1
|
Peter J, Ferraioli F, Mathew D, George S, Chan C, Alalade T, Salcedo SA, Saed S, Tatti E, Quartarone A, Ghilardi MF. Movement-related beta ERD and ERS abnormalities in neuropsychiatric disorders. Front Neurosci 2022; 16:1045715. [PMID: 36507340 PMCID: PMC9726921 DOI: 10.3389/fnins.2022.1045715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Movement-related oscillations in the beta range (from 13 to 30 Hz) have been observed over sensorimotor areas with power decrease (i.e., event-related desynchronization, ERD) during motor planning and execution followed by an increase (i.e., event-related synchronization, ERS) after the movement's end. These phenomena occur during active, passive, imaged, and observed movements. Several electrophysiology studies have used beta ERD and ERS as functional indices of sensorimotor integrity, primarily in diseases affecting the motor system. Recent literature also highlights other characteristics of beta ERD and ERS, implying their role in processes not strictly related to motor function. Here we review studies about movement-related ERD and ERS in diseases characterized by motor dysfunction, including Parkinson's disease, dystonia, stroke, amyotrophic lateral sclerosis, cerebral palsy, and multiple sclerosis. We also review changes of beta ERD and ERS reported in physiological aging, Alzheimer's disease, and schizophrenia, three conditions without overt motor symptoms. The review of these works shows that ERD and ERS abnormalities are present across the spectrum of the examined pathologies as well as development and aging. They further suggest that cognition and movement are tightly related processes that may share common mechanisms regulated by beta modulation. Future studies with a multimodal approach are warranted to understand not only the specific topographical dynamics of movement-related beta modulation but also the general meaning of beta frequency changes occurring in relation to movement and cognitive processes at large. Such an approach will provide the foundation to devise and implement novel therapeutic approaches to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jaime Peter
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Francesca Ferraioli
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Dave Mathew
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Shaina George
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Cameron Chan
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Tomisin Alalade
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Sheilla A. Salcedo
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Shannon Saed
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Elisa Tatti
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States,*Correspondence: Elisa Tatti,
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino Pulejo-Piemonte, Messina, Italy,Angelo Quartarone,
| | - M. Felice Ghilardi
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States,M. Felice Ghilardi,
| |
Collapse
|
2
|
Pei G, Liu X, Huang Q, Shi Z, Wang L, Suo D, Funahashi S, Wu J, Zhang J, Fang B. Characterizing cortical responses to short-term multidisciplinary intensive rehabilitation treatment in patients with Parkinson’s disease: A transcranial magnetic stimulation and electroencephalography study. Front Aging Neurosci 2022; 14:1045073. [PMID: 36408100 PMCID: PMC9669794 DOI: 10.3389/fnagi.2022.1045073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is a powerful non-invasive tool for qualifying the neurophysiological effects of interventions by recording TMS-induced cortical activation with high temporal resolution and generates reproducible and reliable waves of activity without participant cooperation. Cortical dysfunction contributes to the pathogenesis of the clinical symptoms of Parkinson’s disease (PD). Here, we examined changes in cortical activity in patients with PD following multidisciplinary intensive rehabilitation treatment (MIRT). Forty-eight patients with PD received 2 weeks of MIRT. The cortical response was examined following single-pulse TMS over the primary motor cortex by 64-channel EEG, and clinical symptoms were assessed before and after MIRT. TMS-evoked potentials were quantified by the global mean field power, as well as oscillatory power in theta, alpha, beta, and gamma bands, and their clinical correlations were calculated. After MIRT, motor and non-motor symptoms improved in 22 responders, and only non-motor function was enhanced in 26 non-responders. Primary motor cortex stimulation reduced global mean field power amplitudes in responders but not significantly in non-responders. Oscillations exhibited attenuated power in the theta, beta, and gamma bands in responders but only reduced gamma power in non-responders. Associations were observed between beta oscillations and motor function and between gamma oscillations and non-motor symptoms. Our results suggest that motor function enhancement by MIRT may be due to beta oscillatory power modulation and that alterations in cortical plasticity in the primary motor cortex contribute to PD recovery.
Collapse
Affiliation(s)
- Guangying Pei
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xinting Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Qiwei Huang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhongyan Shi
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Li Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Dingjie Suo
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Jian Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Jian Zhang,
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- *Correspondence: Boyan Fang,
| |
Collapse
|
3
|
Costa TDDC, Godeiro Júnior C, Silva RAE, dos Santos SF, Machado DGDS, Andrade SM. The Effects of Non-Invasive Brain Stimulation on Quantitative EEG in Patients With Parkinson's Disease: A Systematic Scoping Review. Front Neurol 2022; 13:758452. [PMID: 35309586 PMCID: PMC8924295 DOI: 10.3389/fneur.2022.758452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms, aside from alterations in the electroencephalogram (EEG) already registered. Non-invasive brain stimulation (NIBS) techniques have been suggested as an alternative rehabilitative therapy, but the neurophysiological changes associated with these techniques are still unclear. We aimed to identify the nature and extent of research evidence on the effects of NIBS techniques in the cortical activity measured by EEG in patients with PD. A systematic scoping review was configured by gathering evidence on the following bases: PubMed (MEDLINE), PsycINFO, ScienceDirect, Web of Science, and cumulative index to nursing & allied health (CINAHL). We included clinical trials with patients with PD treated with NIBS and evaluated by EEG pre-intervention and post-intervention. We used the criteria of Downs and Black to evaluate the quality of the studies. Repetitive transcranial magnetic stimulation (TMS), transcranial electrical stimulation (tES), electrical vestibular stimulation, and binaural beats (BBs) are non-invasive stimulation techniques used to treat cognitive and motor impairment in PD. This systematic scoping review found that the current evidence suggests that NIBS could change quantitative EEG in patients with PD. However, considering that the quality of the studies varied from poor to excellent, the low number of studies, variability in NIBS intervention, and quantitative EEG measures, we are not yet able to use the EEG outcomes to predict the cognitive and motor treatment response after brain stimulation. Based on our findings, we recommend additional research efforts to validate EEG as a biomarker in non-invasive brain stimulation trials in PD.
Collapse
Affiliation(s)
| | - Clécio Godeiro Júnior
- Division of Neurology, Hospital Universitario Onofre Lopes, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Rodrigo Alencar e Silva
- Division of Neurology, Hospital Universitario Onofre Lopes, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | | | | |
Collapse
|