1
|
Soheili F, Delfan N, Masoudifar N, Ebrahimni S, Moshiri B, Glogauer M, Ghafar-Zadeh E. Toward Digital Periodontal Health: Recent Advances and Future Perspectives. Bioengineering (Basel) 2024; 11:937. [PMID: 39329678 PMCID: PMC11428937 DOI: 10.3390/bioengineering11090937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/24/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Periodontal diseases, ranging from gingivitis to periodontitis, are prevalent oral diseases affecting over 50% of the global population. These diseases arise from infections and inflammation of the gums and supporting bones, significantly impacting oral health. The established link between periodontal diseases and systemic diseases, such as cardiovascular diseases, underscores their importance as a public health concern. Consequently, the early detection and prevention of periodontal diseases have become critical objectives in healthcare, particularly through the integration of advanced artificial intelligence (AI) technologies. This paper aims to bridge the gap between clinical practices and cutting-edge technologies by providing a comprehensive review of current research. We examine the identification of causative factors, disease progression, and the role of AI in enhancing early detection and treatment. Our goal is to underscore the importance of early intervention in improving patient outcomes and to stimulate further interest among researchers, bioengineers, and AI specialists in the ongoing exploration of AI applications in periodontal disease diagnosis.
Collapse
Affiliation(s)
- Fatemeh Soheili
- Biologically Inspired Sensors and Actuators Laboratory (BIOSA), Lassonde School of Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Niloufar Delfan
- Biologically Inspired Sensors and Actuators Laboratory (BIOSA), Lassonde School of Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran P9FQ+M8X, Kargar, Iran
| | - Negin Masoudifar
- Department of Internal Medicine, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Shahin Ebrahimni
- Biologically Inspired Sensors and Actuators Laboratory (BIOSA), Lassonde School of Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Behzad Moshiri
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran P9FQ+M8X, Kargar, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory (BIOSA), Lassonde School of Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Department of Electrical Engineering and Computer Science, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
2
|
Alzaid N, Ghulam O, Albani M, Alharbi R, Othman M, Taher H, Albaradie S, Ahmed S. Revolutionizing Dental Care: A Comprehensive Review of Artificial Intelligence Applications Among Various Dental Specialties. Cureus 2023; 15:e47033. [PMID: 37965397 PMCID: PMC10642940 DOI: 10.7759/cureus.47033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Since the beginning of recorded history, the human brain has been one of the most intriguing structures for scientists and engineers. Over the centuries, newer technologies have been developed based on principles that seek to mimic their functioning, but the creation of a machine that can think and behave like a human remains an unattainable fantasy. This idea is now known as "artificial intelligence". Dentistry has begun to experience the effects of artificial intelligence (AI). These include image enhancement for radiology, which improves the visibility of dental structures and facilitates disease diagnosis. AI has also been utilized for the identification of periapical lesions and root anatomy in endodontics, as well as for the diagnosis of periodontitis. This review is intended to provide a comprehensive overview of the use of AI in modern dentistry's numerous specialties. The relevant publications published between March 1987 and July 2023 were identified through an exhaustive search. Studies published in English were selected and included data regarding AI applications among various dental specialties. Dental practice involves more than just disease diagnosis, including correlation with clinical findings and administering treatment to patients. AI cannot replace dentists. However, a comprehensive understanding of AI concepts and techniques will be advantageous in the future. AI models for dental applications are currently being developed.
Collapse
Affiliation(s)
- Najd Alzaid
- Dentistry, University of Hail College of Dentistry, Hail, SAU
| | - Omar Ghulam
- General Dentistry, Prince Mohammed bin Abdulaziz Hospital, Madinah, SAU
| | - Modhi Albani
- Dentistry, University of Hail College of Dentistry, Hail, SAU
| | - Rafa Alharbi
- Dentistry, Taibah University College of Dentistry, Madinah, SAU
| | - Mayan Othman
- Dentistry, Taibah University College of Dentistry, Madinah, SAU
| | - Hasan Taher
- Endodontics, Prince Mohammed bin Abdulaziz Hospital, Madinah, SAU
| | - Saleem Albaradie
- General Dentistry, Prince Mohammed bin Abdulaziz Hospital, Madinah, SAU
| | - Suhael Ahmed
- Maxillofacial Surgery and Diagnostic Sciences, College of Medicine and Dentistry, Riyadh Elm University, Riyadh, SAU
| |
Collapse
|
3
|
Chau RCW, Li GH, Tew IM, Thu KM, McGrath C, Lo WL, Ling WK, Hsung RTC, Lam WYH. Accuracy of Artificial Intelligence-Based Photographic Detection of Gingivitis. Int Dent J 2023; 73:724-730. [PMID: 37117096 PMCID: PMC10509417 DOI: 10.1016/j.identj.2023.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/30/2023] Open
Abstract
OBJECTIVES Gingivitis is one of the most prevalent plaque-initiated dental diseases globally. It is challenging to maintain satisfactory plaque control without continuous professional advice. Artificial intelligence may be used to provide automated visual plaque control advice based on intraoral photographs. METHODS Frontal view intraoral photographs fulfilling selection criteria were collected. Along the gingival margin, the gingival conditions of individual sites were labelled as healthy, diseased, or questionable. Photographs were randomly assigned as training or validation datasets. Training datasets were input into a novel artificial intelligence system and its accuracy in detection of gingivitis including sensitivity, specificity, and mean intersection-over-union were analysed using validation dataset. The accuracy was reported according to STARD-2015 statement. RESULTS A total of 567 intraoral photographs were collected and labelled, of which 80% were used for training and 20% for validation. Regarding training datasets, there were total 113,745,208 pixels with 9,270,413; 5,711,027; and 4,596,612 pixels were labelled as healthy, diseased, and questionable respectively. Regarding validation datasets, there were 28,319,607 pixels with 1,732,031; 1,866,104; and 1,116,493 pixels were labelled as healthy, diseased, and questionable, respectively. AI correctly predicted 1,114,623 healthy and 1,183,718 diseased pixels with sensitivity of 0.92 and specificity of 0.94. The mean intersection-over-union of the system was 0.60 and above the commonly accepted threshold of 0.50. CONCLUSIONS Artificial intelligence could identify specific sites with and without gingival inflammation, with high sensitivity and high specificity that are on par with visual examination by human dentist. This system may be used for monitoring of the effectiveness of patients' plaque control.
Collapse
Affiliation(s)
- Reinhard Chun Wang Chau
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Guan-Hua Li
- School of Information Engineering, Guangdong University of Technology, Guangzhou, China
| | - In Meei Tew
- Faculty of Dentistry, The National University of Malaysia, Kuala Lumpur, Malaysia
| | - Khaing Myat Thu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Colman McGrath
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wai-Lun Lo
- Department of Computer Science, Hong Kong Chu Hai College, Hong Kong Special Administrative Region, China
| | - Wing-Kuen Ling
- School of Information Engineering, Guangdong University of Technology, Guangzhou, China
| | - Richard Tai-Chiu Hsung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, China; School of Information Engineering, Guangdong University of Technology, Guangzhou, China; Department of Computer Science, Hong Kong Chu Hai College, Hong Kong Special Administrative Region, China.
| | - Walter Yu Hang Lam
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, China; Musketeers Foundation Institute of Data Science, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
4
|
Shirmohammadi A, Ghertasi Oskouei S. The growing footprint of artificial intelligence in periodontology & implant dentistry. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2023; 15:1-2. [PMID: 37645551 PMCID: PMC10460782 DOI: 10.34172/japid.2023.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 06/11/2023] [Indexed: 08/31/2023]
Affiliation(s)
- Adileh Shirmohammadi
- Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Ghertasi Oskouei
- Section of Digital Dentistry, Facutly of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Stafie CS, Sufaru IG, Ghiciuc CM, Stafie II, Sufaru EC, Solomon SM, Hancianu M. Exploring the Intersection of Artificial Intelligence and Clinical Healthcare: A Multidisciplinary Review. Diagnostics (Basel) 2023; 13:1995. [PMID: 37370890 PMCID: PMC10297646 DOI: 10.3390/diagnostics13121995] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Artificial intelligence (AI) plays a more and more important role in our everyday life due to the advantages that it brings when used, such as 24/7 availability, a very low percentage of errors, ability to provide real time insights, or performing a fast analysis. AI is increasingly being used in clinical medical and dental healthcare analyses, with valuable applications, which include disease diagnosis, risk assessment, treatment planning, and drug discovery. This paper presents a narrative literature review of AI use in healthcare from a multi-disciplinary perspective, specifically in the cardiology, allergology, endocrinology, and dental fields. The paper highlights data from recent research and development efforts in AI for healthcare, as well as challenges and limitations associated with AI implementation, such as data privacy and security considerations, along with ethical and legal concerns. The regulation of responsible design, development, and use of AI in healthcare is still in early stages due to the rapid evolution of the field. However, it is our duty to carefully consider the ethical implications of implementing AI and to respond appropriately. With the potential to reshape healthcare delivery and enhance patient outcomes, AI systems continue to reveal their capabilities.
Collapse
Affiliation(s)
- Celina Silvia Stafie
- Department of Preventive Medicine and Interdisciplinarity, Grigore T. Popa University of Medicine and Pharmacy Iasi, Universitatii Street 16, 700115 Iasi, Romania;
| | - Irina-Georgeta Sufaru
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy Iasi, Universitatii Street 16, 700115 Iasi, Romania
| | - Cristina Mihaela Ghiciuc
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Grigore T. Popa University of Medicine and Pharmacy Iasi, Universitatii Street 16, 700115 Iasi, Romania
| | - Ingrid-Ioana Stafie
- Endocrinology Residency Program, Sf. Spiridon Clinical Emergency Hospital, Independentei 1, 700111 Iasi, Romania
| | | | - Sorina Mihaela Solomon
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy Iasi, Universitatii Street 16, 700115 Iasi, Romania
| | - Monica Hancianu
- Pharmacognosy-Phytotherapy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Universitatii Street 16, 700115 Iasi, Romania
| |
Collapse
|
6
|
Scott J, Biancardi AM, Jones O, Andrew D. Artificial Intelligence in Periodontology: A Scoping Review. Dent J (Basel) 2023; 11:43. [PMID: 36826188 PMCID: PMC9955396 DOI: 10.3390/dj11020043] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Artificial intelligence (AI) is the development of computer systems whereby machines can mimic human actions. This is increasingly used as an assistive tool to help clinicians diagnose and treat diseases. Periodontitis is one of the most common diseases worldwide, causing the destruction and loss of the supporting tissues of the teeth. This study aims to assess current literature describing the effect AI has on the diagnosis and epidemiology of this disease. Extensive searches were performed in April 2022, including studies where AI was employed as the independent variable in the assessment, diagnosis, or treatment of patients with periodontitis. A total of 401 articles were identified for abstract screening after duplicates were removed. In total, 293 texts were excluded, leaving 108 for full-text assessment with 50 included for final synthesis. A broad selection of articles was included, with the majority using visual imaging as the input data field, where the mean number of utilised images was 1666 (median 499). There has been a marked increase in the number of studies published in this field over the last decade. However, reporting outcomes remains heterogeneous because of the variety of statistical tests available for analysis. Efforts should be made to standardise methodologies and reporting in order to ensure that meaningful comparisons can be drawn.
Collapse
Affiliation(s)
- James Scott
- School of Clinical Dentistry, The University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | - Alberto M. Biancardi
- Department of Infection, Immunity and Cardiovascular Disease, Polaris, 18 Claremont Crescent, Sheffield S10 2TA, UK
| | - Oliver Jones
- School of Clinical Dentistry, The University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | - David Andrew
- School of Clinical Dentistry, The University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| |
Collapse
|
7
|
Arsiwala-Scheppach LT, Chaurasia A, Müller A, Krois J, Schwendicke F. Machine Learning in Dentistry: A Scoping Review. J Clin Med 2023; 12:937. [PMID: 36769585 PMCID: PMC9918184 DOI: 10.3390/jcm12030937] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/06/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Machine learning (ML) is being increasingly employed in dental research and application. We aimed to systematically compile studies using ML in dentistry and assess their methodological quality, including the risk of bias and reporting standards. We evaluated studies employing ML in dentistry published from 1 January 2015 to 31 May 2021 on MEDLINE, IEEE Xplore, and arXiv. We assessed publication trends and the distribution of ML tasks (classification, object detection, semantic segmentation, instance segmentation, and generation) in different clinical fields. We appraised the risk of bias and adherence to reporting standards, using the QUADAS-2 and TRIPOD checklists, respectively. Out of 183 identified studies, 168 were included, focusing on various ML tasks and employing a broad range of ML models, input data, data sources, strategies to generate reference tests, and performance metrics. Classification tasks were most common. Forty-two different metrics were used to evaluate model performances, with accuracy, sensitivity, precision, and intersection-over-union being the most common. We observed considerable risk of bias and moderate adherence to reporting standards which hampers replication of results. A minimum (core) set of outcome and outcome metrics is necessary to facilitate comparisons across studies.
Collapse
Affiliation(s)
- Lubaina T. Arsiwala-Scheppach
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 14197 Berlin, Germany
- ITU/WHO Focus Group AI on Health, Topic Group Dental Diagnostics and Digital Dentistry, CH-1211 Geneva 20, Switzerland
| | - Akhilanand Chaurasia
- ITU/WHO Focus Group AI on Health, Topic Group Dental Diagnostics and Digital Dentistry, CH-1211 Geneva 20, Switzerland
- Department of Oral Medicine and Radiology, King George’s Medical University, Lucknow 226003, India
| | - Anne Müller
- Pharmacovigilance Institute (Pharmakovigilanz- und Beratungszentrum, PVZ) for Embryotoxicology, Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Joachim Krois
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 14197 Berlin, Germany
- ITU/WHO Focus Group AI on Health, Topic Group Dental Diagnostics and Digital Dentistry, CH-1211 Geneva 20, Switzerland
| | - Falk Schwendicke
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 14197 Berlin, Germany
- ITU/WHO Focus Group AI on Health, Topic Group Dental Diagnostics and Digital Dentistry, CH-1211 Geneva 20, Switzerland
| |
Collapse
|
8
|
Analysis of Deep Learning Techniques for Dental Informatics: A Systematic Literature Review. Healthcare (Basel) 2022; 10:healthcare10101892. [PMID: 36292339 PMCID: PMC9602147 DOI: 10.3390/healthcare10101892] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
Within the ever-growing healthcare industry, dental informatics is a burgeoning field of study. One of the major obstacles to the health care system’s transformation is obtaining knowledge and insightful data from complex, high-dimensional, and diverse sources. Modern biomedical research, for instance, has seen an increase in the use of complex, heterogeneous, poorly documented, and generally unstructured electronic health records, imaging, sensor data, and text. There were still certain restrictions even after many current techniques were used to extract more robust and useful elements from the data for analysis. New effective paradigms for building end-to-end learning models from complex data are provided by the most recent deep learning technology breakthroughs. Therefore, the current study aims to examine the most recent research on the use of deep learning techniques for dental informatics problems and recommend creating comprehensive and meaningful interpretable structures that might benefit the healthcare industry. We also draw attention to some drawbacks and the need for better technique development and provide new perspectives about this exciting new development in the field.
Collapse
|
9
|
Alotaibi G, Awawdeh M, Farook FF, Aljohani M, Aldhafiri RM, Aldhoayan M. Artificial intelligence (AI) diagnostic tools: utilizing a convolutional neural network (CNN) to assess periodontal bone level radiographically—a retrospective study. BMC Oral Health 2022; 22:399. [PMID: 36100856 PMCID: PMC9469589 DOI: 10.1186/s12903-022-02436-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background The purpose of this investigation was to develop a computer-assisted detection system based on a deep convolutional neural network (CNN) algorithm and to evaluate the accuracy and usefulness of this system for the detection of alveolar bone loss in periapical radiographs in the anterior region of the dental arches. We also aimed to evaluate the usefulness of the system in categorizing the severity of bone loss due to periodontal disease. Method A data set of 1724 intraoral periapical images of upper and lower anterior teeth in 1610 adult patients were retrieved from the ROMEXIS software management system at King Saud bin Abdulaziz University for Health Sciences. Using a combination of pre-trained deep CNN architecture and a self-trained network, the radiographic images were used to determine the optimal CNN algorithm. The diagnostic and predictive accuracy, precision, confusion matrix, recall, F1-score, Matthews Correlation Coefficient (MCC), Cohen Kappa, were calculated using the deep CNN algorithm in Python. Results The periapical radiograph dataset was divided randomly into 70% training, 20% validation, and 10% testing datasets. With the deep learning algorithm, the diagnostic accuracy for classifying normal versus disease was 73.0%, and 59% for the classification of the levels of severity of the bone loss. The Model showed a significant difference in the confusion matrix, accuracy, precision, recall, f1-score, MCC and Matthews Correlation Coefficient (MCC), Cohen Kappa, and receiver operating characteristic (ROC), between both the binary and multi-classification models. Conclusion This study revealed that the deep CNN algorithm (VGG-16) was useful to detect alveolar bone loss in periapical radiographs, and has a satisfactory ability to detect the severity of bone loss in teeth. The results suggest that machines can perform better based on the level classification and the captured characteristics of the image diagnosis. With additional optimization of the periodontal dataset, it is expected that a computer-aided detection system can become an effective and efficient procedure for aiding in the detection and staging of periodontal disease.
Collapse
|
10
|
Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, Sarode SC, Bhandi S. Developments, application, and performance of artificial intelligence in dentistry - A systematic review. J Dent Sci 2020; 16:508-522. [PMID: 33384840 PMCID: PMC7770297 DOI: 10.1016/j.jds.2020.06.019] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/19/2020] [Indexed: 01/24/2023] Open
Abstract
Background/purpose Artificial intelligence (AI) has made deep inroads into dentistry in the last few years. The aim of this systematic review was to identify the development of AI applications that are widely employed in dentistry and evaluate their performance in terms of diagnosis, clinical decision-making, and predicting the prognosis of the treatment. Materials and methods The literature for this paper was identified and selected by performing a thorough search in the electronic data bases like PubMed, Medline, Embase, Cochrane, Google scholar, Scopus, Web of science, and Saudi digital library published over the past two decades (January 2000–March 15, 2020).After applying inclusion and exclusion criteria, 43 articles were read in full and critically analyzed. Quality analysis was performed using QUADAS-2. Results AI technologies are widely implemented in a wide range of dentistry specialties. Most of the documented work is focused on AI models that rely on convolutional neural networks (CNNs) and artificial neural networks (ANNs). These AI models have been used in detection and diagnosis of dental caries, vertical root fractures, apical lesions, salivary gland diseases, maxillary sinusitis, maxillofacial cysts, cervical lymph nodes metastasis, osteoporosis, cancerous lesions, alveolar bone loss, predicting orthodontic extractions, need for orthodontic treatments, cephalometric analysis, age and gender determination. Conclusion These studies indicate that the performance of an AI based automated system is excellent. They mimic the precision and accuracy of trained specialists, in some studies it was found that these systems were even able to outmatch dental specialists in terms of performance and accuracy.
Collapse
Affiliation(s)
- Sanjeev B Khanagar
- Preventive Dental Science Department, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Ali Al-Ehaideb
- Preventive Dental Science Department, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Dental Services, King Abdulaziz Medical City- Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Prabhadevi C Maganur
- Department of Preventive Dental Sciences, Division of Pedodontics, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Satish Vishwanathaiah
- Department of Preventive Dental Sciences, Division of Pedodontics, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Hosam A Baeshen
- Consultant in Orthodontics, Department of Orthodontics, College of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sachin C Sarode
- Department of Oral and Maxillofacial Pathology, Dr. D.Y.Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, Maharashtra, India
| | - Shilpa Bhandi
- Department of Restorative Dental Sciences, Division of Operative Dentistry, College of Dentistry, Jazan University, Saudi Arabia
| |
Collapse
|