparesis and six age-matched controls participated. Participants generated isometric shoulder abduction (SABD) and shoulder adduction (SADD) at four submaximal levels to progressively elicit the flexion and extension synergies, respectively. Isometric joint torques and EMG were recorded from shoulder, elbow, forearm (radio-ulnar), wrist, and finger joints and muscles. RESULTS SABD elicited strong wrist and finger flexion torque that increased with shoulder torque level. SADD produced primarily wrist and finger flexion torque, but magnitudes at the wrist were less than during SABD. Findings contrasted with those at the elbow and forearm, where torques and EMG generated due to SABD and SADD were opposite in direction. CONCLUSIONS Flexion and extension synergy expression are more similar at the hand than at the shoulder and elbow. Specific bulbospinal pathways that may underlie flexion and extension synergy expression are discussed. SIGNIFICANCE Whole-limb behavior must be considered when examining paretic hand function in moderately-to-severely impaired individuals.
Collapse
Affiliation(s)
- Laura Miller McPherson
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Department of Physical Therapy, Nicole Wertheim College of Nursing and Health Sciences, Florida International University, Miami, FL, USA; Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, Miami, FL, USA
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
6
|
McPherson JG, Stienen AHA, Schmit BD, Dewald JPA. Biomechanical parameters of the elbow stretch reflex in chronic hemiparetic stroke. Exp Brain Res 2018; 237:121-135. [PMID: 30353212 DOI: 10.1007/s00221-018-5389-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 10/01/2018] [Indexed: 11/30/2022]
Abstract
We sought to determine the relative velocity sensitivity of stretch reflex threshold angle and reflex stiffness during stretches of the paretic elbow joint in individuals with chronic hemiparetic stroke, and to provide guidelines to streamline spasticity assessments. We applied ramp-and-hold elbow extension perturbations ranging from 15 to 150°/s over the full range of motion in 13 individuals with hemiparesis. After accounting for the effects of passive mechanical resistance, we modeled velocity-dependent reflex threshold angle and torque-angle slope to determine their correlation with overall resistance to movement. Reflex stiffness exhibited substantially greater velocity sensitivity than threshold angle, accounting for ~ 74% (vs. ~ 15%) of the overall velocity-dependent increases in movement resistance. Reflex stiffness is a sensitive descriptor of the overall velocity-dependence of movement resistance in spasticity. Clinical spasticity assessments can be streamlined using torque-angle slope, a measure of reflex stiffness, as their primary outcome measure, particularly at stretch velocities greater than 100°/s.
Collapse
Affiliation(s)
- Jacob G McPherson
- Department of Biomedical Engineering, Florida International University, 10555 W. Flagler St., EC #3171, Miami, FL, 33176, USA
| | - Arno H A Stienen
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.
| |
Collapse
|
7
|
McPherson JG, McPherson LM, Thompson CK, Ellis MD, Heckman CJ, Dewald JPA. Altered Neuromodulatory Drive May Contribute to Exaggerated Tonic Vibration Reflexes in Chronic Hemiparetic Stroke. Front Hum Neurosci 2018; 12:131. [PMID: 29686611 PMCID: PMC5900019 DOI: 10.3389/fnhum.2018.00131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 03/22/2018] [Indexed: 12/05/2022] Open
Abstract
Exaggerated stretch-sensitive reflexes are a common finding in elbow flexors of the contralesional arm in chronic hemiparetic stroke, particularly when muscles are not voluntarily activated prior to stretch. Previous investigations have suggested that this exaggeration could arise either from an abnormal tonic ionotropic drive to motoneuron pools innervating the paretic limbs, which could bring additional motor units near firing threshold, or from an increased influence of descending monoaminergic neuromodulatory pathways, which could depolarize motoneurons and amplify their responses to synaptic inputs. However, previous investigations have been unable to differentiate between these explanations, leaving the source(s) of this excitability increase unclear. Here, we used tonic vibration reflexes (TVRs) during voluntary muscle contractions of increasing magnitude to infer the sources of spinal motor excitability in individuals with chronic hemiparetic stroke. We show that when the paretic and non-paretic elbow flexors are preactivated to the same percentage of maximum prior to vibration, TVRs remain significantly elevated in the paretic arm. We also show that the rate of vibration-induced torque development increases as a function of increasing preactivation in the paretic limb, even though the amplitude of vibration-induced torque remains conspicuously unchanged as preactivation increases. It is highly unlikely that these findings could be explained by a source that is either purely ionotropic or purely neuromodulatory, because matching preactivation should control for the effects of a potential ionotropic drive (and lead to comparable tonic vibration reflex responses between limbs), while a purely monoaminergic mechanism would increase reflex magnitude as a function of preactivation. Thus, our results suggest that increased excitability of motor pools innervating the paretic limb post-stroke is likely to arise from both ionotropic and neuromodulatory mechanisms.
Collapse
Affiliation(s)
- Jacob G McPherson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Laura M McPherson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physical Therapy, Florida International University, Miami, FL, United States
| | - Christopher K Thompson
- Department of Physical Therapy, Temple University, Philadelphia, PA, United States.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Michael D Ellis
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Charles J Heckman
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
8
|
Tang W, Zhang X, Tang X, Cao S, Gao X, Chen X. Surface Electromyographic Examination of Poststroke Neuromuscular Changes in Proximal and Distal Muscles Using Clustering Index Analysis. Front Neurol 2018; 8:731. [PMID: 29379465 PMCID: PMC5775223 DOI: 10.3389/fneur.2017.00731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/18/2017] [Indexed: 11/13/2022] Open
Abstract
Whether stroke-induced paretic muscle changes vary across different distal and proximal muscles remains unclear. The objective of this study was to compare paretic muscle changes between a relatively proximal muscle (the biceps brachii muscle) and two distal muscles (the first dorsal interosseous muscle and the abductor pollicis brevis muscle) following hemisphere stroke using clustering index (CI) analysis of surface electromyograms (EMGs). For each muscle, surface EMG signals were recorded from the paretic and contralateral sides of 12 stroke subjects versus the dominant side of eight control subjects during isometric muscle contractions to measure the consequence of graded levels of contraction (from a mild level to the maximal voluntary contraction). Across all examined muscles, it was found that partial paretic muscles had abnormally higher or lower CI values than those of the healthy control muscles, which exhibited a significantly larger variance in the CI via a series of homogeneity of variance tests (p < 0.05). This finding indicated that both neurogenic and myopathic changes were likely to take place in paretic muscles. When examining two distal muscles of individual stroke subjects, relatively consistent CI abnormalities (toward neuropathy or myopathy) were observed. By contrast, consistency in CI abnormalities were not found when comparing proximal and distal muscles, indicating differences in motor unit alternation between the proximal and distal muscles on the paretic sides of stroke survivors. Furthermore, CI abnormalities were also observed for all three muscles on the contralateral side. Our findings help elucidate the pathological mechanisms underlying stroke sequels, which might prove useful in developing improved stroke rehabilitation protocols.
Collapse
Affiliation(s)
- Weidi Tang
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xu Zhang
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xiao Tang
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Shuai Cao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xiaoping Gao
- Department of Rehabilitation Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiang Chen
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
9
|
McPherson LM, Negro F, Thompson CK, Sanchez L, Heckman CJ, Dewald J, Farina D. Properties of the motor unit action potential shape in proximal and distal muscles of the upper limb in healthy and post-stroke individuals. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:335-339. [PMID: 28268345 DOI: 10.1109/embc.2016.7590708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spectral analysis of surface electromyograms (sEMG) is often used to estimate central and peripheral characteristics of a motor unit (MU) population, such as average conduction velocity, proportion of muscle fiber types, and pattern of MU recruitment. This estimation is based on the assumption that the sEMG adequately reflects the frequency characteristics of the underlying MU action potentials (MUAP). However, sEMG has limitations in this respect, based on physiological and non-physiological factors that influence its frequency content. We present a method to examine characteristics of a MU population more reliably by assessing the distributions of frequency content and amplitude for a collection of individual MUAPs, identified using high-density sEMG decomposition. We demonstrate the use of this approach to examine how MU characteristics differ across muscles and in the post-stroke state by presenting preliminary data from deltoid (DELT), biceps (BIC), and finger flexor (FF) MU populations from 12 post-stroke individuals and 8 able-bodied controls. The results show differences in the magnitude and range of MUAP median frequencies across muscles in both groups. The group median values were higher in the stroke group for the DELT and FF and lower in the stroke group for the BIC. The range of frequencies was larger in the stroke group for all muscles. The distribution of MUAP RMS amplitude in both stroke and control groups had a substantially larger range in FF than in DELT and BIC. The group median values for the FF were twice as large in the stroke group. In addition, there were differences in the frequency and amplitude results between MUAP and global sEMG analyses. The implications of these findings and possible applications of the approach are discussed.
Collapse
|
10
|
Johnson MD, Thompson CK, Tysseling VM, Powers RK, Heckman CJ. The potential for understanding the synaptic organization of human motor commands via the firing patterns of motoneurons. J Neurophysiol 2017; 118:520-531. [PMID: 28356467 DOI: 10.1152/jn.00018.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/07/2017] [Accepted: 03/21/2017] [Indexed: 12/19/2022] Open
Abstract
Motoneurons are unique in being the only neurons in the CNS whose firing patterns can be easily recorded in human subjects. This is because of the one-to-one relationship between the motoneuron and muscle cell behavior. It has long been appreciated that the connection of motoneurons to their muscle fibers allows their action potentials to be amplified and recorded, but only recently has it become possible to simultaneously record the firing pattern of many motoneurons via array electrodes placed on the skin. These firing patterns contain detailed information about the synaptic organization of motor commands to the motoneurons. This review focuses on parameters in these firing patterns that are directly linked to specific features of this organization. It is now well established that motor commands consist of three components, excitation, inhibition, and neuromodulation; the importance of the third component has become increasingly evident. Firing parameters linked to each of the three components are discussed, along with consideration of potential limitations in their utility for understanding the underlying organization of motor commands. Future work based on realistic computer simulations of motoneurons may allow quantitative "reverse engineering" of human motoneuron firing patterns to provide good estimates of the relative amplitudes and temporal patterns of all three components of motor commands.
Collapse
Affiliation(s)
- Michael D Johnson
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois;
| | | | - Vicki M Tysseling
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Randall K Powers
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Charles J Heckman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
11
|
Re-evaluation of EMG-torque relation in chronic stroke using linear electrode array EMG recordings. Sci Rep 2016; 6:28957. [PMID: 27349938 PMCID: PMC4923947 DOI: 10.1038/srep28957] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/13/2016] [Indexed: 11/08/2022] Open
Abstract
The objective was to re-evaluate the controversial reports of EMG-torque relation between impaired and non-impaired sides using linear electrode array EMG recordings. Ten subjects with chronic stroke performed a series of submaximal isometric elbow flexion tasks. A 20-channel linear array was used to record surface EMG of the biceps brachii muscles from both impaired and non-impaired sides. M-wave recordings for bilateral biceps brachii muscles were also made. Distribution of the slope of the EMG-torque relations for the individual channels showed a quasi-symmetrical "M" shaped pattern. The lowest value corresponded to the innervation zone (IZ) location. The highest value from the slope curve for each side was selected for comparison to minimize the effect of electrode placement and IZ asymmetry. The slope was greater on the impaired side in 4 of 10 subjects. There were a weak correlation between slope ratio and strength ratio and a moderate to high correlation between slope ratio and M-wave ratio between two sides. These findings suggest that the EMG-torque relations are likely mediated and influenced by multiple factors. Our findings emphasize the importance of electrode placement and suggest the primary role of peripheral adaptive changes in the EMG-torque relations in chronic stroke.
Collapse
|