1
|
Oh ZH, Liu CH, Hsu CW, Liou TH, Escorpizo R, Chen HC. Mirror therapy combined with neuromuscular electrical stimulation for poststroke lower extremity motor function recovery: a systematic review and meta-analysis. Sci Rep 2023; 13:20018. [PMID: 37973838 PMCID: PMC10654913 DOI: 10.1038/s41598-023-47272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 11/11/2023] [Indexed: 11/19/2023] Open
Abstract
The combination of mirror therapy (MT) and neuromuscular electrical stimulation (NMES) has been devised as an intervention method in stroke rehabilitation; however, few studies have investigated its efficacy in lower extremity motor function recovery. In this systematic review and meta-analysis, we examined the effectiveness of combined MT and NMES therapy in improving poststroke walking speed, spasticity, balance and other gait parameters. Randomized controlled trials (RCTs) were selected from PubMed, Cochrane Library, EMBASE, and Scopus databases. In total, six RCTs which involving 181 participants were included. Our findings indicate that MT combined with NMES elicits greater improvement relative to control group in walking speed (SMD = 0.67, 95% confidence interval [CI] 0.26-1.07, P = 0.001), Berg Balance Scale (SMD = 0.72; 95% CI 0.31-1.13; P = 0.0007), cadence (SMD = 0.59, 95% CI 0.02-1.16, P = 0.04), step length (SMD = 0.94, 95% CI 0.35-1.53, P = 0.002), and stride length (SMD = 0.95, 95% CI 0.36-1.54, P = 0.002) but not in modified Ashworth scale (SMD = - 0.40, 95% CI - 1.05 to 0.26, P = 0.23). Our findings suggest that MT combined with NMES may be a suitable supplemental intervention to conventional therapy in stroke survivors.
Collapse
Affiliation(s)
- Zhen-Han Oh
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chia-Hung Liu
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Wei Hsu
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, No. 291 Zhongzheng Road, Zhonghe District 235, New Taipei City, Taiwan
| | - Tsan-Hon Liou
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, No. 291 Zhongzheng Road, Zhonghe District 235, New Taipei City, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Reuben Escorpizo
- Department of Rehabilitation and Movement Science, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, USA
- Swiss Paraplegic Research, Nottwil, Switzerland
| | - Hung-Chou Chen
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, No. 291 Zhongzheng Road, Zhonghe District 235, New Taipei City, Taiwan.
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Center for Evidence-Based Health Care, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
2
|
Berlet R, Anthony S, Brooks B, Wang ZJ, Sadanandan N, Shear A, Cozene B, Gonzales-Portillo B, Parsons B, Salazar FE, Lezama Toledo AR, Monroy GR, Gonzales-Portillo JV, Borlongan CV. Combination of Stem Cells and Rehabilitation Therapies for Ischemic Stroke. Biomolecules 2021; 11:1316. [PMID: 34572529 PMCID: PMC8468342 DOI: 10.3390/biom11091316] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Stem cell transplantation with rehabilitation therapy presents an effective stroke treatment. Here, we discuss current breakthroughs in stem cell research along with rehabilitation strategies that may have a synergistic outcome when combined together after stroke. Indeed, stem cell transplantation offers a promising new approach and may add to current rehabilitation therapies. By reviewing the pathophysiology of stroke and the mechanisms by which stem cells and rehabilitation attenuate this inflammatory process, we hypothesize that a combined therapy will provide better functional outcomes for patients. Using current preclinical data, we explore the prominent types of stem cells, the existing theories for stem cell repair, rehabilitation treatments inside the brain, rehabilitation modalities outside the brain, and evidence pertaining to the benefits of combined therapy. In this review article, we assess the advantages and disadvantages of using stem cell transplantation with rehabilitation to mitigate the devastating effects of stroke.
Collapse
Affiliation(s)
- Reed Berlet
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL 60064, USA;
| | - Stefan Anthony
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA;
| | - Beverly Brooks
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
| | - Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
| | | | - Alex Shear
- University of Florida, 205 Fletcher Drive, Gainesville, FL 32611, USA;
| | - Blaise Cozene
- Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, USA;
| | | | - Blake Parsons
- Washington and Lee University, 204 W Washington St, Lexington, VA 24450, USA;
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | - Alma R. Lezama Toledo
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | - Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (F.E.S.); (A.R.L.T.); (G.R.M.)
| | | | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.B.); (Z.-J.W.)
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Smart Protocols for Physical Therapy of Foot Drop Based on Functional Electrical Stimulation: A Case Study. Healthcare (Basel) 2021; 9:healthcare9050502. [PMID: 33925814 PMCID: PMC8146368 DOI: 10.3390/healthcare9050502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 11/21/2022] Open
Abstract
Functional electrical stimulation (FES) is used for treating foot drop by delivering electrical pulses to the anterior tibialis muscle during the swing phase of gait. This treatment requires that a patient can walk, which is mostly possible in the later phases of rehabilitation. In the early phase of recovery, the therapy conventionally consists of stretching exercises, and less commonly of FES delivered cyclically. Nevertheless, both approaches minimize patient engagement, which is inconsistent with recent findings that the full rehabilitation potential could be achieved by an active psycho-physical engagement of the patient during physical therapy. Following this notion, we proposed smart protocols whereby the patient sits and ankle movements are FES-induced by self-control. In six smart protocols, movements of the paretic ankle were governed by the non-paretic ankle with different control strategies, while in the seventh voluntary movements of the paretic ankle were used for stimulation triggering. One stroke survivor in the acute phase of recovery participated in the study. During the therapy, the patient’s voluntary ankle range of motion increased and reached the value of normal gait after 15 sessions. Statistical analysis did not reveal the differences between the protocols in FES-induced movements.
Collapse
|
4
|
Huo CC, Zheng Y, Lu WW, Zhang TY, Wang DF, Xu DS, Li ZY. Prospects for intelligent rehabilitation techniques to treat motor dysfunction. Neural Regen Res 2021; 16:264-269. [PMID: 32859773 PMCID: PMC7896219 DOI: 10.4103/1673-5374.290884] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/06/2019] [Accepted: 02/26/2020] [Indexed: 11/26/2022] Open
Abstract
More than half of stroke patients live with different levels of motor dysfunction after receiving routine rehabilitation treatments. Therefore, new rehabilitation technologies are urgently needed as auxiliary treatments for motor rehabilitation. Based on routine rehabilitation treatments, a new intelligent rehabilitation platform has been developed for accurate evaluation of function and rehabilitation training. The emerging intelligent rehabilitation techniques can promote the development of motor function rehabilitation in terms of informatization, standardization, and intelligence. Traditional assessment methods are mostly subjective, depending on the experience and expertise of clinicians, and lack standardization and precision. It is therefore difficult to track functional changes during the rehabilitation process. Emerging intelligent rehabilitation techniques provide objective and accurate functional assessment for stroke patients that can promote improvement of clinical guidance for treatment. Artificial intelligence and neural networks play a critical role in intelligent rehabilitation. Multiple novel techniques, such as brain-computer interfaces, virtual reality, neural circuit-magnetic stimulation, and robot-assisted therapy, have been widely used in the clinic. This review summarizes the emerging intelligent rehabilitation techniques for the evaluation and treatment of motor dysfunction caused by nervous system diseases.
Collapse
Affiliation(s)
- Cong-Cong Huo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| | - Ya Zheng
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Wei-Wei Lu
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Teng-Yu Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| | - Dai-Fa Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Dong-Sheng Xu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zeng-Yong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| |
Collapse
|
5
|
Thieme H, Morkisch N, Mehrholz J, Pohl M, Behrens J, Borgetto B, Dohle C. Mirror therapy for improving motor function after stroke. Cochrane Database Syst Rev 2018; 7:CD008449. [PMID: 29993119 PMCID: PMC6513639 DOI: 10.1002/14651858.cd008449.pub3] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Mirror therapy is used to improve motor function after stroke. During mirror therapy, a mirror is placed in the person's midsagittal plane, thus reflecting movements of the non-paretic side as if it were the affected side. OBJECTIVES To summarise the effectiveness of mirror therapy compared with no treatment, placebo or sham therapy, or other treatments for improving motor function and motor impairment after stroke. We also aimed to assess the effects of mirror therapy on activities of daily living, pain, and visuospatial neglect. SEARCH METHODS We searched the Cochrane Stroke Group's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, CINAHL, AMED, PsycINFO and PEDro (last searched 16 August 2017). We also handsearched relevant conference proceedings, trials and research registers, checked reference lists, and contacted trialists, researchers and experts in our field of study. SELECTION CRITERIA We included randomised controlled trials (RCTs) and randomised cross-over trials comparing mirror therapy with any control intervention for people after stroke. DATA COLLECTION AND ANALYSIS Two review authors independently selected trials based on the inclusion criteria, documented the methodological quality, assessed risks of bias in the included studies, and extracted data. We assessed the quality of the evidence using the GRADE approach. We analysed the results as standardised mean differences (SMDs) or mean differences (MDs) for continuous variables, and as odds ratios (ORs) for dichotomous variables. MAIN RESULTS We included 62 studies with a total of 1982 participants that compared mirror therapy with other interventions. Of these, 57 were randomised controlled trials and five randomised cross-over trials. Participants had a mean age of 59 years (30 to 73 years). Mirror therapy was provided three to seven times a week, between 15 and 60 minutes for each session for two to eight weeks (on average five times a week, 30 minutes a session for four weeks).When compared with all other interventions, we found moderate-quality evidence that mirror therapy has a significant positive effect on motor function (SMD 0.47, 95% CI 0.27 to 0.67; 1173 participants; 36 studies) and motor impairment (SMD 0.49, 95% CI 0.32 to 0.66; 1292 participants; 39 studies). However, effects on motor function are influenced by the type of control intervention. Additionally, based on moderate-quality evidence, mirror therapy may improve activities of daily living (SMD 0.48, 95% CI 0.30 to 0.65; 622 participants; 19 studies). We found low-quality evidence for a significant positive effect on pain (SMD -0.89, 95% CI -1.67 to -0.11; 248 participants; 6 studies) and no clear effect for improving visuospatial neglect (SMD 1.06, 95% CI -0.10 to 2.23; 175 participants; 5 studies). No adverse effects were reported. AUTHORS' CONCLUSIONS The results indicate evidence for the effectiveness of mirror therapy for improving upper extremity motor function, motor impairment, activities of daily living, and pain, at least as an adjunct to conventional rehabilitation for people after stroke. Major limitations are small sample sizes and lack of reporting of methodological details, resulting in uncertain evidence quality.
Collapse
Affiliation(s)
- Holm Thieme
- Erste Europäische Schule für Physiotherapie, Ergotherapie und Logopädie, Klinik Bavaria KreischaKreischa, SachsenGermany
- Martin Luther University Halle‐WittenbergInstitute for Health and Nursing Science, German Center for Evidence‐based NursingHalle/SaaleGermany
- Fakultät Soziale Arbeit und GesundheitHAWK Hochschule für angewandte Wissenschaft und KunstHildesheimGermany31134
| | - Nadine Morkisch
- Charité ‐ University Medicine BerlinCenter for Stroke Research BerlinCharitéplatz 1BerlinGermany0117
- MEDIAN Klinik Berlin‐KladowKladower Damm 223BerlinGermany14089
| | - Jan Mehrholz
- Technical University DresdenDepartment of Public Health, Dresden Medical SchoolFetscherstr. 74DresdenGermany01307
| | - Marcus Pohl
- Helios Klinik Schloss PulsnitzNeurological RehabilitationWittgensteiner Str. 1PulsnitzSaxonyGermany01896
| | - Johann Behrens
- Martin Luther University Halle‐WittenbergInstitute for Health and Nursing Science, German Center for Evidence‐based NursingHalle/SaaleGermany
| | - Bernhard Borgetto
- Fakultät Soziale Arbeit und GesundheitHAWK Hochschule für angewandte Wissenschaft und KunstHildesheimGermany31134
| | - Christian Dohle
- Charité ‐ University Medicine BerlinCenter for Stroke Research BerlinCharitéplatz 1BerlinGermany0117
- MEDIAN Klinik Berlin‐KladowKladower Damm 223BerlinGermany14089
| | | |
Collapse
|