1
|
Huang L, Jin A, Wei J, Tipre D, Liu CF, Weiss RG, Ardekani S. 3D Attention M-net for Short-axis Left Ventricular Myocardium Segmentation in Mice MR cardiac Images. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3353-3357. [PMID: 34891958 DOI: 10.1109/embc46164.2021.9630335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Small rodent cardiac magnetic resonance imaging (MRI) plays an important role in preclinical models of cardiac disease. Accurate myocardial boundaries delineation is crucial to most morphological and functional analysis in rodent cardiac MRIs. However, rodent cardiac MRIs, due to animal's small cardiac volume and high heart rate, are usually acquired with sub-optimal resolution and low signal-to-noise ratio (SNR). These rodent cardiac MRIs can also suffer from signal loss due to the intra-voxel dephasing. These factors make automatic myocardial segmentation challenging. Manual contouring could be applied to label myocardial boundaries but it is usually laborious, time consuming, and not systematically objective. In this study, we present a deep learning approach based on 3D attention M-net to perform automatic segmentation of left ventricular myocardium. In the deep learning architecture, we use dual spatial-channel attention gates between encoder and decoder along with multi-scale feature fusion path after decoder. Attention gates enable networks to focus on relevant spatial information and channel features to improve segmentation performance. A distance derived loss term, besides general dice loss and binary cross entropy loss, was also introduced to our hybrid loss functions to refine segmentation contours. The proposed model outperforms other generic models, like U-Net and FCN, in major segmentation metrics including the dice score (0.9072), Jaccard index (0.8307) and Hausdorff distance (3.1754 pixels), which are comparable to the results achieved by state-of-the-art models on human cardiac ACDC17 datasets.Clinical relevance Small rodent cardiac MRI is routinely used to probe the effect of individual genes or groups of genes on the etiology of a large number of cardiovascular diseases. An automatic myocardium segmentation algorithm specifically designed for these data can enhance accuracy and reproducibility of cardiac structure and function analysis.
Collapse
|
2
|
Tward D, Brown T, Kageyama Y, Patel J, Hou Z, Mori S, Albert M, Troncoso J, Miller M. Diffeomorphic Registration With Intensity Transformation and Missing Data: Application to 3D Digital Pathology of Alzheimer's Disease. Front Neurosci 2020; 14:52. [PMID: 32116503 PMCID: PMC7027169 DOI: 10.3389/fnins.2020.00052] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
This paper examines the problem of diffeomorphic image registration in the presence of differing image intensity profiles and sparsely sampled, missing, or damaged tissue. Our motivation comes from the problem of aligning 3D brain MRI with 100-micron isotropic resolution to histology sections at 1 × 1 × 1,000-micron resolution with multiple varying stains. We pose registration as a penalized Bayesian estimation, exploiting statistical models of image formation where the target images are modeled as sparse and noisy observations of the atlas. In this injective setting, there is no assumption of symmetry between atlas and target. Cross-modality image matching is achieved by jointly estimating polynomial transformations of the atlas intensity. Missing data is accommodated via a multiple atlas selection procedure where several atlas images may be of homogeneous intensity and correspond to "background" or "artifact." The two concepts are combined within an Expectation-Maximization algorithm, where atlas selection posteriors and deformation parameters are updated iteratively and polynomial coefficients are computed in closed form. We validate our method with simulated images, examples from neuropathology, and a standard benchmarking dataset. Finally, we apply it to reconstructing digital pathology and MRI in standard atlas coordinates. By using a standard convolutional neural network to detect tau tangles in histology slices, this registration method enabled us to quantify the 3D density distribution of tauopathy throughout the medial temporal lobe of an Alzheimer's disease postmortem specimen.
Collapse
Affiliation(s)
- Daniel Tward
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, United States
| | - Timothy Brown
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, United States
| | - Yusuke Kageyama
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jaymin Patel
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Zhipeng Hou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Juan Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael Miller
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|