1
|
Guo C, Cun Y, Xia B, Chen S, Zhang C, Chen Y, Shan E, Zhang P, Tai X. An analysis of stimulation methods used in rehabilitation equipment for children with cerebral palsy. Front Neurol 2024; 15:1371332. [PMID: 38966084 PMCID: PMC11223519 DOI: 10.3389/fneur.2024.1371332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024] Open
Abstract
Objective This paper summarizes the research progress into stimulation methods used in rehabilitation equipment for pediatric cerebral palsy (CP) for the past 20 years from 2003 to 2023. We also provide ideas for innovative research and development of artificial intelligence-based rehabilitation equipment. Methods Through a certain search strategy, Keywords are searched in the China National Knowledge Network Database (CNKI), the Wanfang Database knowledge service platform, the Chongqing VIP information service, PubMed, Web of Science, Cochrane, ScienceDirect, Medline, Embase, and IEEE database. A total of 3,049 relevant articles were retrieved, and 49 articles were included that mentioned research and development of rehabilitation equipment. We excluded articles that were not specific to children with CP, were duplicated or irrelevant literature, were missing data, the full article was not available, the article did not describe the method of stimulation used with the rehabilitation equipment on children with CP, were not Chinese and English, and were the types of reviews and commentaries. Results Physical stimulation is the main stimulation method of rehabilitation equipment for children with CP. Force stimulation is the main mode of physical stimulation, and there are 17 articles that have verified the clinical efficacy of force stimulation-based equipment. Conclusion Research on the stimulation mode of pediatric cerebral palsy rehabilitation equipment is likely to focus on simulating the force of the Chinese medicine called "tuina manipulation." When this method is combined with artificial intelligence and personalized direction we believe this will lay the foundation for future development of a novel therapy for children with CP.
Collapse
Affiliation(s)
- Cunxiao Guo
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture and Tuina Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yongdan Cun
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture and Tuina Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan College of Business Management, Kunming, China
| | - Bo Xia
- Master of Science in Computer Science, Sofia University, Palo Alto, CA, United States
| | - Suyu Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture and Tuina Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Can Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture and Tuina Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yiping Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture and Tuina Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Exian Shan
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture and Tuina Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Pengyue Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture and Tuina Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiantao Tai
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture and Tuina Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
2
|
Feldner HA, Gaebler-Spira D, Awasthi V, Bjornson KK. Supportive mobility devices across the lifespan in Cerebral Palsy: a modified Delphi study to establish stakeholder research priorities. Disabil Rehabil Assist Technol 2024; 19:1739-1747. [PMID: 37452575 PMCID: PMC10883137 DOI: 10.1080/17483107.2023.2233564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE The aim of this study was to co-develop research priorities and identify meaningful research questions with a diverse group of stakeholders representing the CP community for implementation in subsequent research activities. The overarching aim of this research was to 1) Understand the mobility experiences, supported mobility device (SMD) use, and desired participation outcomes of people with cerebral palsy (CP) across the lifespan; and 2) Describe how perspectives of rehabilitation care and professional resources may influence mobility decision-making processes and outcomes. MATERIALS AND METHODS A three-round modified Delphi consensus study was conducted with a stakeholder advisory panel consisting of three adults with CP, two parents of children with CP, and four SMD providers. RESULTS The advisory panel identified 11 unique topical categories focused on SMD selection and use, stratified by age group and stakeholder role. Questions or statements within each category were ranked, and top consensus and concordance statements were retained, reviewed, and refined for use in a co-developed focus group guide. Priorities were identified in three main groupings: (1) Age/GMFCS level/Environment-related; (2) Individual with CP/Caregiver need-related; and (3) Clinician/provider partnership-related. DISCUSSION A modified Delphi process was a useful tool for stakeholders in co-developing research priorities related to SMD use across the lifespan. Drawing on the lived expertise of stakeholders is important in facilitating improved research translation in the CP community.
Collapse
Affiliation(s)
- Heather A Feldner
- Department of Rehabilitation Medicine, University of WA, Seattle, WA, USA
| | | | - Varun Awasthi
- Seattle Children's Research Institute, Seattle, WA, USA
| | | |
Collapse
|
3
|
Castelli E, Beretta E, De Tanti A, Arduini F, Biffi E, Colazza A, Di Pede C, Guzzetta A, Lucarini L, Maghini I, Mandalà M, Nespoli M, Pavarelli C, Policastro F, Polverelli M, Rossi A, Sgandurra G, Boldrini P, Bonaiuti D, Mazzoleni S, Posteraro F, Benanti P, Draicchio F, Falabella V, Galeri S, Gimigliano F, Grigioni M, Mazzon S, Molteni F, Morone G, Petrarca M, Picelli A, Senatore M, Turchetti G, Saviola D, Turchetti G. Robot-assisted rehabilitation for children with neurological disabilities: Results of the Italian consensus conference CICERONE. NeuroRehabilitation 2022; 51:665-679. [PMID: 36530098 DOI: 10.3233/nre-220036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The use of robotic technologies in pediatric rehabilitation has seen a large increase, but with a lack of a comprehensive framework about their effectiveness. OBJECTIVE An Italian Consensus Conference has been promoted to develop recommendations on these technologies: definitions and classification criteria of devices, indications and limits of their use in neurological diseases, theoretical models, ethical and legal implications. In this paper, we present the results for the pediatric age. METHODS A systematic search on Cochrane Library, PEDro and PubMed was performed. Papers published up to March 1st, 2020, in English, were included and analyzed using the methodology of the Centre for Evidence-Based Medicine in Oxford, AMSTAR2 and PEDro scales for systematic reviews and RCT, respectively. RESULTS Some positives aspects emerged in the area of gait: an increased number of children reaching the stance, an improvement in walking distance, speed and endurance. Critical aspects include the heterogeneity of the studied cases, measurements and training protocols. CONCLUSION Many studies demonstrate the benefits of robotic training in developmental age. However, it is necessary to increase the number of trials to achieve greater homogeneity between protocols and to confirm the effectiveness of pediatric robotic rehabilitation.
Collapse
Affiliation(s)
| | - Elena Beretta
- IRCCS Eugenio Medea, La Nostra Famiglia, Ponte Lambro, Italy
| | - Antonio De Tanti
- KOS-CARE, Santo Stefano Rehabilitation, Cardinal Ferrari Center, Parma, Italy
| | | | - Emilia Biffi
- IRCCS Eugenio Medea, La Nostra Famiglia, Ponte Lambro, Italy
| | | | - Chiara Di Pede
- IRCCS Eugenio Medea, La Nostra Famiglia, Ponte Lambro, Italy
| | - Andrea Guzzetta
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.,Dipartimento di Neuroscienze dello Sviluppo, IRCCS Stella Maris, Pisa, Italy
| | | | - Irene Maghini
- Department of Women's and Children's Health, Pediatric Pain and Palliative Care Service, University of Padua, Padua, Italy
| | - Martina Mandalà
- IRCCS Santa Maria Nascente - Fondazione Don C. Gnocchi, Milan, Italy
| | | | - Claudia Pavarelli
- Servizio di Neuropsichiatria Infanzia e dell'Adolescenza (NPIA), Vignola, Italy
| | - Francesca Policastro
- Dipartimento Scienze Mediche e Chirurgiche, Università degli Studi di Trieste, Trieste, Italy
| | - Marco Polverelli
- Dipartimento Riabilitazione, Azienda Ospedaliera Nazionale SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Andrea Rossi
- ASST Spedali Civili di Brescia, Ospedale dei Bambini, Brescia, Italy
| | - Giuseppina Sgandurra
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.,Dipartimento di Neuroscienze dello Sviluppo, IRCCS Stella Maris, Pisa, Italy
| | - Paolo Boldrini
- Italian Society of Physical Medicine and Rehabilitation, (SIMFER), Rome, Italy
| | - Donatella Bonaiuti
- Italian Society of Physical Medicine and Rehabilitation, (SIMFER), Rome, Italy
| | - Stefano Mazzoleni
- Department of Electrical and Information Engineering, Politecnico di Bari, Bari, Italy
| | - Federico Posteraro
- Department of Rehabilitation, Versilia Hospital - AUSL12, Viareggio, Italy
| | | | - Francesco Draicchio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Rome, Italy
| | - Vincenzo Falabella
- Italian Federation of Persons with Spinal Cord Injuries (FAIP Onlus), Rome, Italy
| | | | - Francesca Gimigliano
- Department of Mental, Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mauro Grigioni
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | - Stefano Mazzon
- Rehabilitation Unit, ULSS (Local Health Autority) Euganea, Camposampietro Hospital, Padua, Italy
| | - Franco Molteni
- Department of Rehabilitation Medicine, Villa Beretta Rehabilitation Center, Valduce Hospital, Lecco, Italy
| | | | - Maurizio Petrarca
- Movement Analysis and Robotics Laboratory (MARlab), IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Alessandro Picelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Senatore
- Associazione Italiana dei Terapisti Occupazionali (AITO), Rome, Italy
| | | | - Donatella Saviola
- KOS-CARE, Santo Stefano Rehabilitation, Cardinal Ferrari Center, Parma, Italy
| | | |
Collapse
|
4
|
Hunt M, Everaert L, Brown M, Muraru L, Hatzidimitriadou E, Desloovere K. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review. Gait Posture 2022; 98:343-354. [PMID: 36306544 DOI: 10.1016/j.gaitpost.2022.09.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 07/12/2022] [Accepted: 09/19/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Robotic exoskeletons have been developed to assist locomotion and address gait abnormalities in children with cerebral palsy (CP). These wearable assistive devices provide powered assistance to the lower-extremity joints, as well as support and stability. RESEARCH QUESTION Does exoskeleton-assisted walking improve gait in children with CP? METHODS The PRISMA guidelines were used to conduct this systematic review. Articles were obtained in a search of the following electronic databases: Embase, CINAHL Complete, PubMed, Web of Science and MEDLINE. Studies investigating spatiotemporal, kinematic, kinetic, muscle activity and/or physiological parameters during exoskeleton-assisted walking in children with CP were included. All articles were assessed for methodological quality using an adapted version of the Quality Assessment Tool for Before-After (Pre-Post) Studies with No Control Group, provided by the National Institutes of Health (NIH). RESULTS Thirteen studies were included. They involved the use of the following exoskeletons: tethered knee exoskeleton, pediatric knee exoskeleton (P.REX), untethered ankle exoskeleton, WAKE-Up ankle module, WAKE-Up ankle & knee module and unilateral ankle exosuit. Methodological quality varied, with key limitations in sample size and allocated time to adapt to the exoskeleton. There was a consensus that robotic exoskeletons improve gait given careful optimisation of exoskeleton torque and sufficient exoskeleton practice time for each participant. Improvements in gait included reduced metabolic cost of walking, increased walking speed, and increased knee and hip extension during stance. Furthermore, exoskeletons with an actuated ankle module were shown to promote normal ankle rocker function. SIGNIFICANCE Robotic exoskeletons have the potential to improve the mobility of CP children and may therefore increase community participation and improve quality of life. Future work should involve larger controlled intervention studies utilising robotic exoskeletons to improve gait in children with CP. These studies should ensure sufficient exoskeleton practice time for each participant.
Collapse
Affiliation(s)
- Markus Hunt
- Section of Sport, Exercise and Rehabilitation Science, School of Psychology and Life Sciences, Canterbury Christ Church University, North Holmes Road Campus, Canterbury, Kent CT1 1QU, UK.
| | - Laure Everaert
- Clinical Motion Analysis Laboratory, University Hospital Leuven, Weligerveld 1, 3212 Pellenberg, Belgium; Department of Rehabilitation Sciences, Research Group for Neurorehabilitation (eNRGy), KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Mathew Brown
- Section of Sport, Exercise and Rehabilitation Science, School of Psychology and Life Sciences, Canterbury Christ Church University, North Holmes Road Campus, Canterbury, Kent CT1 1QU, UK.
| | - Luiza Muraru
- Mobilab & Care, Thomas More University of Applied Sciences, Kleinhoefstraat 4, Geel, Belgium.
| | - Eleni Hatzidimitriadou
- Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, North Holmes Road Campus, Canterbury, Kent CT1 1QU, UK.
| | - Kaat Desloovere
- Clinical Motion Analysis Laboratory, University Hospital Leuven, Weligerveld 1, 3212 Pellenberg, Belgium; Department of Rehabilitation Sciences, Research Group for Neurorehabilitation (eNRGy), KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| |
Collapse
|
5
|
Lora-Millan JS, Moreno JC, Rocon E. Coordination Between Partial Robotic Exoskeletons and Human Gait: A Comprehensive Review on Control Strategies. Front Bioeng Biotechnol 2022; 10:842294. [PMID: 35694226 PMCID: PMC9174608 DOI: 10.3389/fbioe.2022.842294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lower-limb robotic exoskeletons have become powerful tools to assist or rehabilitate the gait of subjects with impaired walking, even when they are designed to act only partially over the locomotor system, as in the case of unilateral or single-joint exoskeletons. These partial exoskeletons require a proper method to synchronize their assistive actions and ensure correct inter-joint coordination with the user’s gait. This review analyzes the state of the art of control strategies to coordinate the assistance provided by these partial devices with the actual gait of the wearers. We have analyzed and classified the different approaches independently of the hardware implementation, describing their basis and principles. We have also reviewed the experimental validations of these devices for impaired and unimpaired walking subjects to provide the reader with a clear view of their technology readiness level. Eventually, the current state of the art and necessary future steps in the field are summarized and discussed.
Collapse
Affiliation(s)
- Julio S. Lora-Millan
- Centre for Automation and Robotics, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Madrid, CSIC-UPM, Madrid, Spain
- Electronic Technology Department, Universidad Rey Juan Carlos, Madrid, Spain
| | - Juan C. Moreno
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - E. Rocon
- Centre for Automation and Robotics, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Madrid, CSIC-UPM, Madrid, Spain
- *Correspondence: E. Rocon,
| |
Collapse
|
6
|
Gait Recognition for Lower Limb Exoskeletons Based on Interactive Information Fusion. Appl Bionics Biomech 2022; 2022:9933018. [PMID: 35378794 PMCID: PMC8976668 DOI: 10.1155/2022/9933018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/10/2021] [Accepted: 03/05/2022] [Indexed: 11/18/2022] Open
Abstract
In recent decades, although the research on gait recognition of lower limb exoskeleton robot has been widely developed, there are still limitations in rehabilitation training and clinical practice. The emergence of interactive information fusion technology provides a new research idea for the solution of this problem, and it is also the development trend in the future. In order to better explore the issue, this paper summarizes gait recognition based on interactive information fusion of lower limb exoskeleton robots. This review introduces the current research status, methods, and directions for information acquisition, interaction, fusion, and gait recognition of exoskeleton robots. The content involves the research progress of information acquisition methods, sensor placements, target groups, lower limb sports biomechanics, interactive information fusion, and gait recognition model. Finally, the current challenges, possible solutions, and promising prospects are analysed and discussed, which provides a useful reference resource for the study of interactive information fusion and gait recognition of rehabilitation exoskeleton robots.
Collapse
|
7
|
Sarajchi M, Al-Hares MK, Sirlantzis K. Wearable Lower-Limb Exoskeleton for Children With Cerebral Palsy: A Systematic Review of Mechanical Design, Actuation Type, Control Strategy, and Clinical Evaluation. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2695-2720. [PMID: 34910636 DOI: 10.1109/tnsre.2021.3136088] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Children with a neurological disorder such as cerebral palsy (CP) severely suffer from a reduced quality of life because of decreasing independence and mobility. Although there is no cure yet, a lower-limb exoskeleton (LLE) has considerable potential to help these children experience better mobility during overground walking. The research in wearable exoskeletons for children with CP is still at an early stage. This paper shows that the number of published papers on LLEs assisting children with CP has significantly increased in recent years; however, no research has been carried out to review these studies systematically. To fill up this research gap, a systematic review from a technical and clinical perspective has been conducted, based on the PRISMA guidelines, under three extended topics associated with "lower limb", "exoskeleton", and "cerebral palsy" in the databases Scopus and Web of Science. After applying several exclusion criteria, seventeen articles focused on fifteen LLEs were included for careful consideration. These studies address some consistent positive evidence on the efficacy of LLEs in improving gait patterns in children with CP. Statistical findings show that knee exoskeletons, brushless DC motors, the hierarchy control architecture, and CP children with spastic diplegia are, respectively, the most common mechanical design, actuator type, control strategy, and clinical characteristics for these LLEs. Clinical studies suggest ankle-foot orthosis as the primary medical solution for most CP gait patterns; nevertheless, only one motorized ankle exoskeleton has been developed. This paper shows that more research and contribution are needed to deal with open challenges in these LLEs.
Collapse
|
8
|
Bacek T, Moltedo M, Serrien B, Langlois K, Vanderborght B, Lefeber D, Rodriguez-Guerrero C. Human Musculoskeletal and Energetic Adaptations to Unilateral Robotic Knee Gait Assistance. IEEE Trans Biomed Eng 2021; 69:1141-1150. [PMID: 34559629 DOI: 10.1109/tbme.2021.3114737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE This paper aims to analyse the human musculoskeletal and energetic adaptation mechanisms when physically interacting with a unilateral knee orthosis during treadmill walking. METHODS Test subjects participated in two walking trials, whereby the orthosis was controlled to deliver five predefined torque profiles of different duration (as % of a gait cycle). The adaptations to assistive torques of different duration were analysed in terms of gait parameters, metabolic effort, and muscle activity. RESULTS Orthotic assistances kinematic effects remain local to the assisted leg and joint, unlike the muscles spanning the knee joint, which engage in a balancing-out action to retain stability. Duration of assistive torque significantly affects only the timing of the knee joints peak flexion angle in the stance phase, while the observed joint kinematics and muscle activity demonstrate different recovery times upon changing robotic support (washout effects). CONCLUSION Human body adaptations to external robotic knee joint assistance during walking take place on multiple levels and to a different extent in a joint effort to keep the gait stable. SIGNIFICANCE This paper provides important insights into the human bodys multiple adaptation mechanisms in the presence of external robotic assistance.
Collapse
|
9
|
Review of control strategies for lower-limb exoskeletons to assist gait. J Neuroeng Rehabil 2021; 18:119. [PMID: 34315499 PMCID: PMC8314580 DOI: 10.1186/s12984-021-00906-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/25/2021] [Indexed: 12/20/2022] Open
Abstract
Background Many lower-limb exoskeletons have been developed to assist gait, exhibiting a large range of control methods. The goal of this paper is to review and classify these control strategies, that determine how these devices interact with the user. Methods In addition to covering the recent publications on the control of lower-limb exoskeletons for gait assistance, an effort has been made to review the controllers independently of the hardware and implementation aspects. The common 3-level structure (high, middle, and low levels) is first used to separate the continuous behavior (mid-level) from the implementation of position/torque control (low-level) and the detection of the terrain or user’s intention (high-level). Within these levels, different approaches (functional units) have been identified and combined to describe each considered controller. Results 291 references have been considered and sorted by the proposed classification. The methods identified in the high-level are manual user input, brain interfaces, or automatic mode detection based on the terrain or user’s movements. In the mid-level, the synchronization is most often based on manual triggers by the user, discrete events (followed by state machines or time-based progression), or continuous estimations using state variables. The desired action is determined based on position/torque profiles, model-based calculations, or other custom functions of the sensory signals. In the low-level, position or torque controllers are used to carry out the desired actions. In addition to a more detailed description of these methods, the variants of implementation within each one are also compared and discussed in the paper. Conclusions By listing and comparing the features of the reviewed controllers, this work can help in understanding the numerous techniques found in the literature. The main identified trends are the use of pre-defined trajectories for full-mobilization and event-triggered (or adaptive-frequency-oscillator-synchronized) torque profiles for partial assistance. More recently, advanced methods to adapt the position/torque profiles online and automatically detect terrains or locomotion modes have become more common, but these are largely still limited to laboratory settings. An analysis of the possible underlying reasons of the identified trends is also carried out and opportunities for further studies are discussed. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00906-3.
Collapse
|