1
|
Scalvini F, Bordeau C, Ambard M, Migniot C, Dubois J. Outdoor Navigation Assistive System Based on Robust and Real-Time Visual-Auditory Substitution Approach. SENSORS (BASEL, SWITZERLAND) 2023; 24:166. [PMID: 38203027 PMCID: PMC10781372 DOI: 10.3390/s24010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Blindness affects millions of people worldwide, leading to difficulties in daily travel and a loss of independence due to a lack of spatial information. This article proposes a new navigation aid to help people with severe blindness reach their destination. Blind people are guided by a short 3D spatialised sound that indicates the target point to follow. This sound is combined with other sonified information on potential obstacles in the vicinity. The proposed system is based on inertial sensors, GPS data, and the cartographic knowledge of pedestrian paths to define the trajectory. In addition, visual clues are used to refine the trajectory with ground floor information and obstacle information using a camera to provide 3D spatial information. The proposed method is based on a deep learning approach. The different neural networks used in this approach are evaluated on datasets that regroup navigations from pedestrians' point-of-view. This method achieves low latency and real-time processing without relying on remote connections, instead using a low-power embedded GPU target and a multithreaded approach for video processing, sound generation, and acquisition. This system could significantly improve the quality of life and autonomy of blind people, allowing them to reliably and efficiently navigate in their environment.
Collapse
Affiliation(s)
- Florian Scalvini
- Laboratory ImViA EA 7535, Université de Bourgogne, 21078 Dijon, France; (C.M.); (J.D.)
| | - Camille Bordeau
- LEAD, CNRS UMR 5022, Université de Bourgogne, 21078 Dijon, France; (C.B.); (M.A.)
| | - Maxime Ambard
- LEAD, CNRS UMR 5022, Université de Bourgogne, 21078 Dijon, France; (C.B.); (M.A.)
| | - Cyrille Migniot
- Laboratory ImViA EA 7535, Université de Bourgogne, 21078 Dijon, France; (C.M.); (J.D.)
| | - Julien Dubois
- Laboratory ImViA EA 7535, Université de Bourgogne, 21078 Dijon, France; (C.M.); (J.D.)
| |
Collapse
|
2
|
Peiroten L, Zrenner E, Haq W. Artificial Vision: The High-Frequency Electrical Stimulation of the Blind Mouse Retina Decay Spike Generation and Electrogenically Clamped Intracellular Ca 2+ at Elevated Levels. Bioengineering (Basel) 2023; 10:1208. [PMID: 37892938 PMCID: PMC10604554 DOI: 10.3390/bioengineering10101208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The electrical stimulation (stim) of retinal neurons enables blind patients to experience limited artificial vision. A rapid response outage of the stimulated ganglion cells (GCs) allows for a low visual sensation rate. Hence, to elucidate the underlying mechanism, we investigated different stim parameters and the role of the neuromodulator calcium (Ca2+). METHODS Subretinal stim was applied on retinal explants (blind rd1 mouse) using multielectrode arrays (MEAs) or single metal electrodes, and the GC activity was recorded using Ca2+ imaging or MEA, respectively. Stim parameters, including voltage, phase polarity, and frequency, were investigated using specific blockers. RESULTS At lower stim frequencies (<5 Hz), GCs responded synaptically according to the stim pulses (stim: biphasic, cathodic-first, -1.6/+1.5 V). In contrast, higher stim frequencies (≥5 Hz) also activated GCs directly and induced a rapid GC spike response outage (<500 ms, MEA recordings), while in Ca2+ imaging at the same frequencies, increased intracellular Ca2+ levels were observed. CONCLUSIONS Our study elucidated the mechanisms involved in stim-dependent GC spike response outage: sustained high-frequency stim-induced spike outage, accompanied by electrogenically clamped intracellular Ca2+ levels at elevated levels. These findings will guide future studies optimizing stim paradigms for electrical implant applications for interfacing neurons.
Collapse
Affiliation(s)
| | | | - Wadood Haq
- Neuroretinal Electrophysiology and Imaging, Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; (L.P.)
| |
Collapse
|
3
|
Schegolev AE, Klenov NV, Gubochkin GI, Kupriyanov MY, Soloviev II. Bio-Inspired Design of Superconducting Spiking Neuron and Synapse. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2101. [PMID: 37513112 PMCID: PMC10383304 DOI: 10.3390/nano13142101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The imitative modelling of processes in the brain of living beings is an ambitious task. However, advances in the complexity of existing hardware brain models are limited by their low speed and high energy consumption. A superconducting circuit with Josephson junctions closely mimics the neuronal membrane with channels involved in the operation of the sodium-potassium pump. The dynamic processes in such a system are characterised by a duration of picoseconds and an energy level of attojoules. In this work, two superconducting models of a biological neuron are studied. New modes of their operation are identified, including the so-called bursting mode, which plays an important role in biological neural networks. The possibility of switching between different modes in situ is shown, providing the possibility of dynamic control of the system. A synaptic connection that mimics the short-term potentiation of a biological synapse is developed and demonstrated. Finally, the simplest two-neuron chain comprising the proposed bio-inspired components is simulated, and the prospects of superconducting hardware biosimilars are briefly discussed.
Collapse
Affiliation(s)
- Andrey E Schegolev
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Nikolay V Klenov
- Faculty of Physics, Moscow State University, 119991 Moscow, Russia
- Faculty of Physics, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Georgy I Gubochkin
- Faculty of Physics, Moscow State University, 119991 Moscow, Russia
- Russian Quantum Center, 100 Novaya Street, Skolkovo, 143025 Moscow, Russia
| | - Mikhail Yu Kupriyanov
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Igor I Soloviev
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Physics, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
4
|
Meikle SJ, Hagan MA, Price NSC, Wong YT. Intracortical current steering shifts the location of evoked neural activity. J Neural Eng 2022; 19. [PMID: 35688125 DOI: 10.1088/1741-2552/ac77bf] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022]
Abstract
Objective.Intracortical visual prostheses are being developed to restore sight in people who are blind. The resolution of artificial vision is dictated by the location, proximity and number of electrodes implanted in the brain. However, increasing electrode count and proximity is traded off against tissue damage. Hence, new stimulation methods are needed that can improve the resolution of artificial vision without increasing the number of electrodes. We investigated whether a technique known as current steering can improve the resolution of artificial vision provided by intracortical prostheses without increasing the number of physical electrodes in the brain.Approach.We explored how the locus of neuronal activation could be steered when low amplitude microstimulation was applied simultaneously to two intracortical electrodes. A 64-channel, four-shank electrode array was implanted into the visual cortex of rats (n= 7). The distribution of charge ranged from single-electrode stimulation (100%:0%) to an equal distribution between the two electrodes (50%:50%), thereby steering the current between the physical electrodes. The stimulating electrode separation varied between 300 and 500μm. The peak of the evoked activity was defined as the 'virtual electrode' location.Main results.Current steering systematically shifted the virtual electrode on average between the stimulating electrodes as the distribution of charge was moved from one stimulating electrode to another. This effect was unclear in single trials due to the limited sampling of neurons. A model that scales the cortical response to each physical electrode when stimulated in isolation predicts the evoked virtual electrode response. Virtual electrodes were found to elicit a neural response as effectively and predictably as physical electrodes within cortical tissue on average.Significance.Current steering could be used to increase the resolution of intracortical electrode arrays without altering the number of physical electrodes which will reduce neural tissue damage, power consumption and potential heat dispersion issues.
Collapse
Affiliation(s)
- Sabrina J Meikle
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Vic 3800, Australia.,ARC Centre of Excellence for Integrative Brain Function, Clayton, Vic, 3800, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Vic, 3800, Australia.,Monash Vision Group, Monash University, Clayton, Vic 3800, Australia
| | - Maureen A Hagan
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Vic 3800, Australia.,ARC Centre of Excellence for Integrative Brain Function, Clayton, Vic, 3800, Australia
| | - Nicholas S C Price
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Vic 3800, Australia.,ARC Centre of Excellence for Integrative Brain Function, Clayton, Vic, 3800, Australia
| | - Yan T Wong
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Vic 3800, Australia.,ARC Centre of Excellence for Integrative Brain Function, Clayton, Vic, 3800, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Vic, 3800, Australia.,Monash Vision Group, Monash University, Clayton, Vic 3800, Australia
| |
Collapse
|
5
|
Meikle SJ, Wong YT. Neurophysiological considerations for visual implants. Brain Struct Funct 2021; 227:1523-1543. [PMID: 34773502 DOI: 10.1007/s00429-021-02417-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/17/2021] [Indexed: 11/26/2022]
Abstract
Neural implants have the potential to restore visual capabilities in blind individuals by electrically stimulating the neurons of the visual system. This stimulation can produce visual percepts known as phosphenes. The ideal location of electrical stimulation for achieving vision restoration is widely debated and dependent on the physiological properties of the targeted tissue. Here, the neurophysiology of several potential target structures within the visual system will be explored regarding their benefits and downfalls in producing phosphenes. These regions will include the lateral geniculate nucleus, primary visual cortex, visual area 2, visual area 3, visual area 4 and the middle temporal area. Based on the existing engineering limitations of neural prostheses, we anticipate that electrical stimulation of any singular brain region will be incapable of achieving high-resolution naturalistic perception including color, texture, shape and motion. As improvements in visual acuity facilitate improvements in quality of life, emulating naturalistic vision should be one of the ultimate goals of visual prostheses. To achieve this goal, we propose that multiple brain areas will need to be targeted in unison enabling different aspects of vision to be recreated.
Collapse
Affiliation(s)
- Sabrina J Meikle
- Department of Electrical and Computer Systems Engineering, Monash University, 14 Alliance Lane, Clayton, Vic, 3800, Australia
- Department of Physiology and Biomedicine Discovery Institute, Monash University, 14 Alliance Lane, Clayton, Vic, 3800, Australia
- Monash Vision Group, Monash University, 14 Alliance Lane, Clayton, Vic, 3800, Australia
| | - Yan T Wong
- Department of Electrical and Computer Systems Engineering, Monash University, 14 Alliance Lane, Clayton, Vic, 3800, Australia.
- Department of Physiology and Biomedicine Discovery Institute, Monash University, 14 Alliance Lane, Clayton, Vic, 3800, Australia.
- Monash Vision Group, Monash University, 14 Alliance Lane, Clayton, Vic, 3800, Australia.
| |
Collapse
|
6
|
Ptito M, Bleau M, Djerourou I, Paré S, Schneider FC, Chebat DR. Brain-Machine Interfaces to Assist the Blind. Front Hum Neurosci 2021; 15:638887. [PMID: 33633557 PMCID: PMC7901898 DOI: 10.3389/fnhum.2021.638887] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
The loss or absence of vision is probably one of the most incapacitating events that can befall a human being. The importance of vision for humans is also reflected in brain anatomy as approximately one third of the human brain is devoted to vision. It is therefore unsurprising that throughout history many attempts have been undertaken to develop devices aiming at substituting for a missing visual capacity. In this review, we present two concepts that have been prevalent over the last two decades. The first concept is sensory substitution, which refers to the use of another sensory modality to perform a task that is normally primarily sub-served by the lost sense. The second concept is cross-modal plasticity, which occurs when loss of input in one sensory modality leads to reorganization in brain representation of other sensory modalities. Both phenomena are training-dependent. We also briefly describe the history of blindness from ancient times to modernity, and then proceed to address the means that have been used to help blind individuals, with an emphasis on modern technologies, invasive (various type of surgical implants) and non-invasive devices. With the advent of brain imaging, it has become possible to peer into the neural substrates of sensory substitution and highlight the magnitude of the plastic processes that lead to a rewired brain. Finally, we will address the important question of the value and practicality of the available technologies and future directions.
Collapse
Affiliation(s)
- Maurice Ptito
- École d’Optométrie, Université de Montréal, Montréal, QC, Canada
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Maxime Bleau
- École d’Optométrie, Université de Montréal, Montréal, QC, Canada
| | - Ismaël Djerourou
- École d’Optométrie, Université de Montréal, Montréal, QC, Canada
| | - Samuel Paré
- École d’Optométrie, Université de Montréal, Montréal, QC, Canada
| | - Fabien C. Schneider
- TAPE EA7423 University of Lyon-Saint Etienne, Saint Etienne, France
- Neuroradiology Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Daniel-Robert Chebat
- Visual and Cognitive Neuroscience Laboratory (VCN Lab), Department of Psychology, Faculty of Social Sciences and Humanities, Ariel University, Ariel, Israël
- Navigation and Accessibility Research Center of Ariel University (NARCA), Ariel, Israël
| |
Collapse
|
7
|
Omisakin A, Mestrom RMC, Bentum MJ. Low-Power Wireless Data Transfer System for Stimulation in an Intracortical Visual Prosthesis. SENSORS (BASEL, SWITZERLAND) 2021; 21:735. [PMID: 33499122 PMCID: PMC7865708 DOI: 10.3390/s21030735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022]
Abstract
There is a growing interest to improve the quality of life of blind people. An implanted intracortical prosthesis could be the last resort in many cases of visual impairment. Technology at this moment is at a stage that implementation is at sight. Making the data communication to and from the implanted electrodes wireless is beneficial to avoid infection and to ease mobility. Here, we focus on the stimulation side, or downlink, for which we propose a low-power non-coherent digital demodulator on the implanted receiver. The experimentally demonstrated downlink is on a scaled-down version at a 1 MHz carrier frequency showing a data rate of 125 kbps. This provides proof of principle for the system with a 12 MHz carrier frequency and a data rate of 4 Mbps, which consumes under 1 mW at the receiver side in integrated circuit (IC) simulation. Due to its digital architecture, the system is easily adjustable to an ISM frequency band with its power consumption scaling linearly with the carrier frequency. The tested system uses off-the-shelf coils, which gave sufficient bandwidth, while staying within safe SAR limits. The digital receiver achieved a reduction in power consumption by skipping clock cycles of redundant bits. The system shows a promising pathway to a low-power wireless-enabled visual prosthesis.
Collapse
|
8
|
Niketeghad S, Pouratian N. Brain Machine Interfaces for Vision Restoration: The Current State of Cortical Visual Prosthetics. Neurotherapeutics 2019; 16:134-143. [PMID: 30194614 PMCID: PMC6361050 DOI: 10.1007/s13311-018-0660-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Loss of vision alters the day to day life of blind individuals and may impose a significant burden on their family and the economy. Cortical visual prosthetics have been shown to have the potential of restoring a useful degree of vision via stimulation of primary visual cortex. Due to current advances in electrode design and wireless power and data transmission, development of these prosthetics has gained momentum in the past few years and multiple sites around the world are currently developing and testing their designs. In this review, we briefly outline the visual prosthetic approaches and describe the history of cortical visual prosthetics. Next, we focus on the state of the art of cortical visual prosthesis by briefly explaining the design of current devices that are either under development or in the clinical testing phase. Lastly, we shed light on the challenges of each design and provide some potential solutions.
Collapse
Affiliation(s)
- Soroush Niketeghad
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Mitrasinovic S, Brown AP, Schaefer AT, Chang SD, Appelboom G. Silicon Valley new focus on brain computer interface: hype or hope for new applications? F1000Res 2018; 7:1327. [PMID: 30705750 PMCID: PMC6343225 DOI: 10.12688/f1000research.15726.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/14/2018] [Indexed: 11/28/2022] Open
Abstract
In the last year there has been increasing interest and investment into developing devices to interact with the central nervous system, in particular developing a robust brain-computer interface (BCI). In this article, we review the most recent research advances and the current host of engineering and neurological challenges that must be overcome for clinical application. In particular, space limitations, isolation of targeted structures, replacement of probes following failure, delivery of nanomaterials and processing and understanding recorded data. Neural engineering has developed greatly over the past half-century, which has allowed for the development of better neural recording techniques and clinical translation of neural interfaces. Implementation of general purpose BCIs face a number of constraints arising from engineering, computational, ethical and neuroscientific factors that still have to be addressed. Electronics have become orders of magnitude smaller and computationally faster than neurons, however there is much work to be done in decoding the neural circuits. New interest and funding from the non-medical community may be a welcome catalyst for focused research and development; playing an important role in future advancements in the neuroscience community.
Collapse
Affiliation(s)
| | | | - Andreas T. Schaefer
- The Francis Crick Institute, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Steven D. Chang
- Department of Neurosurgery, Stanford University Medical Center, Brighton, USA
| | - Geoff Appelboom
- Department of Neurosurgery, Stanford University Medical Center, Brighton, USA
- Byers Center for Biodesign, Stanford University School of Medicine, Brighton, USA
| |
Collapse
|
10
|
Tochitsky I, Kienzler MA, Isacoff E, Kramer RH. Restoring Vision to the Blind with Chemical Photoswitches. Chem Rev 2018; 118:10748-10773. [PMID: 29874052 DOI: 10.1021/acs.chemrev.7b00723] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Degenerative retinal diseases such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD) affect millions of people around the world and lead to irreversible vision loss if left untreated. A number of therapeutic strategies have been developed over the years to treat these diseases or restore vision to already blind patients. In this Review, we describe the development and translational application of light-sensitive chemical photoswitches to restore visual function to the blind retina and compare the translational potential of photoswitches with other vision-restoring therapies. This therapeutic strategy is enabled by an efficient fusion of chemical synthesis, chemical biology, and molecular biology and is broadly applicable to other biological systems. We hope this Review will be of interest to chemists as well as neuroscientists and clinicians.
Collapse
Affiliation(s)
- Ivan Tochitsky
- F.M. Kirby Neurobiology Center , Boston Children's Hospital , Boston , Massachusetts 02115 , United States.,Department of Neurobiology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Michael A Kienzler
- Department of Chemistry , University of Maine , Orono , Maine 04469 , United States
| | - Ehud Isacoff
- Department of Molecular and Cell Biology , University of California , Berkeley , California 94720 , United States.,Helen Wills Neuroscience Institute , University of California , Berkeley , California 94720 , United States.,Bioscience Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Richard H Kramer
- Department of Molecular and Cell Biology , University of California , Berkeley , California 94720 , United States.,Helen Wills Neuroscience Institute , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
11
|
Bosking WH, Beauchamp MS, Yoshor D. Electrical Stimulation of Visual Cortex: Relevance for the Development of Visual Cortical Prosthetics. Annu Rev Vis Sci 2017; 3:141-166. [PMID: 28753382 PMCID: PMC6916716 DOI: 10.1146/annurev-vision-111815-114525] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electrical stimulation of the cerebral cortex is a powerful tool for exploring cortical function. Stimulation of early visual cortical areas is easily detected by subjects and produces simple visual percepts known as phosphenes. A device implanted in visual cortex that generates patterns of phosphenes could be used as a substitute for natural vision in blind patients. We review the possibilities and limitations of such a device, termed a visual cortical prosthetic. Currently, we can predict the location and size of phosphenes produced by stimulation of single electrodes. A functional prosthetic, however, must produce spatial temporal patterns of activity that will result in the perception of complex visual objects. Although stimulation of later visual cortical areas alone usually does not lead to a visual percept, it can alter visual perception and the performance of visual behaviors, and training subjects to use signals injected into these areas may be possible.
Collapse
Affiliation(s)
- William H Bosking
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030; , ,
| | - Michael S Beauchamp
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030; , ,
| | - Daniel Yoshor
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030; , ,
| |
Collapse
|
12
|
Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex. J Neurosci 2017; 37:7188-7197. [PMID: 28652411 DOI: 10.1523/jneurosci.2896-16.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 11/21/2022] Open
Abstract
Electrically stimulating early visual cortex results in a visual percept known as a phosphene. Although phosphenes can be evoked by a wide range of electrode sizes and current amplitudes, they are invariably described as small. To better understand this observation, we electrically stimulated 93 electrodes implanted in the visual cortex of 13 human subjects who reported phosphene size while stimulation current was varied. Phosphene size increased as the stimulation current was initially raised above threshold, but then rapidly reached saturation. Phosphene size also depended on the location of the stimulated site, with size increasing with distance from the foveal representation. We developed a model relating phosphene size to the amount of activated cortex and its location within the retinotopic map. First, a sigmoidal curve was used to predict the amount of activated cortex at a given current. Second, the amount of active cortex was converted to degrees of visual angle by multiplying by the inverse cortical magnification factor for that retinotopic location. This simple model accurately predicted phosphene size for a broad range of stimulation currents and cortical locations. The unexpected saturation in phosphene sizes suggests that the functional architecture of cerebral cortex may impose fundamental restrictions on the spread of artificially evoked activity and this may be an important consideration in the design of cortical prosthetic devices.SIGNIFICANCE STATEMENT Understanding the neural basis for phosphenes, the visual percepts created by electrical stimulation of visual cortex, is fundamental to the development of a visual cortical prosthetic. Our experiments in human subjects implanted with electrodes over visual cortex show that it is the activity of a large population of cells spread out across several millimeters of tissue that supports the perception of a phosphene. In addition, we describe an important feature of the production of phosphenes by electrical stimulation: phosphene size saturates at a relatively low current level. This finding implies that, with current methods, visual prosthetics will have a limited dynamic range available to control the production of spatial forms and that more advanced stimulation methods may be required.
Collapse
|
13
|
Lewis PM, Ayton LN, Guymer RH, Lowery AJ, Blamey PJ, Allen PJ, Luu CD, Rosenfeld JV. Advances in implantable bionic devices for blindness: a review. ANZ J Surg 2016; 86:654-9. [PMID: 27301783 PMCID: PMC5132139 DOI: 10.1111/ans.13616] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/03/2016] [Accepted: 03/17/2016] [Indexed: 02/02/2023]
Abstract
Since the 1950s, vision researchers have been working towards the ambitious goal of restoring a functional level of vision to the blind via electrical stimulation of the visual pathways. Groups based in Australia, USA, Germany, France and Japan report progress in the translation of retinal visual prosthetics from the experimental to clinical domains, with two retinal visual prostheses having recently received regulatory approval for clinical use. Regulatory approval for cortical visual prostheses is yet to be obtained; however, several groups report plans to conduct clinical trials in the near future, building upon the seminal clinical studies of Brindley and Dobelle. In this review, we discuss the general principles of visual prostheses employing electrical stimulation of the visual pathways, focusing on the retina and visual cortex as the two most extensively studied stimulation sites. We also discuss the surgical and functional outcomes reported to date for retinal and cortical prostheses, concluding with a brief discussion of novel developments in this field and an outlook for the future.
Collapse
Affiliation(s)
- Philip M Lewis
- Department of Neurosurgery, Alfred Hospital, Melbourne, Victoria, Australia.,Department of Surgery, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Monash Vision Group, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia.,Monash Institute of Medical Engineering, Monash University, Melbourne, Victoria, Australia
| | - Lauren N Ayton
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Department of Ophthalmology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robyn H Guymer
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Department of Ophthalmology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Arthur J Lowery
- Monash Vision Group, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia.,Monash Institute of Medical Engineering, Monash University, Melbourne, Victoria, Australia
| | - Peter J Blamey
- Bionics Institute, Department of Medical Bionics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Penelope J Allen
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Department of Ophthalmology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Department of Ophthalmology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jeffrey V Rosenfeld
- Department of Neurosurgery, Alfred Hospital, Melbourne, Victoria, Australia.,Department of Surgery, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Monash Vision Group, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia.,Monash Institute of Medical Engineering, Monash University, Melbourne, Victoria, Australia.,F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|